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Abstract
Introduction  Adverse drug reactions related to drug–drug interactions cause harm to patients. There is a body of research on 
signal detection for drug interactions in collections of individual case reports, but limited use in regular pharmacovigilance.
Objective  The aim of this study was to evaluate the feasibility of signal detection of drug–drug interactions in collections 
of individual case reports of suspected adverse drug reactions.
Methods  This study was conducted in VigiBase, the WHO global database of individual case safety reports. The data lock 
point was 31 August 2016, which provided 13.6 million reports for analysis after deduplication. Statistical signal detection was 
performed using a previously developed predictive model for possible drug interactions. The model accounts for an interaction 
disproportionality measure, expressed suspicion of an interaction by the reporter, potential for interaction through cytochrome 
P450 activity of drugs, and reported information indicative of unexpected therapeutic response or altered therapeutic effect. 
Triage filters focused the preliminary signal assessment on combinations relating to serious adverse events with case series of no 
more than 30 reports from at least two countries, with at least one report during the previous 2 years. Additional filters sought to 
eliminate already known drug interactions through text mining of standard literature sources. Preliminary signal assessment was 
performed by a multidisciplinary group of pharmacovigilance professionals from Uppsala Monitoring Centre and collaborating 
organizations, whereas in-depth signal assessment was performed by experienced pharmacovigilance assessors.
Results  We performed preliminary signal assessment for 407 unique drug pairs. Of these, 157 drug pairs were considered 
already known to interact, whereas 232 were closed after preliminary assessment for other reasons. Ten drug pairs were 
subjected to in-depth signal assessment and an additional eight were decided to be kept under review awaiting additional 
reports. The triage filters had a major impact in focusing our preliminary signal assessment on just 14% of the statistical 
signals generated by the predictive model for drug interactions. In-depth assessment led to three signals communicated with 
the broader pharmacovigilance community, six closed signals and one to be kept under review.
Conclusion  This study shows that signals of adverse drug interactions can be detected through broad statistical screening of 
individual case reports. It further shows that signal assessment related to possible drug interactions requires more detailed 
information on the temporal relationship between different drugs and the adverse event. Future research may consider 
whether interaction signal detection should be performed not for individual adverse event terms but for pairs of drugs across 
a spectrum of adverse events.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​4-020-00939​-y) contains 
supplementary material, which is available to authorized users.
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Key Points 

Signal detection for drug–drug interactions is more 
challenging than pairwise drug–adverse drug reaction 
monitoring, and there has been limited use in regular 
pharmacovigilance.

In this study, statistical signal detection combined with 
triage filters directed signal assessment and ultimately 
resulted in three communicated signals of drug–drug 
interactions.
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1  Introduction

Adverse drug reactions (ADRs) related to drug–drug inter-
actions (from here on referred to as drug interactions) con-
stitute an important cause of drug-related problems globally 
[1–3]. Despite modern capability and increased regulatory 
expectations to investigate potential drug interactions dur-
ing drug development, interactions between marketed drugs 
may still be unknown or insufficiently characterized. This 
not only applies to new drugs entering the market but also 
to older drugs used in new combinations and to drugs used 
in new patient populations. Clinical trials are typically not 
powered to detect drug interactions apart from such that are 
expected based on prior preclinical and pharmacokinetic 
studies. Exclusion criteria regarding concurrent medica-
tions further reduce their capacity for real-world clinical 
drug interaction detection. Hence, some drug interactions 
may only be possible to detect in the postmarketing setting.

Individual case reports of suspected ADRs can be an 
important source of information of possible adverse reac-
tions resulting from drug interactions [4]. Their coverage 
is broad, spanning primary and secondary care prescription 
medicines, as well as over-the-counter and complementary 
medicines. Reports often relate to individuals who have 
taken more than one drug at the same time, where some 
reporters express explicit suspicions that two or more drugs 
might have interacted to cause the adverse event. Examples 
of adverse drug interactions detected and analysed in col-
lections of individual case reports include delayed bleeding 
from oral contraceptives with itraconazole [5], rhabdomy-
olysis from azithromycin and statins [6], and hyperglycaemia 
from pravastatin and paroxetine [7].

