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Abstract

Adoptive T cell therapy (ACT) is a safe and effective personalized cancer immunotherapy that can comprise naturally occur-
ring ex vivo expanded cells (e.g., tumor-infiltrating lymphocytes [TIL]) or T cells genetically engineered to confer antigen
specificity (T-cell receptor [TCR] or chimeric antigen receptor [CAR] engineered T cells) to mediate cancer rejection. In
recent years, some ACTs have produced unprecedented breakthrough responses: TIL therapy has moved from melanoma to
solid tumor applications, TCR-engineered cells are developed for hematologic and solid tumors, and CAR-engineered T cells
have received Food and Drug Administration (FDA) approval for the treatment of patients with certain B-cell malignancies.
Although results are encouraging, to date, only a small percentage of patients with advanced malignancies can benefit from
ACT. Besides ACT availability and accessibility, treatment-related toxicities represent a major hurdle in the widespread
implementation of this therapeutic modality. The large variety of observed toxicities is caused by the infused cell product
or as side effects of accompanying medication and chemotherapy. Toxicities can occur immediately or can be delayed. In
order to render those highly promising therapeutic approaches safe enough for a wider pool of patients outside of clinical
trials, an international consensus for toxicity management needs to be established.

1 Introduction
Key Points
T cells harbor great potential to treat cancer [1]. So-called

Our work provides an overview of important toxicities of

adoptive cell immunotherapy (ACT) uses T cells isolated

adoptive cellular immunotherapy. from patients’ tumors (tumor-infiltrating lymphocytes or
We discuss the concepts of tumor infiltrating lympho- TILs) or genetically engineered with T-cell receptors (TCRs)
cyte (TIL), T-cell receptor (TCR), and chimeric antigen or chimeric antigen receptors (CARs) [2].

receptor (CAR) adoptive T-cell therapy (ACT). TIL therapy employs naturally occurring T cells and has

been established over decades with very promising results
largely in melanoma [3, 4], but also in ovarian cancer [5-7]
and colorectal cancer [8, 9]. In contrast to TILs, gene trans-
fer-based T-cell therapy strategies have been developed to
confer new target specificity to peripheral blood T cells
(Fig. 1), and new generations of CARs provide increased
functionality to overcome tumor-specific immune tolerance.
TCRs recognize peptides derived from tumor-associated
antigens (TAAs) presented in the context of human leuko-
cyte antigen (MHC)-restricted antigen peptides [2, 10, 11].

We discuss toxicity pathomechanisms and review up-to-
date treatment strategies.
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basic principles of adoptive cellular therapies (ACT)
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Fig. 1 Basic principles of adoptive cellular immunotherapy. Please
note that high-dose IL-2 is administered in TIL ACT and administra-
tion is optional in TCR T-cell ACT. Lymphodepletive chemotherapy
consisting of cyclophosphamide and fludarabine is administered in

[2], although TCR-ACT has been effective without lym-
phodepletion as well [16]. Lymphodepleting chemotherapy
before TIL infusion reduces regulatory T cells (Treg) and
resident tumor microenvironment cells competing for
T-cell homeostatic cytokines, increases the levels of Toll-
like receptor ligands [17, 18], and favors the proliferation
of the infused T cells through homeostatic expansion. This
translates into a markedly improved T-cell survival and
response rate and duration in melanoma [19, 20].

After treatment with TIL and in most TCR-ACT clinical
trials, patients receive high-dose interleukin 2 (IL-2) in order
to bolster T-cell division expansion within the host (Fig. 1).

TIL and engineered T cells (TCR and CAR) are currently
applied mainly within clinical trials at highly specialized cent-
ers. The landscape is nonetheless rapidly evolving. In August
2017, the FDA approved the first anti-CD19 CAR T-cell

A\ Adis

TIL and TCR-T ACT and optional in CAR-T ACT. ACT Adoptive
T-cell therapy, CAR chimeric antigen receptor, HD-IL-2 high-dose
interleukin 2, PBL peripheral blood lymphocyte, TCR T-cell receptor,
TIL tumor-infiltrating lymphocytes

product, tisagenlecleucel (Kymriah, Novartis, Basel, Switzer-
land), for the treatment of pediatric and young adult patients
with relapsed and/or refractory B-cell precursor acute lympho-
blastic leukemia [21]. In October 2017, a second anti-CD19
CAR, axicabtagene ciloleucel (Yescarta, Kite Pharma, Santa
Monica, CA, USA), was approved by the FDA for the treat-
ment of adult patients with relapsed or refractory large B-cell
lymphoma after two or more lines of systemic therapy. Both
products received approval in Europe in 2018. Despite great
promise and rapid development of ACT, treatment-related
toxicities remain an important issue. Preventing or managing
unwanted toxicity has therefore emerged as a key component
in the successful clinical application of these technologies.
This article will review the treatment principles and toxici-
ties of the three most prominent classes of ACT: TILs, TCR-
engineered T cells, and CAR T cells.
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Fig.2 TCR and CAR ACT. a Schematic overview over the pro-
cess of T-cell receptor engineering for TCR ACT. The upper row of
boxes describes the steps in the engineering process; the boxes below
describe safety measures that are applied in parallel in order to limit

