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Abstract
Introduction The rapidly expanding size of the Food and Drug Administration’s (FDA) Adverse Event Reporting System 
database requires modernized pharmacovigilance practices. Techniques to systematically identify high utility individual 
case safety reports (ICSRs) will support safety signal management.
Objectives The aim of this study was to develop and validate a model predictive of an ICSR’s pharmacovigilance utility 
(PVU).
Methods PVU was operationalized as an ICSR’s inclusion in an FDA-authored pharmacovigilance review’s case series 
supporting a recommendation to modify product labeling. Multivariable logistic regression models were used to examine 
the association between PVU and ICSR features. The best performing model was selected for bootstrapping validation. As 
a sensitivity analysis, we evaluated the model’s performance across subgroups of safety issues.
Results We identified 10,381 ICSRs evaluated in 69 pharmacovigilance reviews, of which 2115 ICSRs were included in 
a case series. The strongest predictors of ICSR inclusion were reporting of a designated medical event (odds ratio (OR) 
1.93, 95% CI 1.54–2.43) and positive dechallenge (OR 1.67, 95% CI 1.50–1.87). The strongest predictors of ICSR exclu-
sion were death reported as the only outcome (OR 2.72, 95% CI 1.76–4.35), more than three suspect products (OR 2.69, 
95% CI 2.23–3.24), and > 15 preferred terms reported (OR 2.69, 95% CI 1.90–3.82). The validated model showed modest 
discriminative ability (C-statistic of 0.71). Our sensitivity analysis demonstrated heterogeneity in model performance by 
safety issue (C-statistic range 0.58–0.74).
Conclusions Our model demonstrated the feasibility of developing a tool predictive of ICSR utility. The model’s modest 
discriminative ability highlights opportunities for further enhancement and suggests algorithms tailored to safety issues 
may be beneficial.
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1 Introduction

For nearly 50 years, the US Food and Drug Administration’s 
(FDA) analysis of individual case safety reports (ICSRs) has 
been an integral component of postmarketing drug surveil-
lance [1, 2]. The rapidly expanding size of the FDA Adverse 
Event Reporting System (FAERS) database, the reposi-
tory for these reports, and the complexity of information 
contained in each report call for automated algorithms for 
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Key Points 

Techniques to systematically identify and distinguish 
higher utility individual case safety reports (ICSRs) from 
lower utility ones will improve timeliness in the manage-
ment of safety signals.

We developed a predictive model to prioritize ICSRs 
for manual review that performed better than using data 
field completeness alone.

The model’s modest performance demonstrated the 
feasibility of this approach, but also highlighted oppor-
tunities for further refinement such as extracting addi-
tional predictors from unstructured data and developing 
algorithms for particular safety issues.

action, if warranted. Changes to the product’s approved pro-
fessional label, sometimes referred to as the package insert, 
are the most common regulatory actions recommended in 
FDA’s pharmacovigilance reviews. These recommenda-
tions are guided by several safety guidance documents that 
provide considerations regarding placement, content, and 
format of adverse reaction information in labeling and Medi-
cation Guides [7].

Defining the construct of ‘pharmacovigilance utility’ 
(PVU) at the level of an ICSR is generally absent from the 
literature. Previous work has successfully developed meas-
ures to quantify the completeness of clinical documentation 
in ICSRs, but completeness is only one contributing factor in 
a more holistic concept of utility that considers the potential 
for information to offer true insights into drug safety [5, 8, 
9]. Retrospective data on whether an ICSR contributed to 
a regulatory action (e.g., labeling change, product recall, 
initiation of further studies) offers a post-hoc method for 
understanding the factors associated with PVU. Using this 
conceptualization of PVU, we compiled a training set of 
FAERS ICSRs from the FDA’s prior pharmacovigilance 
reviews. Thus, the objective of this study was to develop 
and validate a model predictive of an ICSR’s PVU.

