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Abstract
Adoptive T cell therapy (ACT) is a safe and effective personalized cancer immunotherapy that can comprise naturally occur-
ring ex vivo expanded cells (e.g., tumor-infiltrating lymphocytes [TIL]) or T cells genetically engineered to confer antigen 
specificity (T-cell receptor [TCR] or chimeric antigen receptor [CAR] engineered T cells) to mediate cancer rejection. In 
recent years, some ACTs have produced unprecedented breakthrough responses: TIL therapy has moved from melanoma to 
solid tumor applications, TCR-engineered cells are developed for hematologic and solid tumors, and CAR-engineered T cells 
have received Food and Drug Administration (FDA) approval for the treatment of patients with certain B-cell malignancies. 
Although results are encouraging, to date, only a small percentage of patients with advanced malignancies can benefit from 
ACT. Besides ACT availability and accessibility, treatment-related toxicities represent a major hurdle in the widespread 
implementation of this therapeutic modality. The large variety of observed toxicities is caused by the infused cell product 
or as side effects of accompanying medication and chemotherapy. Toxicities can occur immediately or can be delayed. In 
order to render those highly promising therapeutic approaches safe enough for a wider pool of patients outside of clinical 
trials, an international consensus for toxicity management needs to be established.

Part of a theme issue on “Safety of Novel Anticancer Therapies: 
Future Perspectives”. Guest Editors: Rashmi R Shah, Giuseppe 
Curigliano.
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Key Points 

Our work provides an overview of important toxicities of 
adoptive cellular immunotherapy.

We discuss the concepts of tumor infiltrating lympho-
cyte (TIL), T-cell receptor (TCR), and chimeric antigen 
receptor (CAR) adoptive T-cell therapy (ACT).

We discuss toxicity pathomechanisms and review up-to-
date treatment strategies.

1 Introduction

T cells harbor great potential to treat cancer [1]. So-called 
adoptive cell immunotherapy (ACT) uses T cells isolated 
from patients’ tumors (tumor-infiltrating lymphocytes or 
TILs) or genetically engineered with T-cell receptors (TCRs) 
or chimeric antigen receptors (CARs) [2].

TIL therapy employs naturally occurring T cells and has 
been established over decades with very promising results 
largely in melanoma [3, 4], but also in ovarian cancer [5–7] 
and colorectal cancer [8, 9]. In contrast to TILs, gene trans-
fer-based T-cell therapy strategies have been developed to 
confer new target specificity to peripheral blood T cells 
(Fig. 1), and new generations of CARs provide increased 
functionality to overcome tumor-specific immune tolerance. 
TCRs recognize peptides derived from tumor-associated 
antigens (TAAs) presented in the context of human leuko-
cyte antigen (MHC)-restricted antigen peptides [2, 10, 11]. 
CARs are antibody recognition domains linked to TCR and 
other costimulatory signaling molecules (Fig. 2b) [12–14]. 
Both have been shown effective in refractory tumors [10, 
15].

For all three ACT approaches discussed in this review, 
T  cells are expanded ex  vivo and re-infused in large 
numbers into a lymphodepleted cancer patient (Fig. 1) 
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[2], although TCR-ACT has been effective without lym-
phodepletion as well [16]. Lymphodepleting chemotherapy 
before TIL infusion reduces regulatory T cells (Treg) and 
resident tumor microenvironment cells competing for 
T-cell homeostatic cytokines, increases the levels of Toll-
like receptor ligands [17, 18], and favors the proliferation 
of the infused T cells through homeostatic expansion. This 
translates into a markedly improved T-cell survival and 
response rate and duration in melanoma [19, 20].

After treatment with TIL and in most TCR-ACT clinical 
trials, patients receive high-dose interleukin 2 (IL-2) in order 
to bolster T-cell division expansion within the host (Fig. 1).