Early work on methods for statistical interaction surveil-
lance in pharmacovigilance focused on extensions of dis-
proportionality analysis to three-way associations between 
two drugs and one ADR [5, 8, 9]. The use of association 
rules has also been proposed [10, 11]. Beyond that, there 
have been attempts to identify interactions related to specific 
ADRs based on associated adverse event ‘fingerprints’ [12]. 
The basis for the study at hand is a previously proposed pre-
dictive model that accounts for interaction disproportionality 
analysis as well as expressed suspicions of an interaction 
by the reporter, pharmacokinetic plausibility, and reported 
information indicative of unexpected or altered therapeutic 
effects [13]. Noguchi et al. provide a recent and comprehen-
sive overview of statistical methods proposed for statistical 
interaction detection in collections of individual case reports 
[14]. A broader review of research related to drug–drug 
interaction signal detection in pharmacovigilance across 
different data sources is offered by Vilar et al. [15].

Despite available research, evaluations have been ret-
rospective in nature [13] and there is a lack of published 

initiatives related to signal detection of drug interactions 
in regular pharmacovigilance. We are not aware of other 
organizations that use statistical methods to routinely screen 
collections of individual case reports for suspected adverse 
drug interactions. This is in stark contrast to the situation for 
pairwise drug–ADR associations, where disproportionality 
analysis is in routine use by a wide range of regulators, phar-
maceutical companies and academic groups.

The aim of this study was to evaluate the feasibility of 
signal detection for drug interactions, using a large col-
lection of individual case reports of suspected ADRs. The 
scope included both pharmacokinetic and pharmacodynamic 
interactions.

2 � Methods

The bulk of this study was carried out in September 2016. 
Statistical interaction signal detection was combined with 
triage filters to direct signal assessment. Preliminary signal 
assessment was performed by a multidisciplinary group of 
pharmacovigilance professionals over eight dedicated days. 
Subsequently, in-depth signal assessment was performed by 
experienced pharmacovigilance assessors.

2.1 � VigiBase

The basis for the study were reports of suspected ADRs 
in VigiBase, the WHO global database of individual case 
safety reports [16]. Established in 1968, it is the world’s 
largest and broadest such collection, holding more than 21 
million reports from 136 countries (as of November 2019). 
Reports received into the database until 31 August 2016 
were included in the analysis. Suspected duplicate reports 
were excluded using the vigiMatch algorithm for probabil-
istic duplicate detection [17]. For technical reasons, dedu-
plication was performed for reports received up until 6 April 
2016 only. In total, 13.6 million reports were included in 
the study.

2.2 � Sources of Drug Information

The UK Summary of Product Characteristics (SmPC) in the 
Electronic Medicines Compendium (eMC) [18], and the US 
FDA’s drug label in either Drugs@FDA [19] or DailyMed 
[20] were the primary sources of approved drug informa-
tion, to establish whether a certain drug–drug adverse event 
(DDA) interaction could be considered as labelled. The 
DrugDex [21] and Janusmed interactions [22]1 databases 

1  Previously known as the Swedish Finnish Interaction X-referencing 
(SFINX) database.
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were used as complementary sources when relevant informa-
tion was not found in the first two sources.

2.3 � Natural Language Processing of Literature 
Sources

Automated screening of drug information sources was 
implemented, and findings on relevant ADRs and interac-
tions were presented to the assessors for each combination. 
The sources for known ADRs were the PROTECT Database 
of ADRs listed in the SmPCs of centrally authorised medici-
nal products within the EU [23], DailyMed, and Martindale. 
Further sources for known drug interactions were Stockley’s 
Drug Interaction Alerts [24] and Janusmed. The natural lan-
guage processing algorithm [25] preprocessed text by stop 
word removal, stemming and synonym replacement, and 
then matched to Medical Dictionary for Regulatory Activi-
ties (MedDRA®) terms accounting for word permutations 
and spelling variations. Drug names extracted from the 
source were mapped to the corresponding drug names in 
the WHODrug international reference for medicinal product 
information.

2.4 � Statistical Signal Detection for Possible Adverse 
Drug Interactions

Statistical signal detection for possible adverse drug interac-
tions in VigiBase was performed using a predictive model 
described by Strandell et al. [13]2 and summarized below. 
In this model, DDA combinations are ranked by probabil-
ity scores (in the range of 0.04–1.0), where a higher value 
indicates a higher likelihood that the combinations will be 
classified as an interaction signal. Table 1 summarizes all 
predictors and their definitions.