2  Methods

2.1  Data Source: Pharmacovigilance Reviews 
and FDA Adverse Event Reporting System 
(FAERS) Individual Case Safety Reports (ICSRs)

All pharmacovigilance reviews completed from January 1, 
2016, to December 31, 2016, were extracted from FDA’s 
internal document repository. FDA’s pharmacovigilance 
reviews contain the pertinent regulatory background, FAERS 
search criteria (if applicable), search results, case definition, 
causality assessment criteria and results, the resulting case 
series, and regulatory recommendations (e.g., labeling revi-
sion, continue routine pharmacovigilance). Each pharma-
covigilance review was assessed for the following exclu-
sion criteria: (1) no regulatory action recommended beyond 
continuation of routine pharmacovigilance, (2) FAERS data 
was not the data source evaluated (e.g., the data source was 
a sponsor submission), (3) a causality assessment of all 
ICSRs retrieved from the FAERS query was not performed 
(i.e., the review documented simple counts or a sample of 
ICSRs were reviewed), and (4) a review was not focused on 
a specific safety issue (e.g., review of all pediatric adverse 
events for a particular product). Reviews that did not include 
a causality assessment were excluded because there is no 
distinction between cases included or excluded from the case 
series. These types of reviews tend to provide simple ICSR 
counts without regulatory recommendations (exclusion 

effective identification and evaluation of safety signals. The 
volume of ICSRs in FAERS precludes a manual review of all 
ICSRs. In 2018 alone, over 2 million ICSRs were received in 
FAERS [3]. While automated approaches based on dispro-
portionality analyses are routinely utilized to identify pat-
terns of potential interest in FAERS [4], the practices used to 
prioritize case-by-case review of ICSRs when determining if 
signals identified from disproportionality analyses warrant 
further evaluation rely primarily on individual experience or 
application of completeness metrics such as vigiGrade [5]. 
This prioritization can include considerations such as sever-
ity of outcome (e.g., death) and patient characteristics (e.g., 
pediatrics). The intent of prioritization is to identify ICSRs 
with the highest ‘pharmacovigilance utility’—those ICSRs 
with substantial implications on public health—as early as 
possible. The identification of these ICSRs earlier, particu-
larly when there are hundreds or thousands of ICSRs under-
lying a signal, can allow for reprioritization of resources 
commensurate with the anticipated safety implications, and 
consequently, timely regulatory actions.

Safety signals generated from FAERS are evaluated 
through a careful review of the ICSRs by specialized safety 
staff. After a signal has been identified, safety experts search 
FAERS to identify potential ICSRs for inclusion in a case 
series that can inform that safety signal. Reviewers then 
assess for duplicate ICSRs (i.e., ICSRs reported by more 
than one reporter that describe the same suspect product, 
event, and patient), apply a case definition specific to the 
safety issue being evaluated (e.g., do the case details sup-
port a diagnosis of say, anaphylaxis?), and assess the causal 
relationship between the suspected product and the adverse 
event [6]. The resulting case series is then evaluated by the 
safety team in the context of other relevant data streams 
(e.g., preclinical data, clinical trial data, drug utilization) and 
current product labeling. Findings from the safety analyses 
are documented and include recommendations for regulatory 
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criteria 1), rather than in-depth evaluations of safety issues 
supporting regulatory actions.

After identifying reviews eligible for inclusion, we used 
the FAERS search criteria in the review to identify and 
extract all relevant ICSRs that were available for evaluation 
by the reviewer. The most recent version of an ICSR was 
used for model development. This replication was necessary 
because reviews documented the number of ICSRs retrieved 
by the original reviewer’s search and the unique FAERS 
case number of the ICSRs included in the case series but 
did not document the FAERS case numbers of ICSRs that 
were excluded from the case series. The number of ICSRs 
retrieved in the replicated searches was compared with the 
original review’s search results. Deviations > 5% in the num-
ber of ICSRs retrieved when comparing the de novo searches 
with results documented in the review were evaluated for a 
root cause (e.g., follow-up information resulted in ICSRs no 
longer meeting the search criteria). Reviews with unrecon-
ciled deviations were excluded.

2.2  Dependent Variable: Pharmacovigilance Utility 
(PVU)

PVU was operationalized as an ICSR’s inclusion in an FDA-
authored pharmacovigilance review’s case series supporting a 
recommendation to modify product labeling. ICSRs included 
in the pharmacovigilance reviews identified in 2.1 were 
pooled across reviews and classified as included (PVU = 1) 
and excluded ICSRs (PVU = 0) for model development.