TIL and engineered T cells (TCR and CAR) are currently 
applied mainly within clinical trials at highly specialized cent-
ers. The landscape is nonetheless rapidly evolving. In August 
2017, the FDA approved the first anti-CD19 CAR T-cell 

product, tisagenlecleucel (Kymriah, Novartis, Basel, Switzer-
land), for the treatment of pediatric and young adult patients 
with relapsed and/or refractory B-cell precursor acute lympho-
blastic leukemia [21]. In October 2017, a second anti-CD19 
CAR, axicabtagene ciloleucel (Yescarta, Kite Pharma, Santa 
Monica, CA, USA), was approved by the FDA for the treat-
ment of adult patients with relapsed or refractory large B-cell 
lymphoma after two or more lines of systemic therapy. Both 
products received approval in Europe in 2018. Despite great 
promise and rapid development of ACT, treatment-related 
toxicities remain an important issue. Preventing or managing 
unwanted toxicity has therefore emerged as a key component 
in the successful clinical application of these technologies. 
This article will review the treatment principles and toxici-
ties of the three most prominent classes of ACT: TILs, TCR-
engineered T cells, and CAR T cells.

T cells
from PBL

genetic engineering
CAR, TCR

basic principles of adoptive cellular therapies (ACT) 

tumor infiltrating T cells (TIL) 
from tumor sample 

T-cell 
isolation

lymphodepletion by chemotherapy

chimeric 
antigen receptor (CAR)

engineered 
T cell receptor (TCR)

ex-vivo cell 
expansion

CAR

TCR

TIL

cell 
infusion

optional

TCR

TIL

HD-IL2

Fig. 1  Basic principles of adoptive cellular immunotherapy. Please 
note that high-dose IL-2 is administered in TIL ACT and administra-
tion is optional in TCR T-cell ACT. Lymphodepletive chemotherapy 
consisting of cyclophosphamide and fludarabine is administered in 

TIL and TCR-T ACT and optional in CAR-T ACT. ACT  Adoptive 
T-cell therapy, CAR  chimeric antigen receptor, HD-IL-2 high-dose 
interleukin 2, PBL peripheral blood lymphocyte, TCR  T-cell receptor, 
TIL tumor-infiltrating lymphocytes
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2  Tumor‑Infiltrating Lymphocytes (TILs)

2.1  Treatment Principle

TIL therapy consists of the administration of autologous 
ex vivo expanded T cells that naturally infiltrate tumors. 
Figure 1 illustrates the general sequence of TIL ACT: fol-
lowing surgical resection of a suitable lesion, TILs are 
isolated, cultured and expanded ex vivo in the presence 
of IL-2 to generate a T-cell product of predominantly 
T-effector-memory cells [22]. Before TIL reinfusion, 
patients undergo lymphodepleting chemotherapy. High 
doses of recombinant IL-2 are administered after TIL 

reinfusion to facilitate TIL expansion and engraftment 
in vivo. Response rates appear higher in patients treated 
with minimally cultured ‘young’ TIL that retain a higher 
proliferative potential and a higher lytic activity [23].

Most lymphodepleting regimens consist of fludarabine 
and cyclophosphamide; as an example, the NIH Surgery 
Branch regimen combines 5 days of fludarabine 25 mg/
m2 (D-7 to D-3) and 2 days of cyclophosphamide 60 mg/
kg (D-7, D-6; Fig. 1) [9]. After completion of TIL infu-
sion, patients are treated with IL-2, usually administered as 
bolus infusions; the largest dataset originates from high-dose 
(HD) IL-2 (typically boluses of ≥ 600,000 IU/kg), although 
low-dose regimens (≤ 600,000 IU/kg) have been described 

target antigen (Ag) selection raising target Ag specific T-cells 
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Fig. 2  TCR and CAR ACT. a Schematic overview over the pro-
cess of T-cell receptor engineering for TCR ACT. The upper row of 
boxes describes the steps in the engineering process; the boxes below 
describe safety measures that are applied in parallel in order to limit 

clinical toxicity. Adapted from Kapanen et  al. 2015 [130]. b Sche-
matic of components of endogenous TCR, genetically engineered 
TCR and CAR. Adapted from June et  al. 2015 [13]. ACT  adoptive 
cellular therapy, CAR  chimeric antigen receptor, TCR  T-cell receptor
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[4, 19, 24–27]. Most patients treated receive between two 
and ten doses of HD IL-2, with a median of approximately 
six doses [4, 25–30]. Usually, an interval of 8 h is chosen 
between doses.