2 Tumor-Infiltrating Lymphocytes (TILs)
2.1 Treatment Principle

TIL therapy consists of the administration of autologous
ex vivo expanded T cells that naturally infiltrate tumors.
Figure 1 illustrates the general sequence of TIL ACT: fol-
lowing surgical resection of a suitable lesion, TILs are
isolated, cultured and expanded ex vivo in the presence
of IL-2 to generate a T-cell product of predominantly
T-effector-memory cells [22]. Before TIL reinfusion,
patients undergo lymphodepleting chemotherapy. High
doses of recombinant IL-2 are administered after TIL

clinical toxicity. Adapted from Kapanen et al. 2015 [130]. b Sche-
matic of components of endogenous TCR, genetically engineered
TCR and CAR. Adapted from June et al. 2015 [13]. ACT adoptive
cellular therapy, CAR chimeric antigen receptor, TCR T-cell receptor

reinfusion to facilitate TIL expansion and engraftment
in vivo. Response rates appear higher in patients treated
with minimally cultured ‘young’ TIL that retain a higher
proliferative potential and a higher lytic activity [23].
Most lymphodepleting regimens consist of fludarabine
and cyclophosphamide; as an example, the NIH Surgery
Branch regimen combines 5 days of fludarabine 25 mg/
m? (D-7 to D-3) and 2 days of cyclophosphamide 60 mg/
kg (D-7, D-6; Fig. 1) [9]. After completion of TIL infu-
sion, patients are treated with IL-2, usually administered as
bolus infusions; the largest dataset originates from high-dose
(HD) IL-2 (typically boluses of > 600,000 IU/kg), although
low-dose regimens (<600,000 IU/kg) have been described
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[4, 19, 24-27]. Most patients treated receive between two
and ten doses of HD IL-2, with a median of approximately
six doses [4, 25-30]. Usually, an interval of 8 h is chosen
between doses.

2.2 Clinical Results and Applications

While most TIL clinical trials from 1988 to date have been
for metastatic melanoma [4, 25-30], they have also been
reported for renal cell carcinoma, breast cancer, and colo-
rectal cancer [8, 9]. Overall response rates in melanoma
patients, mostly highly pretreated, ranged from 27.5 to
57%, and complete response rates from 6.4 to 22% [24-26,
28-31]. Median overall survival was either not reached at
the time of publication or rather variable and ranged from
8.5 months [31] to 16.4 months [28] in treated and evaluable
patients. Two-year overall survival was reported as 40% in
two studies [25, 31]. It should be mentioned that most stud-
ies have not reported results as an intent-to-treat analysis,
with 20-40% [19, 24-26, 28] of patients being taken off
study due to rapid disease progression before TIL reinfusion,
or unsuccessful TIL expansion [28]. Furthermore, few stud-
ies have comprehensively described toxicity, the majority
reporting only on grade 3 or higher adverse events.

2.3 Toxicities

TIL therapy requires an inpatient hospital stay with a median
duration of 20 days [26, 28]; patients are discharged upon
hematologic and other systems recovery. Non-myeloablative
lymphodepleting chemotherapy causes both hematologi-
cal and non-hematological toxicities. Transient cytopenia
including neutropenia, lymphopenia as well as prolonged
depression of CD4 4T cells are observed in virtually all
patients [4, 9, 24-32]. Neutropenic fever occurs in 37-51%
of patients [24, 26]. Granulocyte-colony stimulating fac-
tor (G-CSF) as well as blood product support is routinely
required, with a median of five red blood cell transfusions
and 30 units of platelets [4, 9, 24-32] (Table 1). Side effects
are managed according to standards of good clinical practice
[33]. In the absence of prophylaxis, a minority of patients
experience opportunistic infections, including Prneumocys-
tis jirovecii pneumonia (e.g., 6% in [26]) or Herpes zos-
ter reactivation (e.g., 9% in [26]), thus mandating routine
prophylaxis for a minimum duration of 6 months post-chem-
otherapy. Non-hematological high-grade toxicities include
diarrhea (e.g., 12% in [28]), hyperbilirubinemia (e.g., 14%
in [28]) and fludarabine-induced neurotoxicity [25, 26, 28].
The overall mortality from this regimen is < 1% [25, 27].
High-grade toxicity attributed to the TIL infusion prod-
uct itself is exceedingly uncommon. Immediate infusion
reactions to TILs are rare and mainly low grade [2, 9, 26,
27, 32, 34-39], and they are difficult to discriminate from
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early reactions to low residual levels of IL-2 remaining in
the TIL product after ex vivo culture. Allergic reactions
include acute release of cytokines with fever, skin reaction
and dyspnea or delayed symptom onset. Management is
symptomatic and use of corticosteroids discouraged. In case
of a side effect related to TIL infusion, every effort should
be taken not to stop the cell infusion, if the clinical symp-
toms allow it [2, 40, 41] (Table 1). Autoimmune melanocyte
destruction, manifesting as vitiligo or uveitis, may occur in
approximately 35% and 15% of patients, respectively [26].