2.3  Independent Variables: Determinants of PVU

The potential determinants of PVU included aspects of ICSR 
completeness (i.e., elements of a good ICSR as defined by 
FDA guidance [6]), features identified from the literature, 
and variables identified by expert opinion. We used separate 
variables for measures of completeness rather than a sin-
gle score, such as the vigiGrade completeness score [5], to 
allow certain elements to have greater importance. We also 
considered variables evaluated in a previously developed 
model predictive of a causality assessment of at least ‘possi-
ble’ as measured on a modified WHO-UMC scale in a prior 
evaluation of FAERS data [10]. The additional determinants 
we considered based on expert opinion included variants 
of serious outcomes1 (e.g., any serious outcome, death as 
the only reported outcome), reporter country (USA vs other 
country), ICSR type2 (Direct, Expedited, Non-Expedited), 

positive rechallenge, positive dechallenge, literature article, 
more than one follow-up ICSR, and presence of designated 
medical events (DMEs) preferred terms. DMEs are adverse 
events that are considered serious and may often be caused 
by exposure to drugs. DMEs are used by pharmacovigilance 
experts to help focus attention on important events and pri-
oritize pharmacovigilance activities (e.g., signal detection). 
Examples include Stevens–Johnson syndrome, acute hepatic 
failure, and torsades de pointes [11]. Most variables were 
derived from structured data fields, but the free-text nar-
rative was also used for operationalizing three variables 
(literature article, limited narrative, and curated narrative 
terms). All variables evaluated are described in Supplemen-
tary Materials Table 1 and 2 [see electronic supplementary 
material (ESM)].

2.4  Data Analysis

We characterized pharmacovigilance reviews meeting the 
inclusion criteria by the following: product(s) reviewed, 
safety issue evaluated, number of ICSRs retrieved by the 
search, and number of ICSRs included in the case series. The 
highest level of labeling recommended was also collected, 
with Boxed Warning > Warning and Precautions > Con-
traindication > Adverse Reactions > other sections as the 
hierarchy [12]. We then compared patient, suspect product, 
adverse event, and reporter characteristics for differences 
between ICSRs classified as having PVU versus those 
without.

Univariate analyses were used to examine crude associa-
tions between the potential determinants and PVU. Variables 
demonstrating limited face validity or no predictive value 
in the univariate analyses were excluded from multivariable 
analyses. Three models were considered: a model includ-
ing completeness variables only, a full model including all 
available predictors, and a parsimonious model developed 
via fast backward technique that retained all variables with a 
p value <0.15. We reported odds ratios (ORs) and associated 
95% confidence intervals (CIs). We evaluated each model’s 
ability to discriminate between cases selected for inclu-
sion in a case series by using the receiver operating curve 
(C-statistic), calibration using the Hosmer–Lemeshow test, 
and the Akaike information criterion (AIC). After evaluat-
ing the performance of the three models, the best model was 
selected for validation. To correct for optimism resulting 
from using the same data for development and validation, 
we refitted the final model in 100 bootstrap samples of the 
original data set [13, 14]. The resulting model parameters 
were then reapplied to the original dataset, which yielded the 
optimism-adjusted C-statistic. Statistical analyses were con-
ducted using  SAS® 9.4 (SAS Institute Inc., Cary, NC, USA).

We conducted two sensitivity analyses to evaluate the 
robustness of the validated model. In the first analysis, we 

1 Serious outcomes are defined by US regulations (CFRs 314.80, 
600.80) and include death, life-threatening, hospitalization, disability, 
congenital anomaly, and other serious outcomes.
2 Expedited and non-expedited ICSRs are reports that pharmaceuti-
cal manufacturers are required to submit by regulation (CFRs 314.80, 
600.80).
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evaluated the potential impact of correlated data (i.e., a 
safety reviewer’s decision to include an ICSR in a case series 
within a review may be correlated) using a generalized esti-
mating equation (GEE) model that considered each review 
as a cluster. The resulting parameter estimates and overall 
area under the curve (AUC) were generated for comparison 
to the validated model. In the second sensitivity analysis, we 
evaluated for heterogeneity in the model’s discrimination by 
subgroups of safety issues. The safety issues selected for fur-
ther evaluation were the most common topics of evaluation 
in the review pool. ICSRs from reviews evaluating hyper-
sensitivity/anaphylaxis, drug-induced liver injury, cardio-
vascular events (including ventricular arrhythmias, torsades 
de pointes, QT prolongation, hypotension, AV block, heart 
failure), and events without acute life-threatening outcomes 
(including alopecia, application-site pigmentation changes/
scarring, false-positive drug screen, fingerprint loss, weight 
gain) were selected for this analysis.

3  Results

3.1  Pharmacovigilance Reviews and ICSR Pool

Of the 311 reviews documented in the study period, we 
identified 69 reviews that met the review inclusion crite-
ria. These reviews contained a total of 10,381 ICSRs. The 
primary reasons for review exclusions included no regula-
tory recommendations (n = 106), reviews evaluated did not 
include FAERS data, but evaluated another data source 
(n = 29), review was not focused on a specific safety issue 
(e.g., reviews of all pediatric adverse events) (n = 36), the 
ICSR search was not able to be precisely replicated (n = 27), 
not all ICSRs retrieved by the search were manually evalu-
ated in the review (n = 23), and duplicate review documents 
(n = 21).

