
Vol.:(0123456789)

Drug Safety (2020) 43:787–795 
https://doi.org/10.1007/s40264-020-00940-5

ORIGINAL RESEARCH ARTICLE

Detecting Medicine Safety Signals Using Prescription Sequence 
Symmetry Analysis of a National Prescribing Data Set

Clare E. King1  · Nicole L. Pratt2  · Nichole Craig3 · Loc Thai3 · Margaret Wilson1  · Neillan Nandapalan1  · 
Lisa Kalisch Ellet2  · Eirene C. Behm1 

Published online: 23 June 2020 
© Springer Nature Switzerland AG 2020

Abstract
Introduction Medicine safety signal detection methods employed by the medicine regulator in Australia (Therapeutic Goods 
Administration [TGA], Department of Health) rely predominantly on analysis of spontaneous adverse event (AE) reports, 
sponsor notifications or information shared by international agencies. The limitations of these methods and the availability 
of large administrative health data sets has given rise to greater interest in the use of administrative health data to support 
pharmacovigilance (PV).
Objective We explored whether prescription sequence symmetry analysis (PSSA) of Pharmaceutical Benefits Scheme (PBS) 
data can enhance signal detection by the TGA, using the AE, heart failure (HF) as a case study.
Methods We applied the PSSA method to all single-ingredient medicines dispensed under the PBS between 2012 and 
2016, using furosemide initiation as a proxy for new-onset HF. A signal was considered present if the lower limit of the 95% 
confidence interval for the adjusted sequence ratio was > 1. We excluded medicines known to cause HF, indicated for HF 
treatment or indicated for diseases that may contribute to HF.
Results Of the 654 tested medicines, 26 potential new HF signals were detected by PSSA. Five signals had additional sup-
port for the possible association provided by biological plausibility, consistency and disproportionate reporting of cases of 
HF to the TGA and the World Health Organization; and clinical impact.
Conclusion PSSA was able to identify potential signals for further evaluation. With the increasing availability of different 
administrative health data sources, the strengths and weaknesses of methods used to analyse these data for the purpose of 
regulatory PV should be evaluated.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s4026 4-020-00940 -5) contains 
supplementary material, which is available to authorized users.
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1 Introduction

As part of the Department of Health, the Therapeutic Goods 
Administration (TGA) is Australia’s regulatory body for 

therapeutic goods. One of its roles is to monitor the safety 
of therapeutic goods, including medicines, that are available 
in Australia. TGA’s current post-marketing surveillance sig-
nal detection methods rely mostly on analysis of spontane-
ous adverse event (AE) reports, notifications from sponsors 
(Marketing Authorisation Holders) or information shared by 
international agencies. A signal is reported information on a 
possible causal relationship between an AE and a medicine, 
the relationship being unknown or incompletely documented 
previously [1]. The known limitations of current methods 
and the increasing availability of large administrative health 
data sets have given rise to greater interest in the use of these 
data to support pharmacovigilance (PV) [2].

In 2016, the Australian Government Response to the 
Review of Medicines and Medical Devices Regulation was 
released. One component of the response was to investigate 
whether existing datasets held by the Australian Govern-
ment Department of Health have the potential to contrib-
ute to the evidence base the TGA considers, to investigate 
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Key Points 

Prior to this research, the Therapeutic Goods Adminis-
tration (TGA) had limited experience of using adminis-
trative health data for signal detection.

Using heart failure (HF) as an example adverse event 
(AE), we applied prescription sequence symmetry analy-
sis (PSSA) to Pharmaceutical Benefits Scheme (PBS) 
data and found 26 potential new HF signals from 654 
tested medicines.

PSSA of PBS data can enhance signal detection. The 
data source and analysis method should be tailored to the 
particular medicine and AE being investigated.

The aim of this project was to explore, using HF as an 
example AE, whether PSSA using PBS data can enhance 
signal detection by the TGA.