High-dose IL-2 is associated with transient and typical
dose-limiting toxicity. Both efficacy and toxicity are dose-
and schedule-dependent (reviewed in [42—-45]). Although
high-dose IL-2 is associated with significant morbidity, the
incidence and severity of toxicities have decreased overall
as more patients have been treated worldwide and clinicians
have gained experience in the prevention and management of
side effects [4, 26, 32, 45, 46] (Table 1). The implementation
of lymphodepleting chemotherapy greatly limits the imme-
diate IL-2 toxicity relative to an immunocompetent host, as
it eliminates resident lymphocytes as a source of cytokines
contributing to IL-2 side effects [19].

Generally, toxicities associated with high-dose IL-2
therapy are transient and can be managed using standard
interventions [43]. Infusion of IL-2 requires an adequate
hospitalization setting offering hemodynamic and respira-
tory monitoring as well as personnel to conduct frequent
physical examination, blood tests, and radiological imag-
ing when required, according to protocol. IL-2 toxicity can
manifest in multiple organ systems, most significantly the
heart, lungs, kidneys, and central nervous system. The most
common manifestation is capillary leak syndrome, resulting
in a hypovolemic state and extravascular fluid accumulation.
Most patients become tachycardic and hypotensive 4-6 h
after IL-2 administration, mimicking a sepsis-like patho-
physiology. Usual management includes cautious crystalloid
fluid boluses (max 1000-1500 mL/day) and careful avoid-
ance of fluid overload, which can precipitate pulmonary
edema due to capillary leak. Systolic arterial blood pressure
can usually be stabilized to a new baseline of approximately
80-90 mmHg. Heart rate must generally return below 100
beats/min before administering the next IL-2 dose [43].
Cardiac arrhythmias happen rarely. In case of transient
atrial flutter or fibrillation, IL-2 continuation is possible if
rhythm returns to normal sinus rate. In case of ventricular
arrhythmia, definitive discontinuation of IL-2 is mandatory.
Capillary leak syndrome can contribute significantly to the
development of oliguria, cardiac ischemia, dyspnea from
pulmonary congestion (3—47%, [25, 28]) requiring intuba-
tion in 6-9% of patients [24, 26] and mental status changes
(confusion). Treatment is mainly supportive. In addition,
thyroid dysfunction is a relatively common sequel of IL-2
therapy, with 9% of patients presenting hypothyroidism
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requiring hormone replacement, and 7% of patients present-
ing hyperthyroidism [47]. In rare severe cases, vasopressors,
intubation or continuous hemofiltration may be indicated.
Safe administration of high-dose IL-2 depends on the expe-
rience of the caring team, adherence to standards of IL-2
administration and patient assessment guidelines, and that
patient-eligibility criteria are respected. Further, it is impor-
tant to carefully assess vital parameters prior to each high-
dose IL-2 administration and strictly recognize and avoid
contraindications as determined by the clinical study proto-
col [42, 43,45, 46] (Table 1). Toxicities accompanying TIL
therapy are mostly low grade, transient and manageable by
standard supportive care but patients should only be treated
in specialized centers.