2.2  Clinical Results and Applications

While most TIL clinical trials from 1988 to date have been 
for metastatic melanoma [4, 25–30], they have also been 
reported for renal cell carcinoma, breast cancer, and colo-
rectal cancer [8, 9]. Overall response rates in melanoma 
patients, mostly highly pretreated, ranged from 27.5 to 
57%, and complete response rates from 6.4 to 22% [24–26, 
28–31]. Median overall survival was either not reached at 
the time of publication or rather variable and ranged from 
8.5 months [31] to 16.4 months [28] in treated and evaluable 
patients. Two-year overall survival was reported as 40% in 
two studies [25, 31]. It should be mentioned that most stud-
ies have not reported results as an intent-to-treat analysis, 
with 20–40% [19, 24–26, 28] of patients being taken off 
study due to rapid disease progression before TIL reinfusion, 
or unsuccessful TIL expansion [28]. Furthermore, few stud-
ies have comprehensively described toxicity, the majority 
reporting only on grade 3 or higher adverse events.

2.3  Toxicities

TIL therapy requires an inpatient hospital stay with a median 
duration of 20 days [26, 28]; patients are discharged upon 
hematologic and other systems recovery. Non-myeloablative 
lymphodepleting chemotherapy causes both hematologi-
cal and non-hematological toxicities. Transient cytopenia 
including neutropenia, lymphopenia as well as prolonged 
depression of CD4 + T cells are observed in virtually all 
patients [4, 9, 24–32]. Neutropenic fever occurs in 37–51% 
of patients [24, 26]. Granulocyte-colony stimulating fac-
tor (G-CSF) as well as blood product support is routinely 
required, with a median of five red blood cell transfusions 
and 30 units of platelets [4, 9, 24–32] (Table 1). Side effects 
are managed according to standards of good clinical practice 
[33]. In the absence of prophylaxis, a minority of patients 
experience opportunistic infections, including Pneumocys-
tis jirovecii pneumonia (e.g., 6% in [26]) or Herpes zos-
ter reactivation (e.g., 9% in [26]), thus mandating routine 
prophylaxis for a minimum duration of 6 months post-chem-
otherapy. Non-hematological high-grade toxicities include 
diarrhea (e.g., 12% in [28]), hyperbilirubinemia (e.g., 14% 
in [28]) and fludarabine-induced neurotoxicity [25, 26, 28]. 
The overall mortality from this regimen is < 1% [25, 27].

High-grade toxicity attributed to the TIL infusion prod-
uct itself is exceedingly uncommon. Immediate infusion 
reactions to TILs are rare and mainly low grade [2, 9, 26, 
27, 32, 34–39], and they are difficult to discriminate from 

early reactions to low residual levels of IL-2 remaining in 
the TIL product after ex vivo culture. Allergic reactions 
include acute release of cytokines with fever, skin reaction 
and dyspnea or delayed symptom onset. Management is 
symptomatic and use of corticosteroids discouraged. In case 
of a side effect related to TIL infusion, every effort should 
be taken not to stop the cell infusion, if the clinical symp-
toms allow it [2, 40, 41] (Table 1). Autoimmune melanocyte 
destruction, manifesting as vitiligo or uveitis, may occur in 
approximately 35% and 15% of patients, respectively [26].

High-dose IL-2 is associated with transient and typical 
dose-limiting toxicity. Both efficacy and toxicity are dose- 
and schedule-dependent (reviewed in [42–45]). Although 
high-dose IL-2 is associated with significant morbidity, the 
incidence and severity of toxicities have decreased overall 
as more patients have been treated worldwide and clinicians 
have gained experience in the prevention and management of 
side effects [4, 26, 32, 45, 46] (Table 1). The implementation 
of lymphodepleting chemotherapy greatly limits the imme-
diate IL-2 toxicity relative to an immunocompetent host, as 
it eliminates resident lymphocytes as a source of cytokines 
contributing to IL-2 side effects [19].