Characteristics of the 69 included reviews are pro-
vided in Table 1. The median number of ICSRs reviewed 
and included in a series across reviews was 89.5 and 16.5, 
respectively. The proportion of ICSRs included in a review 
(ICSRs included in a series/all ICSRs retrieved by the 
search) ranged from 1.5 to 90.7%, with a median of 22.2%. 
The median number of duplicate ICSRs identified in a 
review was eight ICSRs, ranging from zero to 190. The most 
frequent therapeutic areas of reviewed products included 
cardiology (n = 11), oncology/hematology (n = 11), endo-
crine/metabolic (n = 9), gastrointestinal (n = 8), and neurol-
ogy (n = 8). Most reviews evaluated a single product (55/69, 
80%), 12 evaluated a class of products, and two reviews 
evaluated drug–drug interactions. Eight reviews evaluated 
therapeutic biologic products. The most frequently reviewed 
safety issues classified by  MedDRA® System Organ Class 
(SOC) included ‘skin and subcutaneous tissue disorders’ 

(e.g., Stevens Johnson syndrome, acute generalized exan-
thematous pustulosis), ‘immune system disorders’ (e.g., 
anaphylaxis, hypersensitivity reactions), ‘nervous system 
disorders’ (e.g., seizures, serotonin syndrome), and ‘hepa-
tobiliary disorders’ (e.g., drug-induced liver injury, hepatitis 
reactivation). The highest-level labeling recommendations 
from the reviews included modifications to the Boxed Warn-
ing (2), Warnings and Precautions (33), Contraindications 
(2), Adverse Reactions (30), and Drug Interactions (2).

Characteristics of the 10,381 ICSRs included for mod-
eling are provided in Table 2 by ICSR inclusion (PVU = 1) 
or exclusion status (PVU = 0). Overall, 12.5% of ICSRs did 
not report a serious outcome. Included and excluded ICSRs 
provided a similarly high proportion of complete demo-
graphic information (age ~ 86%, sex ~ 94%). Data fields with 
a 5%-or-more absolute percentage difference in complete 
information in the included group were weight (35.5% vs 
29.1%), reason for use (82.7% vs 71.9%), dose (76.9% vs 
69.4%), and start date (44.3% vs 37.0%). ICSRs with an 
outcome of death were less frequent in the included group 
(4.3% vs 12.4%). A higher proportion of included ICSRs 
reported a positive dechallenge (42.8% vs 25.8%), posi-
tive rechallenge (2.7% vs 1.5%), and DME (6.3% vs 3.7%). 
ICSRs with more than one suspect product were more fre-
quent in the excluded group (48.6% vs 32.4%).

3.2  Predictive Model Performance and Validation

The parsimonious model was selected as best performing 
model for validation. The model containing only complete-
ness variables had poorer discrimination than the full or 
parsimonious model (AUC 0.63 vs 0.707 and 0.706, respec-
tively; Fig. 1) and poor calibration (Hosmer and Lemeshow 
p < 0.05). While the full and parsimonious models had simi-
lar discrimination and calibration, the parsimonious model 
had a lower AIC. The strongest predictors of ICSR inclusion 
were reporting of a DME (OR 1.93, 95% CI 1.54–2.43), 
positive dechallenge (OR 1.67, 95% CI 1.50–1.87), and rea-
son for product use provided (OR 1.60, 95% CI 1.40–1.83) 
(Table  3). The strongest predictors of ICSR exclusion 
were death reported as the only outcome (OR 2.70, 95% 
CI 1.69–4.35), more than three suspect products (OR 2.70, 
95% CI 2.22–3.23), > 15 preferred terms (OR 2.70, 95% CI 
1.79–3.85), and little narrative information defined as < 100 
words in the narrative and no ICSR attachment (OR 2.16, 
95% CI 1.56–3.07). The availability of information (i.e., 
populated data fields) was positively associated with ICSR 
inclusion. Additionally, ICSRs originating from the USA, 
non-consumer reporter, or classified as literature were also 
predictive of ICSR inclusion in a case series. In contrast, 
ICSRs with any serious outcome reported and expedited 
ICSRs were more likely to be excluded.
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Table 1  Characteristics of the 
pharmacovigilance reviews in 
which individual case safety 
reports (ICSRs) were selected 
for modeling

a Allergy, bone, medical imaging, nutrition, rheumatologic, urinary products were evaluated in one review 
each
b Eye disorder, neoplasms benign, malignant and unspecified, product issue and reproductive system and 
breast disorders were evaluated in one review