3 T-Cell Receptor (TCR)-Transduced T Cells
3.1 Treatment Principle

Antigen specificity of T cells is endowed by their TCR,
which binds a cognate ligand consisting of a peptide pre-
sented in the major histocompatibility complex (MHC), the
so-called pMHC complex. TCR-ACT consists of autologous
T lymphocytes engineered ex vivo to express an exogenous
cancer-specific TCR (as described in Figs. 1 and 2a); this
redirects autologous peripheral T cells to recognize a spe-
cific cancer antigen processed and presented in the context
of the patient’s MHC. The use of peripheral T cells obviates
the need to harvest and expand natural lymphocyte clones. A
crucial determinant of both efficacy and safety is the affinity
of the chosen TCR for its target pMHC. TCRs in the upper
end of natural affinity are associated with higher efficacy but
affinity thresholds have been reported beyond which T-cell
activity levels drop, and cross-reactivity becomes an impor-
tant risk [48]. The ideal pMHC target of a candidate TCR
comprises a peptide from a tumor antigen that is exclusively
expressed by cancer cells (expression in non-essential nor-
mal tissues may be tolerable), that is essential for cancer cell
survival to reduce the risk of tumor escape through down-
regulation, and that is presented on frequent MHC molecules
(reviewed in [49]). TCRs selected for gene modification are
usually obtained from naturally occurring tumor-reactive T
cell clones, although TCRs have also been isolated from
mice transgenic for human HLAs that have been vaccinated
with the targeted human antigen. In addition, the affinity of
natural TCRs can be optimized by structure-based rational
design [50] as well as by phage display screening technol-
ogy [51, 52] (Fig. 2a). Although successful in enhancing the
performance of the transduced T cells against cancer, non-
natural TCRs may also carry a higher risk of ‘off-tumor, on-
target’ toxicity (recognition of the pMHC expressed at low
levels in normal tissues), or ‘off-tumor, off-target’ toxicity

(cross-reactivity with a different pMHC expressed in normal
tissues). Notably, the mispairing of introduced TCR subu-
nits with endogenous TCR subunits can generate autoreac-
tive T cells [53, 54], but this can be minimized by optimal
transgene design or gene editing [55].

For TCR T-cell ACT, peripheral T lymphocytes are
activated and gene-modified to express the TCR, and
then expanded in culture. As described in the TIL sec-
tion, patients are usually pretreated with lymphodepleting
chemotherapy, and high-dose IL-2 may be administered
after cell transfer. In sharp contrast to autologous TIL
therapy, the genetic engineering of the T cells to express
specific TCRs may lead to a high rate of toxicity mediated
by the cell product itself due to autoreactivity, as discussed
above. Rigorous pre-clinical testing is performed in order
to negatively select autoreactive TCRs [49].

3.2 Clinical Results and Applications

Several TCR-ACT clinical trials have been conducted
(Table 2) in patients with melanoma [10, 56-58], colo-
rectal cancer [59], esophageal cancer [16, 60, 61], other
carcinomas [60, 62], advanced multiple myeloma [63],
acute myeloid leukemia, and myelodysplastic syndrome
[64]. While the targeting of tissue differentiation antigens
such as MART-1 has had limited success, TCR against
cancer-germline antigens such as melanoma-associated
antigen (MAGE)-A3 [58, 60, 61], and New York esopha-
geal squamous cell carcinoma (NY-ESO)-1 [63, 65] have
demonstrated high response rates between 23 and 80%
with rare durable and complete responses.

3.3 Toxicities

Toxicities resulting from lymphodepleting chemotherapy
and high-dose IL-2 were described in the TIL section. The
infused T cells can cause acute cytokine release syndrome
(CRS), as well as tissue-directed autoimmune reactions
[66]. Cytokine release is triggered by the engagement of
infused T cells with the targeted tumor cells (Table 1 and
CAR section), and its severity depends on the number and
fitness of infused T cells, their avidity for the tumor anti-
gen and the tumor bulk. The resulting clinical picture is a
systemic inflammatory response syndrome, characterized
by fever, tachycardia, hypotension, vasodilation, and capil-
lary leak [66]. Severe forms of CRS can progress to shock
and fatal multi-organ failure. Management is similar to that
for responding to side effects of high-dose IL-2, described
above (Table 1) and which has been reviewed extensively in
the literature [42, 43, 46]. Mild forms of CRS can be treated
with non-steroidal anti-inflammatory drugs and anti-pyretic
drugs.
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The nature of autoimmune toxicity is largely depend-
ent on the target antigen of the TCR. For example, severe
adverse events have been reported when TCR-ACT was
directed against lineage antigens; that is, antigens overex-
pressed in tumors but also expressed at low levels by the
normal tissue of origin. For example, high-grade on-target
colitis was reported upon administration of TCR-trans-
duced T cells targeting carcinoembryonic antigen (CEA),
expressed highly in gastrointestinal cancers but also at low
levels in the normal intestine [59], while on-target skin reac-
tions were observed with TCRs against melanoma-specific
antigens MART-1 and gp100 [56, 57], also expressed by
normal melanocytes.