This algorithm includes, as one of its predictors, dis-
proportionality analysis based on the Omega (Ω) statisti-
cal interaction measure [8]. Another predictor accounts for 
whether the two drugs of interest affect the same cytochrome 
P450 (CYP) enzyme in a way that might lead to an inter-
action based on the WHODrug Standardised Drug Group-
ings [26]. Furthermore, it considers expressed suspicions 
of a drug interaction by the reporter, such as coding the two 
drugs as ‘interacting’, use of the MedDRA Preferred Term 
(PT) ‘drug interaction’, and/or inclusion of words starting 
with ‘interact’ or ‘interakt’ in the case narrative. Reports of 
altered therapeutic effect are also accounted for, if in com-
bination with (1) specified dosages for both drugs; (2) posi-
tive dechallenge intervention (the adverse event abated upon 

withdrawal of one or both drugs); (3) positive rechallenge 
intervention (the adverse event reoccurred after one or both 
drugs were reintroduced); or (4) the two drugs of interest 
were the only ones listed on the report. Suggestions of unex-
pected therapeutic response as indicated by the MedDRA 
PTs ‘therapeutic response unexpected’ and ‘paradoxical 
drug reaction’ were included as a separate predictor. Finally, 
there is a predictor accounting for reports of positive dechal-
lenge and overlapping treatment periods when the two drugs 
of interest were the only ones listed on the report.

We chose this predictive model as the basis for our sta-
tistical interaction detection since a retrospective evalua-
tion showed that it performed better in this setting than the 
Ω interaction disproportionality measure when used on its 
own [13]. As for the use of Ω, empirical evaluations have 
shown that statistical interaction models that, like Ω, assume 
additive effects of non-interacting drugs perform better than 
those that assume multiplicative effects, such as logistic 
regression [8, 9].

Disproportionality and CYP are evaluated at the level 
of the case series. The other predictors are evaluated per 
report, with scores added together for every report that fulfils 
a criterion, providing a total contribution score for the case 
series. With some exceptions specified below, all predic-
tors are computed based only on the reports that listed the 
two drugs of interest as suspected or interacting, disregard-
ing reports where at least one of the two drugs was listed 
as concomitant. This includes disproportionality analysis, 
as well as all but two of the predictors based on the case 
series. The exceptions are Unexpected therapeutic response 
and the predictor based on altered therapeutic effect in the 
presence of solely two drugs included in the report, which 
count all reports listing the two drugs with the adverse event 
of interest, including when one or more drug is noted as con-
comitant, in line with the method proposed in the original 
publication [13].

The original development and evaluation of the algorithm 
was based on the WHO Adverse Drug Reaction Terminol-
ogy (WHO-ART). For the purpose of this study, we mapped 
WHO-ART PTs used by the algorithm to MedDRA (version 
19.0) using the official WHO-ART to MedDRA bridge. In 
addition, the predictors MedDRA interaction, Unexpected 
therapeutic response and Altered effect were complemented 
with relevant PTs containing the words ‘drug’, ‘therapeu-
tic’, ‘level’, ‘increased’, ‘decreased’, ‘clearance’, ‘enzyme’ 
and ‘treatment’. All included terms are listed in electronic 
supplementary material 1.

2  Referred to as the lean manual triage in the publication.
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2.5 � Triage Filters

Automated filters were applied stepwise with the ambition to 
restrict the list of DDA combinations to those most likely to 
be signals for in-depth assessment. An earlier pilot study had 
indicated that a majority of highlighted DDA combinations 
reflected already known drug interactions or were due to 
data quality issues, such as report duplication (unpublished 
results). To address this, triage filters were targeted at auto-
matically eliminating already known drug interactions and 
addressing some of the previously identified data quality 
problems.

The screening was restricted to DDA combinations with 
no more than 30 reports. This reflected our intent to pri-
marily focus on early signals of drug interactions and to 
reduce the number of well-known DDA combinations to be 
assessed.

Beyond that we applied the filters specified in Tables 2 
and 3, respectively.

The study design allowed for the implementation of addi-
tional (tertiary) filters at one specific time during the course 
of the 8-day period, with the aim to further focus our assess-
ments. These filters were not prespecified but were designed 
based on the outcome of the assessments up until that point. 
Consequently, after about 2 days and having assessed 129 
DDA combinations with no signals selected for in-depth 
assessment, the tertiary filters described in Table 4 were 
applied in an and/or fashion. In other words, all combina-
tions with either three or more narratives and/or with sup-
porting evidence in Janusmed interactions were selected for 
preliminary signal assessment.