Generally, toxicities associated with high-dose IL-2 
therapy are transient and can be managed using standard 
interventions [43]. Infusion of IL-2 requires an adequate 
hospitalization setting offering hemodynamic and respira-
tory monitoring as well as personnel to conduct frequent 
physical examination, blood tests, and radiological imag-
ing when required, according to protocol. IL-2 toxicity can 
manifest in multiple organ systems, most significantly the 
heart, lungs, kidneys, and central nervous system. The most 
common manifestation is capillary leak syndrome, resulting 
in a hypovolemic state and extravascular fluid accumulation. 
Most patients become tachycardic and hypotensive 4–6 h 
after IL-2 administration, mimicking a sepsis-like patho-
physiology. Usual management includes cautious crystalloid 
fluid boluses (max 1000–1500 mL/day) and careful avoid-
ance of fluid overload, which can precipitate pulmonary 
edema due to capillary leak. Systolic arterial blood pressure 
can usually be stabilized to a new baseline of approximately 
80–90 mmHg. Heart rate must generally return below 100 
beats/min before administering the next IL-2 dose [43]. 
Cardiac arrhythmias happen rarely. In case of transient 
atrial flutter or fibrillation, IL-2 continuation is possible if 
rhythm returns to normal sinus rate. In case of ventricular 
arrhythmia, definitive discontinuation of IL-2 is mandatory. 
Capillary leak syndrome can contribute significantly to the 
development of oliguria, cardiac ischemia, dyspnea from 
pulmonary congestion (3–47%, [25, 28]) requiring intuba-
tion in 6–9% of patients [24, 26] and mental status changes 
(confusion). Treatment is mainly supportive. In addition, 
thyroid dysfunction is a relatively common sequel of IL-2 
therapy, with 9% of patients presenting hypothyroidism 
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requiring hormone replacement, and 7% of patients present-
ing hyperthyroidism [47]. In rare severe cases, vasopressors, 
intubation or continuous hemofiltration may be indicated. 
Safe administration of high-dose IL-2 depends on the expe-
rience of the caring team, adherence to standards of IL-2 
administration and patient assessment guidelines, and that 
patient-eligibility criteria are respected. Further, it is impor-
tant to carefully assess vital parameters prior to each high-
dose IL-2 administration and strictly recognize and avoid 
contraindications as determined by the clinical study proto-
col [42, 43, 45, 46] (Table 1). Toxicities accompanying TIL 
therapy are mostly low grade, transient and manageable by 
standard supportive care but patients should only be treated 
in specialized centers.

3  T‑Cell Receptor (TCR)‑Transduced T Cells

3.1  Treatment Principle

Antigen specificity of T cells is endowed by their TCR, 
which binds a cognate ligand consisting of a peptide pre-
sented in the major histocompatibility complex (MHC), the 
so-called pMHC complex. TCR-ACT consists of autologous 
T lymphocytes engineered ex vivo to express an exogenous 
cancer-specific TCR (as described in Figs. 1 and 2a); this 
redirects autologous peripheral T cells to recognize a spe-
cific cancer antigen processed and presented in the context 
of the patient’s MHC. The use of peripheral T cells obviates 
the need to harvest and expand natural lymphocyte clones. A 
crucial determinant of both efficacy and safety is the affinity 
of the chosen TCR for its target pMHC. TCRs in the upper 
end of natural affinity are associated with higher efficacy but 
affinity thresholds have been reported beyond which T-cell 
activity levels drop, and cross-reactivity becomes an impor-
tant risk [48]. The ideal pMHC target of a candidate TCR 
comprises a peptide from a tumor antigen that is exclusively 
expressed by cancer cells (expression in non-essential nor-
mal tissues may be tolerable), that is essential for cancer cell 
survival to reduce the risk of tumor escape through down-
regulation, and that is presented on frequent MHC molecules 
(reviewed in [49]). TCRs selected for gene modification are 
usually obtained from naturally occurring tumor-reactive T 
cell clones, although TCRs have also been isolated from 
mice transgenic for human HLAs that have been vaccinated 
with the targeted human antigen. In addition, the affinity of 
natural TCRs can be optimized by structure-based rational 
design [50] as well as by phage display screening technol-
ogy [51, 52] (Fig. 2a). Although successful in enhancing the 
performance of the transduced T cells against cancer, non-
natural TCRs may also carry a higher risk of ‘off-tumor, on-
target’ toxicity (recognition of the pMHC expressed at low 
levels in normal tissues), or ‘off-tumor, off-target’ toxicity 

(cross-reactivity with a different pMHC expressed in normal 
tissues). Notably, the mispairing of introduced TCR subu-
nits with endogenous TCR subunits can generate autoreac-
tive T cells [53, 54], but this can be minimized by optimal 
transgene design or gene editing [55].