2  Methods

2.1  Tested Medicines

Only single-ingredient medicines identified in the database 
using the ATC level five classifications and generic drug 
names were included. Combination products were not exam-
ined as initiating multiple products simultaneously makes it 
difficult to attribute the association between the AE and the 
individual components. We included all single-ingredient 
items recorded in the PBS collection except topical and non‐
therapeutic agents (such as plasters and creams).

Furosemide initiation was used as a proxy for new-onset 
HF. All formulations of furosemide available on the PBS 
were included (oral solutions, tablets and injections). Med-
icines tested for an association with furosemide initiation 
are referred to as index medicines. A 1-year run-in period 
was used to determine incident (or first) dispensing. Only 
incident dispensing of index medicines and furosemide that 
occurred within 1 year of each other for the same patient 
were included in the analysis. This time period was chosen 
as previous analysis had determined this to be an appro-
priate time span in which to detect AEs with PESA/PSSA 
[14].

A total of 766 single-ingredient medicines were identified 
in the database. Seventy-one medicines did not have incident 
dispensing of both an index medicine and furosemide; there-
fore, these medicines were not examined further. Forty-one 
medicines had incident dispensing of both an index medi-
cine and furosemide; however, the dispensing did not occur 
within 12 months of each other, therefore these medicines 
were also removed. After removing these medicines, a total 
of 654 furosemide–medicine pairs were included in PSSA 
testing.

A summary of the testing process is shown in Fig. 1.

2.2  Source of Data for Signal Detection

This study used the PBS data collection. PBS claims data is 
an administrative by-product of the Department of Human 
Services administration of Australia’s subsidised prescrip-
tion payment system. This is a national dataset that contains 
all subsidised scripts for Australian residents who hold a 
current Medicare card. As of April 2012, this contains all 
scripts dispensed for medicines listed on the PBS schedule 
regardless of price. While PBS data can include scripts of 
overseas visitors from countries with which Australia has 
a Reciprocal Health Agreement, data from these patients 

whether a medicine is associated with an AE. One source 
of information in Australia is the nationally generated Phar-
maceutical Benefit Scheme (PBS) data, a reimbursement 
dataset of all medicines dispensed that are subsidised under 
the PBS. These data are useful for PV activities because of 
the high coverage of the Australian population and complete 
capture of all subsidised prescriptions dispensed. The PBS 
subsidises approximately 75% of prescribed medicines in 
Australia [3]. Utilising administrative data can potentially 
enhance PV by rapidly and efficiently tracking medicine dis-
pensing and patient outcomes on a large scale, contributing 
to more timely signal detection and verification [4].

Studies have shown that generation of evidence from 
administrative data can help to complement spontaneous 
reporting systems by highlighting new risks associated with 
old drugs, AEs that have a high background incidence, and 
AEs that are less pharmacologically predictable and there-
fore less likely to be reported to spontaneous reporting sys-
tems [5, 6]. Methods to generate safety signals have been 
reviewed [2, 7] and when only dispensing data are available, 
techniques that exploit dispensing as indicators of AEs can 
be useful. One such method is Prescription Sequence Sym-
metry Analysis (PSSA), which has been used by researchers 
on the PBS data set [8, 9]. PSSA and prescription and event 
symmetry analysis (PESA) have also been used by research-
ers in Australia to identify heart failure (HF) as an AE fol-
lowing the use of some medicines, using the Department of 
Veterans Affairs database [10]. PESA (also referred to as 
sequence symmetry analysis) utilises hospital separations 
as the indicators of AEs whereas PSSA utilises medicine 
dispensing as the AE indicators. Researchers have under-
taken PSSA on the New Zealand prescription database to 
explore its role in post-marketing surveillance [11]. While 
the method has been used to explore particular safety issues, 
its utility in the regulatory context in Australia has not been 
assessed.
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Fig. 1  Flowchart of tested 
medicines and detected signals. 
aIncident dispensing: medicine 
dispensed after 12-month run-in 
period. PBS Pharmaceutical 
Benefits Scheme, PI Product 
Information

Single ingredient medicines dispensed on PBS , 2012-2016
Medicines were identfied using  a combination of drug  name and ATC5 fields 

n = 766

Test  results
n = 654

No signal detected 
n = 468

Potential signals detected
n = 186

Medicines removed:              
n= 160   

-heart failure risk in PI 
(n=122)

-medicines indicated for 
heart failure treatment 

(n=20)
-anti-infectives 

(n=15)
-analgesics 

(n=3)

Medicines with potential 
new heart failure signals  

n=26

- No incident  dispensinga of both index 
medicine and furosemide (n=71)

- Incident dispensinga of both index  
medicine and furosemide but not within 

12 months of each other (n=41)
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were not included in our study. The PBS does not include 
dispensings of over-the-counter medications or private 
prescriptions.