2.6 � Preliminary Signal Assessment

During the preliminary signal assessment step, a group of 
21 pharmacovigilance professionals (pharmacists, medi-
cal doctors and data scientists) from Uppsala Monitoring 
Centre and collaborating organizations served as assessors 

Table 1   List of predictors included in the statistical signal detection model, with their associated regression coefficients in the logistic regression 
[13]

CYP cytochrome P450, DDA drug–drug adverse event, MedDRA Medical Dictionary for Regulatory Activities, Ω025 Omega025

Predictor Description Regression 
coefficient

Disproportionality Binary indicator. Ω025 > 0. Ω is a shrinkage observed-to-expected ratio for the number of 
reports of the adverse drug reaction with the two drugs together. Ω025 is the lower limit of a 
95% credibility interval for Ω. When Ω025 exceeds zero, the DDA combination is reported 
reliably more often than expected under the assumption that in the absence of an interac-
tion, the attributable risks of the adverse drug reaction from each drug would add together

0.6

CYP Binary indicator of whether the two drugs of interest may induce, inhibit, or be substrates in 
the phase I metabolism via the same CYP enzyme(s) in such a way that they either com-
pete for the same enzyme, or inhibit or induce each other’s metabolism

0.4

Interacting drugs Number of reports on the DDA combination where both drugs of interest were recorded as 
interacting

0.6

Narrative information Number of reports on the DDA combination with a case narrative, including the word frag-
ments ‘interact’ or ‘interakt’

0.4

MedDRA interaction Number of reports on the DDA combination listing any of the MedDRA terms indicative of 
an interaction

0.3

Unexpected therapeutic response Number of reports on the DDA combination listing any of the MedDRA terms indicative of 
unexpected therapeutic response, also counting reports where one or both drugs may be 
listed as concomitant

0.2

Only two drugs + positive dechal-
lenge + overlapping treatment

Number of reports on the DDA combination where the treatment of both drugs was defi-
nitely overlapping, where the drugs were the only ones reported, and the adverse event was 
reported to abate upon withdrawal of one or both drugs

0.4

Altered effect + only two drugs Number of reports on the DDA combination listing any of the MedDRA terms indicative of 
effect increased or effect decreased and the drugs of interest were the only reported drugs, 
also counting reports where one drug may be listed as concomitant

0.3

Altered effect + dose Number of reports on the DDA combination listing any of the MedDRA terms indicative of 
effect increased or effect decreased and there is dose information for both drugs of interest

0.2

Altered effect + positive dechallenge Number of reports on the DDA combination with any of the MedDRA terms indicative 
of effect increased or effect decreased and the adverse event was reported to abate upon 
withdrawal of one or both drugs

0.2

Altered effect + positive rechallenge Number of reports on the DDA combination listing any of the MedDRA terms indicative 
of effect increased or effect decreased and the adverse event was reported to reoccur upon 
reintroduction of one or both drugs

0.2
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and manually reviewed DDA combinations highlighted by 
our predictive algorithm and automated triage filters. Their 
aim was to identify signals that were suitable for in-depth 
signal assessment. Preliminary signal assessment was per-
formed according to the flowchart shown in Fig. 1.

The first step in the preliminary signal assessment 
evaluated whether drugs or reported adverse events for 
each combination were specific enough to support further 
action. A DDA combination was, for example, deemed 
non-actionable if the drugs or adverse event were unspe-
cific (e.g. ‘vitamins NOS’ and ‘therapeutic response 
decreased’), if any of the drugs had been withdrawn from 

the market, or for other motivations at the assessors’ 
discretion.

In assessing whether possible drug interactions were 
already known, a manual review of the information sources 
specified above was carried out. A drug interaction was con-
sidered known when the interaction was mentioned in at 
least one of the sources of the interacting drugs. In cases 
where there was information to suggest a drug interaction 
in DrugDex/Janusmed, but not in the SmPCs/product labels, 
consultation with one of three designated senior assessors 
participating in the study was required to judge whether a 
drug interaction should be considered known. For DDAs 

Table 2   Initial triage filters applied to the list of statistical signals

DDA drug–drug adverse event

Scope Description

International reporting Include only DDA combinations with reports from at least two countries in VigiBase–reflecting the interna-
tional focus of the WHO Programme for International Drug Monitoring

Recent report(s) Include only DDA combinations with at least one report entered into VigiBase after 31 August 2014–focus-
ing on recent topics

Serious adverse events Include only DDA combinations for which either (1) the adverse event is included on the European Medi-
cine Agency’s list of important medical events; or (2) at least 75% of the E2B reports in the case series 
are classified as serious–focusing on adverse events with significant clinical impact