For TCR T-cell ACT, peripheral T lymphocytes are 
activated and gene-modified to express the TCR, and 
then expanded in culture. As described in the TIL sec-
tion, patients are usually pretreated with lymphodepleting 
chemotherapy, and high-dose IL-2 may be administered 
after cell transfer. In sharp contrast to autologous TIL 
therapy, the genetic engineering of the T cells to express 
specific TCRs may lead to a high rate of toxicity mediated 
by the cell product itself due to autoreactivity, as discussed 
above. Rigorous pre-clinical testing is performed in order 
to negatively select autoreactive TCRs [49].

3.2  Clinical Results and Applications

Several TCR-ACT clinical trials have been conducted 
(Table 2) in patients with melanoma [10, 56–58], colo-
rectal cancer [59], esophageal cancer [16, 60, 61], other 
carcinomas [60, 62], advanced multiple myeloma [63], 
acute myeloid leukemia, and myelodysplastic syndrome 
[64]. While the targeting of tissue differentiation antigens 
such as MART-1 has had limited success, TCR against 
cancer-germline antigens such as melanoma-associated 
antigen (MAGE)-A3 [58, 60, 61], and New York esopha-
geal squamous cell carcinoma (NY-ESO)-1 [63, 65] have 
demonstrated high response rates between 23 and 80% 
with rare durable and complete responses.

3.3  Toxicities

Toxicities resulting from lymphodepleting chemotherapy 
and high-dose IL-2 were described in the TIL section. The 
infused T cells can cause acute cytokine release syndrome 
(CRS), as well as tissue-directed autoimmune reactions 
[66]. Cytokine release is triggered by the engagement of 
infused T cells with the targeted tumor cells (Table 1 and 
CAR section), and its severity depends on the number and 
fitness of infused T cells, their avidity for the tumor anti-
gen and the tumor bulk. The resulting clinical picture is a 
systemic inflammatory response syndrome, characterized 
by fever, tachycardia, hypotension, vasodilation, and capil-
lary leak [66]. Severe forms of CRS can progress to shock 
and fatal multi-organ failure. Management is similar to that 
for responding to side effects of high-dose IL-2, described 
above (Table 1) and which has been reviewed extensively in 
the literature [42, 43, 46]. Mild forms of CRS can be treated 
with non-steroidal anti-inflammatory drugs and anti-pyretic 
drugs.
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The nature of autoimmune toxicity is largely depend-
ent on the target antigen of the TCR. For example, severe 
adverse events have been reported when TCR-ACT was 
directed against lineage antigens; that is, antigens overex-
pressed in tumors but also expressed at low levels by the 
normal tissue of origin. For example, high-grade on-target 
colitis was reported upon administration of TCR-trans-
duced T cells targeting carcinoembryonic antigen (CEA), 
expressed highly in gastrointestinal cancers but also at low 
levels in the normal intestine [59], while on-target skin reac-
tions were observed with TCRs against melanoma-specific 
antigens MART-1 and gp100 [56, 57], also expressed by 
normal melanocytes.

Careful selection of the target and the TCR mitigates the 
risk of excess toxicity during clinical development (Fig. 2a). 
Commonly targeted and potentially safe antigens for TCR 
ACT include oncoviral antigens, cancer germline (testis) 
antigens such as NY-ESO-1, and tumor neo-antigens [67]. 
Oncoviral antigens are highly immunogenic, but only pre-
sent in 10–15% of all malignancies; TIL specific to Epstein-
Barr virus (EBV) epitopes resulted in high response rates 
with durable responses in patients with EBV-associated 
nasopharyngeal carcinoma [36], and anti-human papilloma-
virus (HPV)-specific TIL administered in metastatic cervical 
cancer evoked durable complete responses [38].

Cancer germline antigens are normally expressed in 
gonads and the thymus but some exhibit cancer-specific 
expression and are shared among many tumor types [65, 
68]. MAGE-A3 and NY-ESO1 have been targeted in meta-
static melanoma, metastatic synovial sarcoma, or multiple 
myeloma [61, 65]. Since the affinity of the wild-type TCRs 
to these targets is usually weak, affinity-enhanced TCRs have 
been generated to increase anti-tumor activity, bearing the 
risk of losing strict specificity and generating cross-reactiv-
ity with other self-antigens. Thus far, anti-NY-ESO1 TCR 
T cells have demonstrated a clinical benefit without toxicity 
[63, 65]. However, treatment of melanoma patients with an 
HLA-A*0201 restricted TCR directed against the germline 
antigen MAGE-A3 produced lethal neurotoxicity; deep char-
acterization of the molecular basis for the toxicity revealed 
that the TCR also recognized HLA-A*0201 epitopes in 
MAGE-A9 and A12, and that MAGE-A12 was expressed 
in the human brain (in addition to possibly MAGE-A9) [61]. 
Furthermore, lethal off-target cardiotoxicity was observed in 
patients receiving ACT with an HLA-A*01 restricted TCR 
against MAGE-A3 due to unexpected cross-reactivity of 
the TCR with a titin epitope in the HLA-A*01 background, 
exclusively expressed in the heart in beating cardiomyocytes 
[58, 69].