This study used data collected for prescription medicines 
dispensed under the PBS between 1 July 2012 and 30 June 
2016. Medicines are coded according to the Schedule of 
Pharmaceutical Benefits item codes [13] and mapped to 
World Health Organization (WHO) anatomical and thera-
peutic chemical (ATC) classification [12].

The data fields used were medicine item code, supply 
date of medicine and patient identification key. As the 
patient identification key was a unique data key rather than 
a number that can be used to re-identify individuals, the 
research was considered negligible risk under the National 
Statement on Ethical Conduct in Human Research. The pro-
ject was discussed with the Department of Health Human 
Research Ethics Committee, but formal ethics approval was 
not required.

2.3  Prescription Sequence Symmetry Analysis

The PSSA method looks for asymmetry in the occurrence of 
the AE before and after index medicine initiation in a speci-
fied time period [15]. In this study, furosemide initiation 
was used as a proxy for identification of HF. The ratio of 
sequences of the initiation of two medicines (one medicine 
being furosemide, the other being the index medicine) was 
determined [10]. If there is no association between the index 
medicine and HF, then it would be expected that the num-
ber of people initiating furosemide after starting the index 
medicine would be similar to the number of people initiating 
furosemide before the index medicine. The crude sequence 
ratio (CSR) was calculated by dividing the number of people 
with furosemide dispensed second with the number of peo-
ple with furosemide dispensed first. To adjust for changes 
in medicine use over time, a null sequence ratio (NSR) was 
calculated that determines the sequence ratio that would be 
expected given the trends in the use of the medicines under 
study, and assuming there was no association between the 
proxy and the index medicines [15]. The NSR was then used 
to adjust the CSR for prescribing trends. This was done 
by dividing the CSR by the NSR, resulting in an adjusted 
sequence ratio (ASR). To determine statistical significance 
when there were insufficient data for a drug (total population 
of people who used both index and proxy drug was less than 
1000), a non-parametric resampling technique was used to 
create bootstrapped confidence intervals for the ASR. A 95% 
confidence interval (CI) was generated for the bootstrapped 
ASR distribution using the bootstrapped-t method.

A signal was considered to be present when the ASR 
was > 1 and the lower limit of the 95% CI was > 1. In addi-
tion to an ASR, temporal associations of interest were 
graphed.

2.4  Identification of Potential New Heart Failure 
Signals

To identify new HF signals, the possible signals were first 
manually screened to exclude those known to be associated 
with a risk of HF.

The list of signals was limited further by excluding 
medicines with other clinically relevant associations with 
HF, such as medicines indicated for HF treatment, or as an 
adjunct to the treatment of HF; and medicines indicated for 
the treatment of conditions that are clearly associated with 
an increased risk of HF (e.g. nicotine addiction and chronic 
obstructive pulmonary disease). Signal detection with PSSA 
presumes that there is no underlying association between 
prescription of the index medicine and furosemide. Positive 
signals for these medicines are likely to be confounded by 
the underlying relationship and may not signal a causal rela-
tionship. Due to concerns as to whether PSSA could iden-
tify incident use of medicines that are used intermittently, 
signals for anti-infective and analgesic medicines were not 
considered further.

The TGA-approved Product Information (PI) was the 
primary reference used to screen the signals. The PIs were 
extracted for each medicine from the TGA’s internal reposi-
tory. These were reviewed by TGA evaluators in Adobe 
Reader using a word search (Ctrl + F) to identify if the pre-
ferred terms for the exclusions were listed anywhere in the 
document, and then evaluated if the reference to the term 
was a relevant association. The results were tabulated in 
Microsoft Excel 2010.