Careful selection of the target and the TCR mitigates the
risk of excess toxicity during clinical development (Fig. 2a).
Commonly targeted and potentially safe antigens for TCR
ACT include oncoviral antigens, cancer germline (testis)
antigens such as NY-ESO-1, and tumor neo-antigens [67].
Oncoviral antigens are highly immunogenic, but only pre-
sent in 10-15% of all malignancies; TIL specific to Epstein-
Barr virus (EBV) epitopes resulted in high response rates
with durable responses in patients with EBV-associated
nasopharyngeal carcinoma [36], and anti-human papilloma-
virus (HPV)-specific TIL administered in metastatic cervical
cancer evoked durable complete responses [38].

Cancer germline antigens are normally expressed in
gonads and the thymus but some exhibit cancer-specific
expression and are shared among many tumor types [65,
68]. MAGE-A3 and NY-ESO1 have been targeted in meta-
static melanoma, metastatic synovial sarcoma, or multiple
myeloma [61, 65]. Since the affinity of the wild-type TCRs
to these targets is usually weak, affinity-enhanced TCRs have
been generated to increase anti-tumor activity, bearing the
risk of losing strict specificity and generating cross-reactiv-
ity with other self-antigens. Thus far, anti-NY-ESO1 TCR
T cells have demonstrated a clinical benefit without toxicity
[63, 65]. However, treatment of melanoma patients with an
HLA-A*0201 restricted TCR directed against the germline
antigen MAGE-A3 produced lethal neurotoxicity; deep char-
acterization of the molecular basis for the toxicity revealed
that the TCR also recognized HLA-A*0201 epitopes in
MAGE-A9 and A12, and that MAGE-A12 was expressed
in the human brain (in addition to possibly MAGE-A9) [61].
Furthermore, lethal off-target cardiotoxicity was observed in
patients receiving ACT with an HLA-A*01 restricted TCR
against MAGE-A3 due to unexpected cross-reactivity of
the TCR with a titin epitope in the HLA-A*01 background,
exclusively expressed in the heart in beating cardiomyocytes
[58, 69].

In order to limit on-target toxicity for oncoviral and germ-
line antigens, their absence from panels of healthy tissue
is tested in silico, using online databases (Human Protein
Atlas, CGA database), and in vitro using polymerase chain
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reaction (PCR) cDNA libraries and immunohistochemis-
try (IHC) in tissue panels [49, 70]. TCRs are tested against
random epitopes and allogeneic MHC molecules using, for
example, lymphoblastoid B-cell lines with various MHC
allotypes [71, 72]. Further testing for self-avidity and effi-
cient cellular processing and presentation is recommended
[49] as well as screening against a combinatorial peptide
library and additional cell subsets to detect off-target toxicity
due to cross-reactivity [73]. Various techniques to reduce the
risk of mispairing [74], including siRNA-induced silencing
of endogenous TCR [75] have been described.

Neo-antigens resulting from somatic DNA alterations in
cancer cells are by definition tumor-specific and are poten-
tially recognized by a high-affinity T-cell repertoire, and as
such represent attractive targets for immunotherapy both for
their safety and efficacy [76, 77]. Neo-antigens are mostly
patient-specific (i.e., with very few being shared among
patients); their utilization, however, requires high-through-
put methods for neo-epitope and TCR identification [76,
78, 79]. The rapid development of whole genome sequenc-
ing approaches might help to find neo-antigen targets for
ACT from circulating tumor DNA (reviewed in [80]). Very
recent developments in molecular-genetic methodology
like CRISPR/CAS9 genetic engineering could be useful for
supporting the development of personalized TCR-ACT, and
there is currently a first trial recruiting at the National Insti-
tutes of Health (NIH) using individual TCRs (ClinicalTrials.
gov Identifier: NCT03412877).

Management of toxicities depends on the organ system
involved as well as the type of toxicity. In reported clini-
cal trials, side effects resulting from on-target toxicity as
reported after the MAGE-3 TCR study were managed using
symptomatic therapy (e.g., for seizure control) and immuno-
suppression using corticosteroids [61]. Efforts to limit tox-
icity by inducible T-cell suicide are discussed in chapter 5
below.

4 CARTCells
4.1 Treatment Principle

A CAR combines an extracellular antigen-binding domain,
which typically comprises a single-chain variable fragment
(scFv) from a monoclonal antibody, or a natural ligand [81]
that confers recognition of a tumor-associated antigen, with
an intracellular domain carrying signaling motifs capable of
T-cell activation and costimulation [12]. Currently, the most
common method of ex vivo genetic engineering of T cells
is via lentiviral and gamma-retroviral vector-based trans-
duction methods [82—85]. These allow for stable integration
of the desired transgene(s). Alternative non-viral delivery
technologies include electroporation for transient expression
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[86], and transposon/transposase delivery systems that allow
larger gene cargo [87, 88].