Table 3   Secondary triage filters applied to the list of statistical signals

DDA drug–drug adverse event, MedDRA Medical Dictionary for Regulatory Activities, NEC not elsewhere classified

Scope Description

Previously checked Exclude DDA combinations that have been previously assessed by Uppsala Monitoring Centre for a pos-
sible interaction

Listed in Stockley’s Exclude DDA combinations where the drug pair is identified as already listed to interact in Stockley’s with 
the natural language processing methods outlined above

Listed in Janusmed Exclude DDA combinations where the drug pair is listed to interact in Janusmed interactions (class C or D 
AND grade 2–4)

Adverse event listed for both drugs Exclude DDA combinations where the adverse event is identified as known for both drugs using Uppsala 
Monitoring Centre’s algorithms for natural language processing of literature sources

Adverse event is ‘drug interaction’ Exclude DDA combinations where the adverse event is the MedDRA Preferred Term ‘drug interaction’. 
This term is included in the algorithm and is thus overrepresented in the combinations list. Combinations 
with this term, assessed at the pre-evaluation, were already known interactions

Adverse events related to product 
quality or use

Exclude DDA combinations where the adverse events relate to product quality (MedDRA High Level Term 
‘product quality issues NEC’) or product use (High Level Term ‘product use issues NEC’, as well as the 
individual Preferred Terms ‘off-label use’, ‘labelled drug–drug interaction medication error’, ‘medication 
error’, ‘medication residue present’, or ‘intentional overdose’)

Table 4   Tertiary triage filters applied to the list of statistical signals for part of the study; DDA combinations that fulfilled at least one of the two 
criteria below were included

DDA drug–drug adverse event

Scope Description

Three or more narratives Include DDA combinations relating to case series containing at least three narratives in VigiBase
Supporting evidence in Janusmed interactions Include DDA combinations with only limited support in Janusmed interactions (either class A/B 

regardless of grade; or grade 1 regardless of class)



780	 S. Hult et al.

where there was no known interaction, the SmPCs/product 
labels were reviewed to establish whether the adverse event 
was a known ADR for any or both of the drugs individually. 
Literature findings and decision-making choices for each 
manually reviewed combination were documented.

After confirmation by one of the designated senior asses-
sors, DDA combinations whose series of individual case 
report were assessed as supportive of an interaction were 
classified as meriting in-depth signal assessment.

Assessors specified the reason for closing signals, e.g. 
when the DDA combination was non-actionable, the evi-
dence was non-suggestive, or there was a lack of data. An 
initial analysis of this data suggested heterogeneity in the 
application of these categories. Results are therefore pre-
sented below in aggregate form. Signals that could neither 
be classified as meriting in-depth assessment or be closed 
were placed on a monitoring list to keep under review await-
ing additional and more informative reports.

2.7 � In‑Depth Signal Assessment

In-depth assessment was performed by experienced pharma-
covigilance assessors, either among the original 21 asses-
sors or within Uppsala Monitoring Centre’s signal review 
panel.3 The details of each in-depth assessment relied on 
the domain expertise of our individual assessors and the 
specific circumstances of the signal being assessed; using 
a common, standardized approach was out of scope for this 
study. At the end of this process, remaining signals were 
written, disseminated to the national centres in the WHO 
Programme for International Drug Monitoring, relevant 
marketing authorisation holders, and ultimately published 
in the WHO Pharmaceuticals Newsletter. In case a signal 

Fig. 1   Review decision tree, 
displaying the decision making 
to mark a DDA combination for 
further review. eMC electronic 
medicines compendium, DDA 
drug–drug adverse event

3  Link to website: https​://www.who-umc.org/resea​rch-scien​tific​
-devel​opmen​t/signa​l-detec​tion/revie​w-panel​/

https://www.who-umc.org/research-scientific-development/signal-detection/review-panel/
https://www.who-umc.org/research-scientific-development/signal-detection/review-panel/
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could neither be closed nor support broader dissemination at 
the time, it was placed on the monitoring list to keep under 
review awaiting additional reports.

3 � Results

3.1 � Effect of Triage Filters

The dataset contained 7.4 million DDA combinations, of 
which 1.6 million contained between 2 and 30 reports. The 
effect of the triage filters on the top 50,000 DDA combina-
tions, as ranked by the predictive algorithm, is outlined in 
Fig. 2. The initial filters had approximately the same impact 
of selecting between 67 and 77% of the top-ranked DDA 
combinations each. Forty percent of the statistical signals 
fulfilled all of the initial filters. Table 5 presents the cover-
age of each secondary filter, and Fig. 3 presents the impact 
of the tertiary filters.  