3  Results

3.1  Potential New Heart Failure Signals

Of the 654 furosemide–medicine pairs tested, 186 (28%) had 
an ASR > 1 and were statistically significant (lower limit of 
the 95% CI for the ASR that was > 1) and therefore were 
considered potential signals. Of the potential signals, 122 
had HF already listed as an AE in the PI, and 20 were medi-
cines indicated for HF or for conditions associated with an 
increased risk of developing HF (Fig. 1). Fifteen potential 
signals were for anti-infective medicines and three were for 
analgesic medicines. The remaining 4% (n = 26) of the tested 
medicines were considered new HF signals.

The ASR values for the 26 new signals ranged from 1.07 
for denosumab to 4.64 for temozolomide. As a class, the two 
alkylating agents used for cancer treatment (temozolomide 
and bleomycin sulfate) had the largest ASR values of the 26 
medicines with new signals (Table 1).

For each of the 26 signals, the temporal associations for 
signals of interest were graphed. By way of example, Fig. 2 
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shows the temporal analysis of patients who commenced 
furosemide in each week before and after fluorouracil. A 
greater number of people commenced furosemide after fluo-
rouracil (n = 1956) than before (n = 1181) (ASR 1.65; 95% 
CI 1.54–1.78).

4  Discussion

This study identified 26 medicines on the PBS that may con-
tribute to HF where this was not established in pre-market 
studies such as clinical trials or through post-marketing 

Table 1  Medicines with potentially new heart failure signals grouped by indication and pharmacological class, ranked by adjusted sequence 
ratio, (n = 26)

Causal: number of subjects dispensed furosemide after the index medicine
Non-causal: number of subjects dispensed furosemide before the index medicine
ASR adjusted sequence ratio, GnRH gonadotropin-releasing hormone, IBD inflammatory bowel disease
a Three medicines had a higher number of patients in the non-causal group than the causal group but still had a positive ASR because of the 
adjustment for prescribing trends over time
b Denosumab is also used to treat giant cell bone tumours and metastatic breast and prostate cancers
c Fluorouracil results are for both the systemic and topical formulations of the medicine

Category Medicine Causal group 
(furosemide 
after)

Non-causal group 
(furosemide 
before)

Adjusted 
sequence 
ratio

ASR 95% 
confidence 
interval

Cancer treatment
 Alkylating agents Temozolomide 218 53 4.64 3.26–6.23

Bleomycin sulfate 87 35 2.70 1.61–3.95
 Immuno-modulator Pembrolizumaba 67 70 2.09 1.38–2.86
 Vinca alkaloids (microtubule disruptors) Vincristine 986 583 1.77 1.60–1.96

Vinblastine 93 63 1.58 1.07–2.14
 Antimetabolite and salvage agents Fluorouracilc 1956 1181 1.65 1.54–1.78

Folinic acid 914 601 1.57 1.41–1.74
Pemetrexed 473 325 1.48 1.29–1.70

 Anti-emetic (pNK1 antagonist) Fosaprepitant 2413 981 2.60 2.42–2.81
 Anti-emetic (serotonin 5-HT3 antagonist, 

competitive)
Granisetron 1598 701 2.24 2.05–2.45
Tropisetron 239 101 1.43 1.08–1.79

 Anti-androgen (GnRH antagonist) Degarelix 171 122 1.66 1.29–2.06
Glaucoma
 Carbonic anhydrase inhibitor Brinzolamide 698 606 1.18 1.06–1.32
 Prostaglandin analogues Travoprost 436 352 1.18 1.01–1.35

Latanoprost 1896 1723 1.11 1.04–1.19
 Sympathomimetic Brimonidine 1042 970 1.10 1.00–1.20

Migraine
 Serotonin 5-HT2 antagonist, competitive Pizotifen 547 431 1.27 1.11–1.44
 Serotonin 5-HT1 agonist, selective Rizatriptan 529 507 1.16 1.03–1.31