In contrast to TCRs, CARs can recognize any molecule
present on the surface of target tumor cells in a non-MHC
restricted manner. MHC-independent antigen recognition
enables CAR-modified T cells to treat any patient whose
tumor expresses the target antigen, and thus, unlike TCR-
ACT, CAR-ACT permits the treatment of tumors that have
acquired defects in antigen processing and MHC presen-
tation [89]. While antigen recognition by CARs occurs by
engagement of larger epitopes, imparting less risk of cross-
reactivity [90], solid tumors remain an important challenge
for CAR therapy as there exist few bona fide tumor anti-
gens, thus running the risk of on-target/off-tumor toxicities
(Fig. 2b).

4.2 Clinical Results and Applications

Administration of CAR-modified T cells that target the
B-cell lineage differentiation antigen CD19 (CAR19) has led
to impressive clinical responses in patients with acute B-cell
leukemia, chronic lymphocytic leukemia, diffuse large B-cell
lymphoma, and other non-Hodgkin lymphomas (NHLs) [15,
91-97], which led to their regulatory approval. CAR19 has
therefore entered the mainstream and is a valuable thera-
peutic option for patients with hematologic malignancies.

4.3 Toxicities

Toxicities arising from CAR therapy include toxicity from
lymphodepleting chemotherapy, as described in the TIL
section, CRS and CAR T-cell-related encephalopathy
syndrome (CRES), and auto-immune events. CRS is the
most commonly observed toxicity. While in the majority
of cases CRS presents as a mild, flu-like disorder with
fever, malaise, headache, tachycardia, and myalgias, in a
proportion of patients it can rapidly evolve into a sepsis-
like symptomatology, with vascular leak, hypotension,
rash, pulmonary edema, systemic coagulopathy, and
multi-organ failure [98]. The severity of CRS correlates
with tumor burden [21]. Most toxicities are grade 1-2
and manageable [99]. Some predictive biomarkers for the
occurrence of CRS like the dose of infused CAR T cells,
disease burden or preexisting endothelial activation have
been established but warrant further clinical trials for their
validation [100].

Since algorithms for accurate and consistent grading
and management of the toxicities were lacking, a CARTOX
(CAR T-cell therapy-associated toxicity) working group
has been formed and guidelines for diagnostic, grading, and
treatment of toxicities have been published in 2018 [99].
This review also includes a list of lethal events observed to
date in CAR T-cell trials. The same working group presented

CAR treatment guidelines for pediatric patients [101]. The
magnitude and timing of the toxicities associated with CAR
T-cell therapy vary considerably across different CAR T-cell
constructs and across different diseases (acute lymphocytic
leukemia [ALL] versus NHL) [102]. For example, in the
pivotal multicenter ZUMA-1 trial of a CAR19 bearing the
CD28/CD3C (28/¢) endodomain in 101 patients with refrac-
tory aggressive B-cell NHL, the rates of grade >3 CRS and
neurological toxicities were 13% and 28%, respectively
[103]. Conversely, in an interim analysis of the JULIET trial
of a CAR19 bearing the 4-1BB/CD3( (BB/C) endodomain
in 51 patients with relapsed or refractory diffuse large B-cell
lymphoma, these rates were 26% and 13% [104].

Symptoms of CRS can be graded according to Lee
et al. [105]. Rarely, CRS can develop into a fulminant
hemophagocytic lymphohistiocytosis (HLH), characterized
by hepatosplenomegaly, hepatotoxicity, jaundice, and dif-
fuse lymphoadenopathy, or macrophage activation syndrome
(MAS) with high fever, hepatosplenomegaly, hepatotoxic-
ity, jaundice, coagulopathy, hypofibrinogenemia, cytope-
nia, hypertriglyceridemia, and extreme hyperferritinemia.
Plasma levels of IL-6, IL-10, and interferon-gamma (IFNy)
have been found to be very high during CRS [106], and
they also correlate closely with the expansion and persis-
tence of CAR T cells [107]. Although IFNY is likely pro-
duced directly by CAR T cells, IL-6 is contributed largely by
activated macrophages, which must persist despite chemo-
therapy according to recent preclinical studies [108, 109].
Given the potential key role of macrophages in CRS induced
by CAR T cells, it has been recommended that candidate
patients be screened for hereditary mutations predisposing
to HLH, including PRFI1, MUNC13-4, STXBP2, and STX11
[98].