N = 69 reviews

Number of ICSRs reviewed, mean (median); range 154.6 (89.5); 4–1376
Number of duplicate ICSRs identified, mean (median); range 17.3 (8); 0–190
Number of ICSRs excluded from case series, mean (median); range 125.6 (63); 1–1057
Number of ICSRs included in case series, mean (median); range 30.7 (16); 1–319
Product type, n (%)
 Biologic 8 (11.6)
 Drug 61 (88.4)

Reviewed product therapeutic area (n > 1)a, n (%)
 Analgesia/musculoskeletal 3 (4.3)
 Antiviral 4 (5.8)
 Cardiology 11 (15.9)
 Dermatology 4 (5.8)
 Endocrine/metabolic 9 (13.0)
 Gastrointestinal 8 (11.6)
 Neurology 8 (11.6)
 Oncology/hematology 11 (15.9)
 Psychiatric 5 (7.2)
 Reproductive 3 (4.3)

Products reviewed, n (%)
 Single product 55 (79.7)
 Class(es) 12 (17.4)
 Drug–drug interaction 2 (2.9)
Primary reviewed event system organ class (n > 1)b, n (%)
 Blood and lymphatic system disorders 2 (2.9)
 Cardiac disorders 5 (7.2)
 Gastrointestinal disorders 5 (7.2)
 General disorders and administration site conditions 4 (5.8)
 Hepatobiliary disorders 6 (8.7)
 Immune system disorders 8 (11.6)
 Infections and infestations 2 (2.9)
 Investigations 2 (2.9)
 Metabolism and nutrition disorders 2 (2.9)
 Musculoskeletal and connective tissue disorders 4 (5.8)
 Nervous system disorders 7 (10.1)
 Psychiatric disorders 2 (2.9)
 Renal and urinary disorders 2 (2.9)
 Respiratory, thoracic and mediastinal disorders 2 (2.9)
 Skin and subcutaneous tissue disorders 12 (17.4)
 Vascular disorders 3 (4.3)

Highest labeling recommendation, n (%)
 Boxed warning 2 (2.9)
 Warnings and precautions 33 (47.8)
 Contraindication 2 (2.9)
 Adverse reactions 30 (43.5)
 Drug interactions 2 (2.9)
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Table 2  Characteristics of 
individual case safety reports 
(ICSRs) excluded (PVU = 0) 
and included (PVU = 1) from 
the review pool case series

NDC national drug code, PVU pharmacovigilance utility
a See Supplementary Materials Table 1 in the electronic supplementary material for operational definitions
b See Supplementary Materials Table 2 in the electronic supplementary material for designated medical event list

Characteristicsa PVU = 0
(N = 8266)

PVU = 1
(N = 2115)

All ICSRs
(N = 10,381)

Report type (%)
 Direct 5.6 7.6 6.0
 Expedited (15-day) 74.8 65.1 72.8
 Non-expedited 19.7 27.3 21.2

Reporter (%)
 Consumer 25.8 19.8 24.6
 Healthcare professional 71.8 78.7 73.2
 Unknown or other 2.3 1.5 2.2

Age provided (%) 86.1 85.7 86.0
Sex provided (%) 93.7 95.7 94.1
Missing both age and sex (%) 5.1 3.4 4.8
Weight provided (%) 29.1 35.5 30.4
Reason for use provided (%) 71.9 82.7 74.1
Dosage/dose provided (%) 69.4 76.9 70.9
Product manufacturer provided (%) 54.6 58.7 55.4
Product lot provided (%) 9.1 10.5 9.4
Product NDC provided (%) 0.8 0.9 0.8
Product start date provided (%) 37.0 44.3 38.5
Product stop date provided (%) 26.4 36.1 28.4
Event date provided (%) 65.1 67.9 65.6
Any serious outcome (%) 88.7 82.7 87.5
 Death 12.4 4.3 10.7
 Hospitalization 44.5 38.4 43.3
 Life threatening 8.2 7.0 7.9
 Disability 3.7 4.8 3.9
 Congenital anomaly 0.2 0.0 0.1
 Other serious 49.9 49.8 49.9