3.2 � Signal Assessment Outcome

A total of 691 DDA combinations were subjected to prelimi-
nary signal assessment, corresponding to 407 unique drug 
pairs. Since many of the assessed DDA combinations related 
to the same drug pairs, e.g. 50 related to quetiapine and 
valproic acid, subsequent results relate to unique drug pairs.

Of the 407 unique drug pairs considered, 157 (39%) were 
closed as they were related to already known interactions. 
An additional 232 (57%) were closed for other reasons, 
such as insufficient or non-suggestive evidence, or that the 
adverse event was a known ADR for both drugs separately 
without information to suggest there might be an interaction. 
Ten drug pairs (2.5%) were classified as signals meriting in-
depth assessment, and an additional eight (2.0%) were to be 
kept under review for additional information. The outcome 
is presented in Fig. 4.

Fig. 2   Overview of the proportions of top-ranked DDA combinations 
fulfilling our initial filters (40%), remaining after the elimination of 
DDA combinations by the secondary filters (14%) and being selected 
by our tertiary filters (6%). All proportions in this graph relate to the 
50,000 top DDA combinations as ranked by our predictive model for 
possible adverse drug interactions. DDA drug–drug adverse event

Table 5   Proportion of DDA combinations fulfilling each of the sec-
ondary filters (proportions here relate to DDA combinations that 
remain after the initial filters)

DDA drug–drug adverse event

Secondary filters Proportions of excluded 
DDA combinations (%)

Listed in Stockley’s 50
Adverse event listed for both drugs 17
Listed in Janusmed 15
Adverse event is ‘drug interaction’ 12
Adverse events related to product quality 

or use
1

Previously checked 0.4

Fig. 3   Venn diagram displaying the proportions of DDA combina-
tions selected by each tertiary filter; in total, 43% of the combina-
tions fulfilled at least one of the criteria (proportions here relate to 
the number of DDA combinations that remained after the initial fil-
ters and secondary filters had been applied). DDA drug–drug adverse 
event
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A list of the 10 signals subjected to in-depth assessment, 
and their respective outcomes, are available in Table 6. In-
depth signal assessments led to three signals for broader 
dissemination, six closed signals, and one signal to be kept 
under review. The most common reasons for closing signals 
after in-depth assessment were a lack of strong individual 
case reports, lending support to the possible interaction and/
or presence of multiple co-reported drugs.

Among the 407 assessed drug pairs, the five most common 
drugs were acetylsalicylic acid (appearing in 46 drug pairs), 
valproic acid (24), furosemide (23), fentanyl (14) and met-
formin (13). The most common PTs were ‘acute kidney injury’ 
(appearing in 45 drug pairs), ‘drug ineffective’ (42), ‘interna-
tional normalised ratio increased’ (22), ‘electrocardiogram QT 

prolonged’ (21) and ‘hyponatraemia’ (19). Preferred Terms 
related to the MedDRA High Level Group Terms ‘vascular 
haemorrhagic disorders’, ‘gastrointestinal haemorrhages NEC’, 
‘gastrointestinal ulceration and perforation’ and ‘coagulopathies 
and bleeding diatheses (excl. thrombocytopenic)’ appeared in 
76 drug pairs.

3.3 � Description of Signals

3.3.1 � Ciprofloxacin and Enalapril—Acute Kidney Injury

A case series of 16 reports of acute kidney injury were 
associated with enalapril and ciprofloxacin, reported as co-
suspect or interacting medicines. The suspected interaction 
was unlabelled but it is known that the use of enalapril and 
ciprofloxacin separately may lead to renal failure [27, 28]. 
The signal was supported by a disproportional reporting pat-
tern suggestive of an interaction (Ω025 > 0) and a published 
epidemiological study. The full signal assessment has been 
published in the WHO Pharmaceuticals Newsletter [29].

3.3.2 � Rosuvastatin and Ticagrelor—Rhabdomyolysis

A case series of five well-documented reports of rhabdo-
myolysis were associated with ticagrelor and rosuvastatin, 
reported as co-suspect or interacting medicines. The sus-
pected interaction was unlabelled but it is known that rosu-
vastatin used on its own may lead to rhabdomyolysis [30]. 
The signal was supported by a suggestive time-to-onset in 
three cases where the patients had used rosuvastatin for a 
long time (month to years) without complaints before tica-
grelor was added. The full signal assessment has been pub-
lished in the WHO Pharmaceuticals Newsletter [31].