Intensive monitoring and prompt management of tox-
icities are essential to minimize the morbidity and mor-
tality associated with this potentially curative therapeutic
approach (Table 2). Table 1 shows CRS treatment options
according to Neelapu et al. [99]. Corticosteroids have been
part of the management. The potential to attenuate the clini-
cal efficacy of CAR T cells is a concern, although short-term
steroid treatment did not appear to limit the efficacy of CAR
T-cells [91, 106]. Blockade of IL-6 receptor (IL-6R) with
the commercially available, FDA-approved antibody tocili-
zumab, along with anti-tumor necrosis factor alpha (TNFa)
antibody etanercept, produced prompt resolution of the
symptomatology without affecting the expansion or efficacy
of CAR T cells [106]. Effective IL-6 blockade can also be
achieved through siltuximab, a commercially available IL-6
blocking antibody [98]. IL-6 blockade is recommended to be
administered early in case of CRS [99, 110]. Recent preclini-
cal research shows that IL-1 is also required to trigger CRS
[108, 109], indicating that IL-1 blockade might be useful in
the management of CAR therapy toxicity.
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The second most worrisome CAR-specific side effect
is acute onset neurotoxicity (CRES), which can occur in
association or independently of CRS. CRES is described
as a biphasic phenomenon with a first phase that can occur
together with CRS and is responsive to tocilizumab treat-
ment, followed by a second phase that is not responsive to
IL-6R blockade [99]. Early signs of CRES include decreased
attention, coordination problems, agitation or delirium with
preserved alertness, headache, and language deficits. In the
majority of cases, symptoms resolve within 4 weeks, in
more severe cases, cerebral edema, seizures, focal deficits,
and diminished consciousness including coma can occur.
In 133 patients receiving an anti-CD19 CAR bearing the
BBz endodomain, neurologic adverse events (AEs—any)
were recorded in 40%, presenting a median of 4 days after
CAR T-cell infusion [111]. The highest grade neurotox-
icity evolved within a median of 1 day from the onset of
neurotoxicity, while the duration of reversible neurologic
AEs was <4 weeks (median 5 days) in all but one patient.
There were four deaths due to CRES: two from acute cer-
ebral edema, one from disseminated intravascular coagula-
tion and multifocal brainstem hemorrhage, and one from
cortical laminar necrosis and coma. These largely occurred
during the dose-escalation phase of the study, in patients
who received a dose of CAR T cells subsequently deter-
mined to be above the maximally tolerated dose. In>90%
of patients, neurologic AE presented in the presence of CRS,
and patients without CRS only presented grade transient 1
neurotoxicity. In addition to CRS, the severity of neurotox-
icity correlated with CAR T-cell expansion in vivo, higher
disease burden, higher dose of CAR T cells, and a fludara-
bine-containing chemotherapy preparative regimen. Severe
CRS was a major risk factor for grade >3 CRES, and plasma
IL-6 levels > 500 pg/mL within 6 days of CAR T-cell infu-
sion were associated with grade >4 neurotoxicity in 100%
of patients [111].

The pathophysiology mechanisms of CRES are under
investigation. A careful review of clinical, laboratory, and
autopsy data from the above patients suggested that brain
endothelial cell activation is an early event in CRES, which
leads to breakdown of the blood-brain endothelial barrier
and entry of inflammatory cytokines and CAR T cells in the
brain, leading in severe cases to local severe inflammation,
cerebral edema, hemorrhage, and infarctions [111]. Mouse
models have revealed that CRES is largely driven by activa-
tion of endogenous macrophages, recruited and activated by
CAR T cells. Such monocytes produce IL-1 and nitric oxide,
which drive the neurotoxicity, and monocyte depletion in the
mice prevented CRES. Tocilizumab could prevent systemic
CRS but not the delayed-onset lethal CRES, while the IL-1
receptor antagonist anakinra could effectively reverse CRES
in mice without affecting the anti-leukemia efficacy of CAR
T cells [108, 109].

A\ Adis

The CARTOX working group developed algorithms for
grading and management of CRES [99]. Treatment is symp-
tom dependent. Anti-IL-6R therapy can be considered to
relieve systemic toxicity of CRS. However, based on the
recent mouse evidence, the use of IL-1 antagonist anakinra
should be evaluated in the clinic. In higher grade CRES,
administration of corticosteroids should also be considered
[99].

Severe immune-mediated adverse events, which can be
on-target [80] or off-target (as explained in more detail in
the TCR section) following CAR T-cell infusion, have been
appreciated. In order to limit on-target toxicity, careful
selection of the target antigen is key, as discussed already in
the TCR section of this article. Therapy with CAR T cells
against carbonic anhydrase-9 (CAIX), for example, deliv-
ered to 12 patients with CAIX-expressing metastatic renal
cell carcinoma had to be stopped because of G2-G4 liver
toxicity due to CAIX expression in the bile duct epithelium
[112].