Death only outcome (%) 4.3 1.0 3.6
Other serious only outcome (%) 33.3 36.0 33.8
> 1 Serious outcome (%) 24.8 19.2 23.7
Curated preferred terms (%) 23.0 17.9 21.9
Curated narrative words (%) 26.2 27.2 26.4
Follow-up report provided (%) 36.4 38.4 36.8
Designated medical  eventb (%) 3.7 6.3 4.2
Positive dechallenge (%) 25.8 42.8 29.2
Positive rechallenge (%) 1.5 2.7 1.7
Limited narrative (%) 3.9 2.1 3.5
Literature (%) 15.4 15.0 15.4
USA (%) 61.6 66.6 62.6
Number of suspects (%)

 1 51.4 67.6 54.7
 2–3 28.4 24.9 27.7
 ≥ 4 20.1 7.5 17.6

Number of preferred terms (%)
 1–5 68.7 80.0 71.0
 6–15 25.0 18.2 23.6
 > 15 6.3 1.8 5.4
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The Hosmer and Lemeshow goodness-of-fit test indicated 
acceptable calibration (p = 0.22). The optimism-adjusted 
C-statistic was 0.705, indicating minimal overfitting of 
the model. The GEE model provided the same estimated 
adjusted odds ratios for the parameters with wider confi-
dence intervals. The GEE model also had the same dis-
criminatory ability with an AUC of 0.702 (Supplementary 
Materials Table 3, see ESM).

3.3  Model Performance Across Safety Issues

We performed a sensitivity analysis to evaluate the perfor-
mance of the validated model across different safety issues. 
ICSRs from reviews evaluating hypersensitivity/anaphylaxis, 
drug-induced liver injury, cardiovascular events (including 
ventricular arrhythmias, torsades de pointes, QT prolon-
gation, hypotension, AV block, heart failure), and events 
without acute life-threatening outcomes (including alopecia, 
application-site pigmentation changes/scarring, false-posi-
tive drug screen, fingerprint loss, weight gain) were selected 
for this analysis. Discriminative performance of the model 
within these review issues is summarized in Table 4 and 
illustrated in Fig. 2. The correct classification of cases was 
higher when the model evaluated hypersensitivity reactions 
and drug-induced liver injury (c = 0.70 and 0.74, respec-
tively); however, the model demonstrated lower discrimi-
nation with cardiovascular events and events without acute 
life-threatening outcomes (c = 0.64 and 0.58, respectively). 

4  Discussion

We developed and validated a model predictive of ICSRs 
selected by FDA analysts from FAERS that ultimately 
informed a regulatory action. To our best knowledge, no 
studies have attempted to develop a model predictive of an 
ICSR’s PVU using a surrogate of ICSR inclusion in a case 
series supporting a regulatory recommendation. This prac-
tical outcome enabled the collection of a large and diverse 
ICSR training set for model development. As a result, our 
model considered the incorporation of many potential pre-
dictors, including those that are relatively uncommon in 
FAERS such as presence of a positive rechallenge. Our anal-
ysis suggests that the use of completeness elements alone to 

Fig. 1  Receiver operating curves for the full, parsimonious, and com-
pleteness models

Table 3  Association between factors and inclusion of individual 
case safety reports (ICSRs) in a case series (parsimonious  modela), 
c = 0.71

NDC national drug code
a Parsimonious model developed via fast backward technique that 
retained all variables with a p value < 0.15
b See Supplementary Materials Table 2 in the electronic supplemen-
tary material for designated medical event list

Variables Odds ratio 95% 
Confidence 
interval

Missing both age and sex 0.79 0.61–1.04
Weight provided 1.32 1.17–1.48
Reason for use provided 1.60 1.40–1.83
Dose/dosage provided 1.12 0.99–1.27
Product manufacturer provided 1.12 1.01–1.24
Product NDC provided 0.62 0.35–1.09
Product stop date provided 1.45 1.29–1.64
Serious outcome 0.51 0.42–0.62
Death outcome only 0.37 0.23–0.59
Other serious outcome only 1.11 0.99–1.25
Designated medical  eventb reported 1.93 1.54–2.43
Positive dechallenge 1.67 1.50–1.87
Positive rechallenge 1.33 0.95–1.87
Limited narrative 0.46 0.33–0.64
Report type (vs non-expedited)
 Direct report 1.11 0.87–1.41
 Expedited reports 0.84 0.72–0.98

USA report 1.24 1.10–1.40
Consumer report 0.60 0.53–0.69
Literature report 1.34 1.15–1.57
Suspects reported (vs 1)
 2–3 0.70 0.63–0.79
 > 3 0.37 0.31–0.45

Preferred terms reported (vs 1–5)
 6–15 0.74 0.65–0.84
 > 15 0.37 0.26–0.52
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predict PVU had limited discriminative ability but was better 
than random. Supplementing completeness elements with 
other aspects of ICSRs such as the number of suspect prod-
ucts resulted in significant improvements in discrimination.