Sumatriptan 648 602 1.16 1.03–1.29
Others
 Anticholinergic (treatment of movement 

disorders)
Benzhexol 88 54 1.65 1.12–2.24

 Aminosalicylates (treatment of IBD) Mesalazine 367 279 1.33 1.13–1.54
 Muscle relaxant Botulinum toxin type  Aa 155 282 1.28 1.04–1.54
 Anti-epileptic Levetiracetam 1019 986 1.13 1.03–1.23
 Topical steroid eye drop Fluorometholone 4886 4524 1.11 1.07–1.15
 H2-histamine antagonist (gastric acid suppres-

sion)
Ranitidine 5502 5373 1.08 1.04–1.12

 Osteoporosis (binds RANKL, inhibiting osteo-
clastic activity)

Denosumaba,b 7981 8733 1.07 1.03–1.10
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surveillance to date. These 26 medicines had statistically 
significant ASRs, are not indicated for use as an HF treat-
ment (or for diseases with the obvious potential to cause 
HF) and did not have heart failure or peripheral oedema 
listed in the Australian PI at the time of the study. Results of 
this study indicate that the application of PSSA to dispens-
ing data can complement the TGA’s routine signal detection 
work.

Of the 26 signals detected, there were five signals priori-
tised for further investigation: temozolomide, fluorouracil, 
folinic acid, vincristine and vinblastine. Priority was given 
to signals based on the magnitude of the ASR value, consist-
ency of the signal via the presence of a signal for more than 
one medicine in the class, the number and proportionality 
of HF AE reports to the TGA, statistical HF signals in the 
WHO’s VigiBase database, published literature [16–18] and 
biological plausibility. If there was no information about any 
cardiac AE in the Australian PI, the potential signals were 
also considered to have clinical impact. For four signals, fur-
ther investigation did not result in verification due mainly to 
likely confounding by other cardio-toxic medicines likely to 
be co-dispensed with these medicines and/or the likelihood 
that the reason for use of the medicine itself, for example 
advanced malignancy, is a more plausible explanation for 
the signal. Although the pragmatic decision was made to pri-
oritise signals for further investigation in this way, the TGA 
will continue to monitor the risk of HF for all medicines 
through routine PV measures. For fluorouracil, the TGA was 
made aware that concurrent with our study, HF associated 
with fluorouracil was investigated by the sponsor (Marketing 
Authorisation Holder) and HF was added to the Australian 

PI. Corroboration of the PSSA signal through this process 
was an important result.

In this study, we used PSSA as the method to generate 
signals. Previous work has demonstrated that PESA, using 
hospitalisation and medicine dispensing data for AE indica-
tors, has high specificity (around 90%) and moderate sensi-
tivity (61–65%) [14, 19] for detecting known AEs, suggest-
ing that the signals that PSSA detects are likely to be true 
signals but that some negative results may be missed signals. 
A recent signal detection study using PSSA identified a large 
number of known AEs and associations that reflect appropri-
ate clinical behaviour [20]. In that study, 24% of the top 200 
drug–drug associations represented known AEs and 30% 
were explained by mutual indication or reverse causation. 
In our study, we identified 122 medicines (66% of the 186 
possible signals detected) where HF was a known AE, and 
20 medicines (11% of the 186 possible signals detected) 
where the association could be explained by mutual indica-
tion. This suggests that, in practice, safety signals generated 
from data-driven methods, such as PSSA, require filtering to 
remove known or expected associations. To address this, and 
to enhance the potential of data-driven methods to enable 
more efficient, timely and proactive detection of medicine 
safety signals in the regulatory context, there may be a role 
for supervised machine learning techniques in automat-
ing the filtering of statistical output [21]. Regardless of the 
method used, clinical input and critical judgement is always 
required when interpreting the clinical importance of a sta-
tistically significant finding [6, 22].