Several attempts have been made to limit toxicity from
CAR-ACT through engineering solutions [113]. For exam-
ple, the so-called split-signaling CARs entail the co-trans-
fection of T cells with two distinct CARs, one (zeta-CAR)
that provides the main antigen binding ectodomain and a
CD3C endodomain and a second (costimulatory-CAR) that
recognizes a second antigen on target tumor cells with a
different ectodomain linked to a costimulatory endodomain.
Engagement of the zeta-CAR drives suboptimal activation of
T cells upon antigen recognition, while engagement of the
costimulatory-CAR boosts T-cell activation upon recogni-
tion of the second antigen. This combinatorial strategy there-
fore requires the simultaneous expression of the two antigens
to fully activate CAR T cells, which occurs on the tumor,
and avoids the CAR T-cell activation against normal tissues,
which may express only one of the two antigens [114].

5 Management of Adoptively Transferred T
cells to Reduce Autoimmune Toxicity

Agents suppressing effector T cells could be useful in the
management of acute TCR-ACT autoimmune toxicities.
Corticosteroids are most readily used, such as pulse cor-
ticosteroids (methylprednisolone) followed by a taper. Cli-
nicians must also familiarize themselves with drugs used
in acute allotransplant rejection as further means to control
acute autoimmunity, including rabbit anti-thymocyte globu-
lin (rATG-thymoglobulin), mycophenolate, tacrolimus, and/
or anti-CD52 antibody alemtuzumab [115].

Additional safety strategy approaches include suicide
genes that can eliminate CAR-T or TCR T cells on com-
mand [116]. For example, T cells transfected with the herpes
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simplex virus thymidine kinase (HSV-TK) can be subse-
quently eliminated by the use of the prodrug ganciclovir,
which induces apoptosis specifically in HSV-tk transfected
CAR T cells. This has been successfully tested in clinical
trials in order to avoid graft versus host disease after allo-
genic hematopoietic stem cell transplantation [117-119].
Another strategy employs an inducible caspase 9 suicide
gene, integrated in the delivered transgene [120-122]. This
particular suicide gene can be selectively activated by a
chemical inducer of dimerization (CID) small molecule,
which has been shown to increase safety in an allogenic
stem cell transplantation setting [120] and is about to be
tested in CAR T cells in several phase I/II clinical trials (e.g.,
NCT03639844).

Beside suicide gene engineering, T-cell death can be
achieved using antibody-dependent cell-mediated cytotox-
icity (ADCC). A pre-clinically validated suicide strategy
is retroviral delivery of the CD20 molecule into T cells,
which allows targeting transduced T cells in vivo with anti-
CD20 monoclonal antibody [123]. An alternative approach
has combined epitopes from CD34 and CD20, enabling
CD34 selection, cell tracking, as well as deletion after anti-
CD20 monoclonal antibody administration [124]. Another
approach has introduced a 10-amino acid tag of c-myc
protein into the TCR sequence allowing elimination with
anti-myc tag monoclonal antibody administration [125].
Finally, another approach has used truncated human epi-
dermal growth factor receptor (EGFR) polypeptide/anti-
EGFR monoclonal antibody [126]. The above methods rely
on elimination of transduced T cells through ADCC, which
can be slow, especially following high-dose chemotherapy,
and are unable to control a rapidly expanding T cell popula-
tion in the lymphodepleted host.

6 Conclusions

ACT immunotherapy shows great promise for treating and
eradicating advanced metastatic cancers, but clinicians must
familiarize themselves with its potential side effects. Except
for CAR19, which is approved for B-cell malignancies in the
US and Europe, all ACT is administered within clinical trials
in specialized centers. Adverse events may be immediate or
delayed, and although usually mild, they can be severe and
persist for the duration of the genetically modified T-cell
lifespan [127]. Unique to T-cell therapies is the potential for
extraordinary long-term persistence of transferred T cells
for up to 10 years or longer [128, 129]. This persistence
extends the promise for long-term surveillance of residual
tumor cells and possible elimination and definitive cure of
tumors, but also increases the timeline of potential toxici-
ties far beyond those of chemotherapy or antibody-based
therapies.

The rapidly growing knowledge regarding the interac-
tion between the immune system and tumors, together with
rapid advances in technology, will support the development
of TIL, TCR, and CAR-T ACT to move toward the goal of
treating cancer with high degree of safety, high efficacy, and
low cost. The CARTOX working group treatment algorithms
for toxicity management in adults and pediatric patients pro-
vide guidelines for building the medical practice of CAR19
T-cell therapy and offer a solid framework for establishing
standardized and safe practices in the development of adop-
tive cell therapy with further CARs, TCRs, and TILs.
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