Fig. 4   Overall results of preliminary signal assessment. DDA drug–
drug adverse event

Table 6   List of the 10 signals classified as meriting in-depth assessment

MedDRA Medical Dictionary for Regulatory Activities, PTs Preferred Terms

Drug 1 Drug 2 MedDRA PTs Signal assessment outcome

Ciprofloxacin Enalapril Acute kidney injury Signal
Quetiapine Valproic acid 50 PTs, of which five were included in the final signal: blood creatinine 

phosphokinase increased, coma, depressed level of consciousness, 
disorientation, and rhabdomyolysis

Signal

Rosuvastatin Ticagrelor Rhabdomyolysis Signal
Ethinylestradiol/

levonorgestrel
Lamotrigine Pregnancy on oral contraceptive Keep under review

Levonorgestrel Lamotrigine Pregnancy with contraceptive device, drug ineffective, seizure Closed
Clozapine Pregabalin Drug level increased, psychotic disorder Closed
Amiodarone Rivaroxaban 12 haemorrhage PTs Closed
Atorvastatin Esomeprazole Rhabdomyolysis Closed
Atorvastatin Pantoprazole Acute kidney injury, rhabdomyolysis Closed
Rosuvastatin Omeprazole Polymyositis Closed
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3.3.3 � Quetiapine and Valproic Acid—Musculoskeletal 
and Neuropsychiatric Adverse Events

The coadministration of quetiapine and valproic acid is a 
relatively unexplored option for the acute and maintenance 
treatment of bipolar disorder. The two drugs are known to 
interact but the cotreatment is considered well-tolerated 
[32]. In December 2016, VigiBase held over 1500 reports 
of quetiapine and valproic acid as co-suspect or interact-
ing medicines. Statistical signals for this pair of drugs were 
identified for 50 MedDRA PTs. Five of these were selected 
for in-depth review using vigiPoint: blood creatine phospho-
kinase increased, coma, depressed level of consciousness, 
disorientation and rhabdomyolysis [33]. The resulting series 
of 20 cases was assessed to evaluate the clinical relevance 
of the interaction. The full signal assessment has been pub-
lished in the WHO Pharmaceuticals Newsletter [34].

4 � Discussion

To our knowledge, this is the first study to evaluate a method 
for signal detection of drug interactions on a large scale in a 
regular pharmacovigilance setting. It shows that statistical 
signal detection for drug interactions is feasible. Ten signals 
were judged to merit in-depth assessment, and three of these 
were subsequently published as signals and disseminated to 
the broader pharmacovigilance community. This was from 
a pool of 407 evaluated drug pairs, giving a proportion of 
signals per evaluated drug pair at 0.7%, which is lower than 
the 1.2% observed historically for pairwise drug–ADR dis-
proportionality analysis in VigiBase, and also substantially 
so compared with the 3.1% observed with the vigiRank pre-
dictive algorithm in the same study [35]. The lower yield 
may be due to the higher complexity of the causal question 
in the case of suspected drug interactions. As expected, all 
signals subjected to in-depth assessment in our study are 
such that at least one, sometimes both, of the involved drugs 
are known to cause the adverse event in question on their 
own. Under such circumstances, there is always a possibility 
that the observed adverse event is due to one of the drugs 
and not to a drug interaction, and more detailed information 
must be available on the reports to assess this possibility. An 
interaction could, in some cases, be suggested by a time-to-
onset pattern where a patient on stable treatment with a drug 
known to cause the adverse event, experiences the adverse 
event on the addition of a second drug not known to cause 
the adverse event [36]. This was the case for the signal on 
rhabdomyolysis with rosuvastatin and ticagrelor. Similarly, 
for a dechallenge intervention to be suggestive of a drug 
interaction, it may need to involve only the drug suspected 
to have induced the interaction and not the drug known to 
cause the adverse event itself. If both drugs can cause the 

adverse event separately, the causal inference is generally 
difficult and individual cases with strong evidence in favor 
of a drug interaction are rare.