A potential limitation of our study is the small number 
of medicine pairs as a result of our use of medicines at the 
chemical substance level, ATC level 5. We did this so that 

Fig. 2  Temporal analysis of 
furosemide prescriptions in 
relation to fluorouracil initia-
tion, Pharmaceutical Benefits 
Scheme, Australia, 2012–2016, 
n = 3137

NB: Striped bars indicate cell counts of less than or equal to ten.
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we were able to compare our results to the product infor-
mation documentation to determine whether the signal was 
an already known AE of the medicine. Future work should 
consider the utility of the method at lower levels of the ATC 
classification categories to potentially increase the statistical 
power of this approach. Another potential limitation is our 
use of furosemide initiation as a proxy for new-onset HF. 
We are not aware of any formal validation of furosemide 
dispensing as a proxy for HF, or comparison between furo-
semide dispensing and HF hospitalisations as proxies for 
HF. In a previous study using PSSA and PESA, 12 medi-
cines with potential HF signals using HF hospitalisations 
as the outcome were identified [10]. Two medicines in that 
study, travoprost and latanoprost, were also identified in the 
present study. Further examination of these two signals in 
our study via review of spontaneous AE reports to the TGA 
and internationally, and review of the cardiac safety infor-
mation that was already present in the Australian PI, did 
not identify them as high priority signals. There were three 
other possible signals detected using HF hospitalisations that 
were also detected in our study but we did not consider them 
further; the first, bimataprost, has HF mentioned in the PI 
and the other medicines, tobramycin and paracetamol, are 
used intermittently and are therefore not good candidates 
for signal detection using the PSSA method. In the pub-
lished PSSA and PESA study [10], furosemide dispensing 
was also used as an indicator of HF. Of the nine potential 
HF signals detected in that study, our study detected three of 
the same signals (latanoprost, brinzolomide and ranitidine). 
Further examination of brinzolomide in our study did not 
identify it as a high priority signal because of the absence 
of spontaneous AE reports and lack of biological plausibil-
ity. Raniditine was not considered a high priority signal in 
our study because of possible confounding by non-steroidal 
anti-inflammatory drug (NSAID) exposure, as concomitant 
use of ranitidine with NSAIDs to manage NSAID-associated 
gastrointestinal symptoms is common. Pilocarpine was not 
included as a signal in our study due to mention of HF in the 
PI and paracetamol was not included again because of inter-
mittent use. In this study, we used the confidence interval 
to filter our signals for further evaluation. There are impor-
tant limitations to this approach and future research should 
investigate the utility of different filtering approaches and 
how they impact on the number of signals that are gener-
ated for further clinical review [22]. Approaches to filtering 
signals are described in previous research by Pottegård et al. 
[22] and should take into account the potential public health 
impact of the safety issue, which can include consideration 
of the severity of the adverse event or the prevalence of use 
of the drug under study. For example, strong but non-signif-
icant signals for serious adverse events may be missed and 
conversely very weak but significant results may occur when 
the prevalence of use of the medicines is high.

The strength of our study was our use of a national data 
set that covers the entire Australian population. Compared 
with linked administrative health data sets, PBS data was 
also more accessible to the TGA at the time of the study. We 
used data from July 2012 onwards because since then, all 
PBS‐listed medicines have been captured in the PBS data-
set, regardless of price [23]. PBS data, however, does not 
include medicine dispensing that occurs outside of the PBS 
(e.g. unsubsidised private prescribing and over-the-counter 
usage). This is particularly relevant for examining AEs 
occurring with newly authorised medicines. In Australia, 
there is a time lag between authorisation (or registration) 
and PBS listing (or subsidisation), and some medicines are 
never PBS-subsidised. This highlights the importance of 
using multiple complementary approaches for signal detec-
tion for the purpose of regulatory PV.

In a regulatory context, the post-market safety of the 
newer biological medicines is of particular interest due 
to the difficulties assessing safety during the pre-approval 
phase (due to the limited predictability of animal studies and 
a high immunogenicity profile compared with chemically 
synthetised molecules) [24]. Given their potentially high 
utilisation, it will be important to proactively monitor the 
safety of biologic medicines to determine whether regulatory 
action is required. For ten monoclonal antibody medicines, 
this study demonstrated an association with HF, which was 
already known for eight of the medicines (see electronic sup-
plementary material). The ability of PSSA using PBS data to 
detect a known AE with these medicines suggests it could be 
a valuable method to detect other AEs with these medicines. 
If the biological medicine of interest is on the PBS, it may 
be possible, for example, to use corticosteroid dispensing as 
a proxy for immune-mediated AEs. Thyroxine and insulin 
have been investigated as proxies for hypothyroidism and 
type I diabetes mellitus, respectively, [14, 25] and it may 
be possible to use these as proxies for immune-mediated 
endocrinopathies.