In order to limit on-target toxicity for oncoviral and germ-
line antigens, their absence from panels of healthy tissue 
is tested in silico, using online databases (Human Protein 
Atlas, CGA database), and in vitro using polymerase chain 

reaction (PCR) cDNA libraries and immunohistochemis-
try (IHC) in tissue panels [49, 70]. TCRs are tested against 
random epitopes and allogeneic MHC molecules using, for 
example, lymphoblastoid B-cell lines with various MHC 
allotypes [71, 72]. Further testing for self-avidity and effi-
cient cellular processing and presentation is recommended 
[49] as well as screening against a combinatorial peptide 
library and additional cell subsets to detect off-target toxicity 
due to cross-reactivity [73]. Various techniques to reduce the 
risk of mispairing [74], including siRNA-induced silencing 
of endogenous TCR [75] have been described.

Neo-antigens resulting from somatic DNA alterations in 
cancer cells are by definition tumor-specific and are poten-
tially recognized by a high-affinity T-cell repertoire, and as 
such represent attractive targets for immunotherapy both for 
their safety and efficacy [76, 77]. Neo-antigens are mostly 
patient-specific (i.e., with very few being shared among 
patients); their utilization, however, requires high-through-
put methods for neo-epitope and TCR identification [76, 
78, 79]. The rapid development of whole genome sequenc-
ing approaches might help to find neo-antigen targets for 
ACT from circulating tumor DNA (reviewed in [80]). Very 
recent developments in molecular-genetic methodology 
like CRISPR/CAS9 genetic engineering could be useful for 
supporting the development of personalized TCR-ACT, and 
there is currently a first trial recruiting at the National Insti-
tutes of Health (NIH) using individual TCRs (ClinicalTrials.
gov Identifier: NCT03412877).

Management of toxicities depends on the organ system 
involved as well as the type of toxicity. In reported clini-
cal trials, side effects resulting from on-target toxicity as 
reported after the MAGE-3 TCR study were managed using 
symptomatic therapy (e.g., for seizure control) and immuno-
suppression using corticosteroids [61]. Efforts to limit tox-
icity by inducible T-cell suicide are discussed in chapter 5 
below.

4  CAR T Cells

4.1  Treatment Principle

A CAR combines an extracellular antigen-binding domain, 
which typically comprises a single-chain variable fragment 
(scFv) from a monoclonal antibody, or a natural ligand [81] 
that confers recognition of a tumor-associated antigen, with 
an intracellular domain carrying signaling motifs capable of 
T-cell activation and costimulation [12]. Currently, the most 
common method of ex vivo genetic engineering of T cells 
is via lentiviral and gamma-retroviral vector-based trans-
duction methods [82–85]. These allow for stable integration 
of the desired transgene(s). Alternative non-viral delivery 
technologies include electroporation for transient expression 
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[86], and transposon/transposase delivery systems that allow 
larger gene cargo [87, 88].

In contrast to TCRs, CARs can recognize any molecule 
present on the surface of target tumor cells in a non-MHC 
restricted manner. MHC-independent antigen recognition 
enables CAR-modified T cells to treat any patient whose 
tumor expresses the target antigen, and thus, unlike TCR-
ACT, CAR-ACT permits the treatment of tumors that have 
acquired defects in antigen processing and MHC presen-
tation [89]. While antigen recognition by CARs occurs by 
engagement of larger epitopes, imparting less risk of cross-
reactivity [90], solid tumors remain an important challenge 
for CAR therapy as there exist few bona fide tumor anti-
gens, thus running the risk of on-target/off-tumor toxicities 
(Fig. 2b).