The determinants of PVU evaluated generally performed 
as expected. The availability of patient and product informa-
tion was positively associated with ICSR inclusion. Addi-
tionally, presence of a positive dechallenge, positive rechal-
lenge, and DME were positively associated with inclusion 
in a case series. The presence of a DME is not surprising, 
as these are specific severe events of interest (e.g., toxic 
epidermal necrolysis) rather than imprecise and often non-
serious events (e.g., rash or erythema) that may be retrieved 
in a reviewer’s broader search. Importantly, ICSRs without 
a DME can still have a higher predicted likelihood of case 
inclusion than a DME containing ICSR if other important 
predictors are present in the non-DME ICSR but absent in 
the DME containing ICSR. We also conducted an additional 
analysis that excluded the DME variable and found removal 
from the model did not change the c-statistic significantly 

(i.e., 0.71 with the DME variable included to 0.70 without 
the DME variable). ICSRs from the US and from the medical 
literature were also positively associated with ICSR inclu-
sion. Publication of individual case reports or case series in 
the medical literature clearly has a higher bar for detail than 
entry of an ICSR into FAERS, for which only minimal crite-
ria exist [15]. Our finding also indicated that reporting more 
than three suspect products was a strong predictor of ICSR 
exclusion, which likely reflects the difficulty in separating 
the effect of one drug from that of the others in assessing 
causality. ICSRs reporting death as the only outcome was 
also a strong predictor of ICSR exclusion. While this finding 
may seem counterintuitive, we examined the data further and 
found that one-third of death-only ICSRs were associated 
with the American Association of Poison Control Centers. 
These ICSRs tend to describe multiple-substance overdoses 
and their clinical consequences [16]. Overdose was not the 
subject of any of the reviews included in the model develop-
ment pool, but these cases were retrieved because they were 
coded with other AEs (e.g., liver injury, arrhythmias).

Our evaluation of the model’s ability to correctly clas-
sify ICSRs within different subgroups of events highlights 
opportunities to develop algorithms tailored to safety issues. 
The most frequent safety issues evaluated in reviews were 
hypersensitivity/anaphylactic reactions and drug-induced 
liver injury. Thus, it would not be unexpected for the model 
to perform better for these subgroups of focused safety issues 
relative to subgroups of reviews that evaluated broader top-
ics. Logically, important predictors of an ICSR’s utility will 
vary by safety issue. For example, the presence of electro-
cardiogram information or electrolyte laboratory results con-
tained in an ICSR may have significant predictive ability for 
identifying the most pertinent ICSRs for torsades de pointes, 
and little to no predictive value for events like serious skin 
reactions. Natural language processing methods could be 
leveraged to identify these potentially predictive variables 
currently captured as free-text in the narrative [17]. While 
we had sufficient sample size to develop a stable model 
across the considered case series, we could not properly 

Table 4  Model performance by 
different review issue subsets

AUC  area under the curve, ICSRs individual case safety reports
a Safety issues included torsades de pointes, QT prolongation, severe ventricular arrhythmias, hypotension, 
syncope, heart failure
b Safety issues included alopecia, application-site pigmentation changes/scarring, false-positive drug screen, 
fingerprint loss, weight gain

Review subsets Reviews (N) ICSRs (N) Included ICSRs 
(N)

AUC 

All reviews 69 10,381 2115 0.706
Cardiovascular  eventsa 6 949 232 0.582
Drug-induced liver injury 6 1135 48 0.701
Hypersensitivity/anaphylaxis 7 1374 221 0.742
Non-acutely-life-threatening  eventsb 8 658 256 0.644

Fig. 2  Receiver operating curves by safety issue
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address heterogeneity regarding predictors. Larger studies 
capturing a broader and more representative range of case 
series allowing targeted analyses would be needed. Given a 
large proportion of reviews were excluded, additional work 
would also be needed to further evaluate the generalizability. 
Similarly, pharmacovigilance experts use sources of safety 
knowledge external to the FAERS database in their assess-
ments of ICSRs. Further development of models that lev-
erage additional data sources (e.g., product labeling, case 
definitions, pharmacology information, molecular pathways) 
should enhance a model’s predictive abilities [18].