An important limitation of any signal detection method is 
the potential for confounding due to co-prescribing. When 
signals are detected using spontaneous AE reports, addi-
tional information provided by the reporter may allow an 
assessment of whether co-prescribing is likely to be con-
founding the signal. Many of the potential signals detected 
in this study were for medicines used in cancer treatment, 
which often involves the use of multiple medicines that 
have known associations with HF. To enhance the feasibil-
ity of PSSA in practice, co-prescribed information could be 
generated or analysis stratified by co-prescribing of other 
medicines.

In the current study, only medication dispensing data 
were available for use by the TGA and therefore other criti-
cal AEs such as myocardial infarction, renal failure or pan-
creatitis could not be examined as there are no medicines 
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specific to the management of these conditions. To enhance 
the applicability of PSSA and PESA for regulatory signal 
detection, accessing datasets that include hospital separa-
tions as well as PBS data would allow a larger number of 
critical AEs to be investigated. Studies have validated PESA 
using both hospitalisation and medicine dispensing data for 
the AE indicators [14, 19]. Using hospital separation data 
as a proxy for AEs would not, however, overcome the prob-
lem of confounding due to co-prescribing, not being able to 
investigate AEs associated with intermittently used medi-
cines (e.g. antibiotics and analgesics) and AEs associated 
with combination products. Whether hospitalisation itself 
influences the use of the index medicine being investigated 
also needs to be considered in PESA [26, 27]. While the 
identification of acute AEs is of critical importance, it is also 
of interest to determine the longer-term effects of medicines, 
particularly for chronic diseases. PESA and PSSA generally 
examine medicine usage and outcomes that occur within a 
short time period, due to the potential impact of time varying 
confounders when longer exposure periods are used [14]. 
This means that they are best suited to examining acute-
onset drug reactions rather than AEs with a longer latency 
such as some cancers. Other pharmacoepidemiological 
methods such as new user cohort and other self-controlled 
study designs applied to administrative health data warrant 
further investigation in this setting.

In PV it is important that a complementary approach is 
taken in which multiple methods are employed and mul-
tiple data sources are interrogated [28]. While spontane-
ous reports are likely to capture the use of newly author-
ised medicines, the disadvantage of these data are that they 
require suspicion of the causal link between the AE and the 
medicine for a report to be made, which may lead to a delay 
[29]. In contrast, an advantage of using administrative data 
is that it does not rely on a person making the connection 
between the medicine and the AE, and then reporting it. 
This gives proactive data-driven approaches the potential 
to detect unsuspected and pharmacologically unpredictable 
AEs [5, 6]. Spontaneous reporting systems and electronic 
health record-based systems for signal detection can com-
plement each other, with the additional value of one over 
the other varying dependant on the nature of the adverse 
event [30]. This study found that on the one hand, AEs that 
are not obviously attributed to medicines (because they are 
multifactorial) or that already have a high background inci-
dence may be poorly captured by spontaneous reports. On 
the other hand, compared with an electronic health record-
based system, a spontaneous reporting system may be more 
cost effective overall [30].

5  Conclusion

In this study, we identified that the PSSA method can be 
utilised in PBS data to help enhance signal detection. We 
identified five potential new signals of HF for further exami-
nation. With the increasing availability of different adminis-
trative health data sources for monitoring medication safety, 
the strengths and weaknesses of methods used to analyse 
these data to support rapid and responsive regulatory PV 
should continue to be evaluated. Future research should 
examine how multiple complementary approaches to sig-
nal detection for the purpose of regulatory PV can be used 
to enhance the quality and timeliness of medication safety 
monitoring.
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