4.2  Clinical Results and Applications

Administration of CAR-modified T cells that target the 
B-cell lineage differentiation antigen CD19 (CAR19) has led 
to impressive clinical responses in patients with acute B-cell 
leukemia, chronic lymphocytic leukemia, diffuse large B-cell 
lymphoma, and other non-Hodgkin lymphomas (NHLs) [15, 
91–97], which led to their regulatory approval. CAR19 has 
therefore entered the mainstream and is a valuable thera-
peutic option for patients with hematologic malignancies.

4.3  Toxicities

Toxicities arising from CAR therapy include toxicity from 
lymphodepleting chemotherapy, as described in the TIL 
section, CRS and CAR T-cell-related encephalopathy 
syndrome (CRES), and auto-immune events. CRS is the 
most commonly observed toxicity. While in the majority 
of cases CRS presents as a mild, flu-like disorder with 
fever, malaise, headache, tachycardia, and myalgias, in a 
proportion of patients it can rapidly evolve into a sepsis-
like symptomatology, with vascular leak, hypotension, 
rash, pulmonary edema, systemic coagulopathy, and 
multi-organ failure [98]. The severity of CRS correlates 
with tumor burden [21]. Most toxicities are grade 1–2 
and manageable [99]. Some predictive biomarkers for the 
occurrence of CRS like the dose of infused CAR T cells, 
disease burden or preexisting endothelial activation have 
been established but warrant further clinical trials for their 
validation [100].

Since algorithms for accurate and consistent grading 
and management of the toxicities were lacking, a CARTOX 
(CAR T-cell therapy-associated toxicity) working group 
has been formed and guidelines for diagnostic, grading, and 
treatment of toxicities have been published in 2018 [99]. 
This review also includes a list of lethal events observed to 
date in CAR T-cell trials. The same working group presented 

CAR treatment guidelines for pediatric patients [101]. The 
magnitude and timing of the toxicities associated with CAR 
T-cell therapy vary considerably across different CAR T-cell 
constructs and across different diseases (acute lymphocytic 
leukemia [ALL] versus NHL) [102]. For example, in the 
pivotal multicenter ZUMA-1 trial of a CAR19 bearing the 
CD28/CD3ζ (28/ζ) endodomain in 101 patients with refrac-
tory aggressive B-cell NHL, the rates of grade ≥ 3 CRS and 
neurological toxicities were 13% and 28%, respectively 
[103]. Conversely, in an interim analysis of the JULIET trial 
of a CAR19 bearing the 4-1BB/CD3ζ (BB/ζ) endodomain 
in 51 patients with relapsed or refractory diffuse large B-cell 
lymphoma, these rates were 26% and 13% [104].

Symptoms of CRS can be graded according to Lee 
et  al. [105]. Rarely, CRS can develop into a fulminant 
hemophagocytic lymphohistiocytosis (HLH), characterized 
by hepatosplenomegaly, hepatotoxicity, jaundice, and dif-
fuse lymphoadenopathy, or macrophage activation syndrome 
(MAS) with high fever, hepatosplenomegaly, hepatotoxic-
ity, jaundice, coagulopathy, hypofibrinogenemia, cytope-
nia, hypertriglyceridemia, and extreme hyperferritinemia. 
Plasma levels of IL-6, IL-10, and interferon-gamma (IFNγ) 
have been found to be very high during CRS [106], and 
they also correlate closely with the expansion and persis-
tence of CAR T cells [107]. Although IFNγ is likely pro-
duced directly by CAR T cells, IL-6 is contributed largely by 
activated macrophages, which must persist despite chemo-
therapy according to recent preclinical studies [108, 109]. 
Given the potential key role of macrophages in CRS induced 
by CAR T cells, it has been recommended that candidate 
patients be screened for hereditary mutations predisposing 
to HLH, including PRF1, MUNC13-4, STXBP2, and STX11 
[98].