The basis for our statistical signal detection was a predic-
tive model combining disproportionality analysis with aspects 
such as possible CYP mediation, suspicion of interactions by 
the reporter, and more. A previously published retrospective 
evaluation of this algorithm indicated improved performance 
compared with disproportionality analysis alone [13], there-
fore an approach based on just disproportionality analysis may 
yield fewer signals. It would be relevant to explore further 
improvements to the algorithm considered in this study, such 
as to combine the three predictors related to reporters’ suspi-
cions of an interaction. An automated identification of reports 
with time-to-onset patterns or dechallenge interventions sug-
gestive of drug interactions could be valuable. The predictive 
model used in vigiRank for pairwise drug–ADR associations 
[37] is similar in nature but was developed more recently and 
includes methodological sophistication that could be adopted 
for improved interaction signal detection. Examples of pos-
sible improvements include predictors relating to geographic 
spread or report quality, and transformations which ensure 
that after a certain point, additional reports with the same fea-
ture do not add to the total score of the combination; for exam-
ple, if there are already eight reports on an adverse event with 
the two drugs listed as ‘interacting’, then one more such report 
would have no impact. This could limit the tendency of the 
current algorithm to highlight very large report series, which 
may in turn allow the scope of screening to be expanded to 
report series of any size. The limit at a maximum of 30 reports 
used in this study is arbitrary and will lead to missed sig-
nals. It has historically been used to reduce the proportion of 
known ADRs in signal detection and of larger case series that 
may be difficult to review. However, analyses of associations 
such as the one for quetiapine and valproic acid presented 
above can be fruitful, even though they take more time and 
may require new best practices and computational support to 
be developed.

The relevant causal question in interaction assessment 
usually relates to whether two drugs interact in a clini-
cally relevant way, which, if so, could give rise to a range 
of ADRs. In our study, analyses at the DDA combination 
level were complicated by single report series result-
ing in large numbers of statistical signals relating to the 
same two drugs. An interesting area of future research is 
whether it may be more effective to perform drug inter-
action screening directly at the level of drug pairs. Such 
an approach could account for patterns across different 
adverse events, possibly looking for stronger associations 
with ADRs that have a pronounced dose–response rela-
tionship. It would present several interesting methodo-
logical opportunities and challenges and could potentially 
yield a substantial increase in performance.
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Automated triage filters were an essential component 
of our approach, focusing our attention on just 14% of 
the highly ranked DDA combinations. Specifically, more 
than half were eliminated by one of the filters targeted at 
already known interactions, and, even so, preliminary sig-
nal assessment classified 39% of the drug pairs as already 
known interactions. One reason for this high proportion of 
known drug interactions may be that the predictive model 
used for statistical interaction detection lends substantial 
weight to reports indicating that the reporter suspected an 
interaction, and there is evidence to suggest that reporters 
may be more inclined to do so for known interactions [5]. 
At the same time, the three published signals from our 
study were all identified in part because of reports where 
reporters had conveyed suspicions of drug interactions.

Our study was performed in VigiBase (the world’s larg-
est collection of individual case reports), and while scope 
and size are important to capture enough reports to enable 
interaction detection, the amount of information on indi-
vidual reports is even more critical. Most of the predic-
tors in our algorithm are based on individual reports (e.g. 
reports of altered or unexpected therapeutic effect, and 
notes of suspected drug interactions by the reporter) or 
on the nature of the two drugs (whether there is possible 
CYP mediation), so they do not rely on broad background 
data in the way that disproportionality analysis does. In 
view of this, we believe that the in-house databases of 
national regulatory authorities and pharmaceutical compa-
nies should be fertile ground for interaction signal detec-
tion, whereas databases with more limited information on 
individual reports, such as the public access version of 
the US FDA’s Adverse Event Reporting System (FAERS) 
database, may prove less useful for this purpose.

In addition to the limitations highlighted above, it is 
important to note that this study, by design, focuses on 
the ability of the proposed approach to detect interaction 
signals. It shows that such signals can be identified and 
offers insights into the number of statistical signals that 
needed to be assessed to detect a signal worthy of broader 
communication. However, it does not indicate the sensi-
tivity of the proposed approach, i.e. how many drug–drug 
interactions it may fail to detect. Therefore, further 
research is required to determine to what extent signal 
detection in individual case reports may need to be com-
plemented by other approaches to effectively screen for 
unknown drug interactions in regular pharmacovigilance.

5 � Conclusions

This study shows that signals of adverse drug interactions 
can be detected through broad statistical screening of indi-
vidual case reports. It further shows that signal assessment 
related to possible drug interactions requires more detailed 
information on the temporal relationship between different 
drugs and the adverse event. Future research may consider 
whether interaction signal detection should be performed 
not for individual adverse event terms but for pairs of drugs 
across a spectrum of adverse events.
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