Because our model was developed on ICSRs in which 
a signal was already identified, the most direct application 
is to prioritize ICSRs for manual review once a signal is 
identified. However, a logical extension may be the prior-
itization of ICSRs for screening independent of a signal. 
Implementation would require consideration of each vari-
able’s applicability in the context of signal identification 
practices and subsequent model validation. For example, 
if ICSRs coded with DME preferred terms were already 
automatically triaged for screening, there is no value in 
including this variable. Further, utility predictions on the 
ICSR level could be used to enhance approaches currently 
used to identify signals at the product-event level. For 
example, Caster et al. developed vigiRank, a method that 
combines multiple strength‐of‐evidence aspects including 
disproportionality and completeness of individual ICSRs 
within the product–event pairs evaluated in vigiBase [19]. 
The Netherlands Pharmacovigilance Centre Lareb recently 
developed a similar method with different predictors [20]. 
In both cases, combining disproportionality measures at the 
product–event level with aspects of the underlying ICSRs 
resulted in increased performance in signal detection com-
pared with disproportionality analyses alone [20, 21]. Future 
work should consider the development and validation of 
these approaches for signal detection in FAERS.

Meaningful measures of utility are challenging to oper-
ationalize and represent an area of much needed research 
[22, 23]. While our PVU outcome represents a contribution, 
there are several notable limitations. Dichotomizing each 
ICSR as only valuable if it supports a regulatory action over-
simplifies the contributions of ICSRs to safety knowledge. 
Within a case series certain ICSRs could be considered more 
valuable, such as those determined to have a high likelihood 
of causality or those illustrating unique aspects. It is possible 
that a case classified as PVU = 0 in the context of a particu-
lar review may be classified as PVU = 1 for a review of a 
different product or event. This possibility exists because 
multiple products and events may be reported within a single 
ICSR. For example, an ICSR may describe both a rash with 
a suspect product and liver failure. While this ICSR may be 
classified as PVU = 0 for a review evaluating serious skin 
reactions, it may have PVU = 1 in a future review focused on 

the evaluation of drug-induced liver injury. Additionally, the 
search strategies utilized to obtain the ICSRs for review may 
vary depending on the particular circumstance. It is possible 
that more specific searches may have a higher yield than 
those with broader criteria (e.g., a search for cases coded 
with anaphylactic reaction only versus a search including 
any terms associated with anaphylactic reactions like hypo-
tension), but we were unable to account for the underlying 
rationale for each search’s criteria. Finally, the inclusion 
of an ICSR in a case series is a structured but subjective 
process based on the reviewer’s expertise, case definition 
utilized, and assessment of causality [24]. Agreement on 
causality using various available causality tools has demon-
strated variability [25].

Finally, duplicative reporting presents a universal chal-
lenge for most public health surveillance systems. While 
we used the latest version of an ICSR for model develop-
ment, ICSRs describing the same occurrence of an adverse 
event in a patient reported by more than one reporter can 
result in duplicates. The reporters could be manufacturers 
of the different products when there are multiple suspect 
products, different manufacturers of a signal suspect product 
(e.g., brand and generic manufacturers), or reports submitted 
directly by the public to FAERS that were also submitted 
by a manufacturer. As a result, a particular patient-drug-
event may have been reported by three separate manufactur-
ers, resulting in three unique ICSRs with the same content. 
The FDA analyst may have included one ICSR in the case 
series; excluding the two duplicates, which would result in 
contradictory classifications for the same ICSR. The rea-
son for exclusion was not delineated for each ICSR in most 
reviews; therefore, we were unable to account for decisions 
made with duplicates involved. This misclassification can 
impact the predictive ability of the model. This study has 
highlighted the need for better accounting of excluded dupli-
cates as well as quantifying their impact. While duplicate 
ICSRs are often cited as a limitation of FAERS, the extent 
may be larger than some realize. We examined the data fur-
ther and found that over 50% (39/69) of reviews identified at 
least 10% of ICSRs as duplicates and 23% (16/69) identified 
more than 25%. Reliable deduplication is still a challenging 
aspect of pharmacovigilance [26].

5  Conclusion

Our study demonstrated the feasibility of developing predic-
tive tools to augment review of ICSRs from FAERS. The 
model’s modest discriminative ability highlights opportu-
nities for further enhancement and suggests algorithms tai-
lored to safety issues may be beneficial.
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