Intensive monitoring and prompt management of tox-
icities are essential to minimize the morbidity and mor-
tality associated with this potentially curative therapeutic 
approach (Table 2). Table 1 shows CRS treatment options 
according to Neelapu et al. [99]. Corticosteroids have been 
part of the management. The potential to attenuate the clini-
cal efficacy of CAR T cells is a concern, although short-term 
steroid treatment did not appear to limit the efficacy of CAR 
T-cells [91, 106]. Blockade of IL-6 receptor (IL-6R) with 
the commercially available, FDA-approved antibody tocili-
zumab, along with anti-tumor necrosis factor alpha (TNFα) 
antibody etanercept, produced prompt resolution of the 
symptomatology without affecting the expansion or efficacy 
of CAR T cells [106]. Effective IL-6 blockade can also be 
achieved through siltuximab, a commercially available IL-6 
blocking antibody [98]. IL-6 blockade is recommended to be 
administered early in case of CRS [99, 110]. Recent preclini-
cal research shows that IL-1 is also required to trigger CRS 
[108, 109], indicating that IL-1 blockade might be useful in 
the management of CAR therapy toxicity.
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The second most worrisome CAR-specific side effect 
is acute onset neurotoxicity (CRES), which can occur in 
association or independently of CRS. CRES is described 
as a biphasic phenomenon with a first phase that can occur 
together with CRS and is responsive to tocilizumab treat-
ment, followed by a second phase that is not responsive to 
IL-6R blockade [99]. Early signs of CRES include decreased 
attention, coordination problems, agitation or delirium with 
preserved alertness, headache, and language deficits. In the 
majority of cases, symptoms resolve within 4 weeks, in 
more severe cases, cerebral edema, seizures, focal deficits, 
and diminished consciousness including coma can occur. 
In 133 patients receiving an anti-CD19 CAR bearing the 
BBz endodomain, neurologic adverse events (AEs—any) 
were recorded in 40%, presenting a median of 4 days after 
CAR T-cell infusion [111]. The highest grade neurotox-
icity evolved within a median of 1 day from the onset of 
neurotoxicity, while the duration of reversible neurologic 
AEs was < 4 weeks (median 5 days) in all but one patient. 
There were four deaths due to CRES: two from acute cer-
ebral edema, one from disseminated intravascular coagula-
tion and multifocal brainstem hemorrhage, and one from 
cortical laminar necrosis and coma. These largely occurred 
during the dose-escalation phase of the study, in patients 
who received a dose of CAR T cells subsequently deter-
mined to be above the maximally tolerated dose. In > 90% 
of patients, neurologic AE presented in the presence of CRS, 
and patients without CRS only presented grade transient 1 
neurotoxicity. In addition to CRS, the severity of neurotox-
icity correlated with CAR T-cell expansion in vivo, higher 
disease burden, higher dose of CAR T cells, and a fludara-
bine-containing chemotherapy preparative regimen. Severe 
CRS was a major risk factor for grade ≥ 3 CRES, and plasma 
IL-6 levels > 500 pg/mL within 6 days of CAR T-cell infu-
sion were associated with grade ≥ 4 neurotoxicity in 100% 
of patients [111].

The pathophysiology mechanisms of CRES are under 
investigation. A careful review of clinical, laboratory, and 
autopsy data from the above patients suggested that brain 
endothelial cell activation is an early event in CRES, which 
leads to breakdown of the blood–brain endothelial barrier 
and entry of inflammatory cytokines and CAR T cells in the 
brain, leading in severe cases to local severe inflammation, 
cerebral edema, hemorrhage, and infarctions [111]. Mouse 
models have revealed that CRES is largely driven by activa-
tion of endogenous macrophages, recruited and activated by 
CAR T cells. Such monocytes produce IL-1 and nitric oxide, 
which drive the neurotoxicity, and monocyte depletion in the 
mice prevented CRES. Tocilizumab could prevent systemic 
CRS but not the delayed-onset lethal CRES, while the IL-1 
receptor antagonist anakinra could effectively reverse CRES 
in mice without affecting the anti-leukemia efficacy of CAR 
T cells [108, 109].

The CARTOX working group developed algorithms for 
grading and management of CRES [99]. Treatment is symp-
tom dependent. Anti-IL-6R therapy can be considered to 
relieve systemic toxicity of CRS. However, based on the 
recent mouse evidence, the use of IL-1 antagonist anakinra 
should be evaluated in the clinic. In higher grade CRES, 
administration of corticosteroids should also be considered 
[99].

Severe immune-mediated adverse events, which can be 
on-target [80] or off-target (as explained in more detail in 
the TCR section) following CAR T-cell infusion, have been 
appreciated. In order to limit on-target toxicity, careful 
selection of the target antigen is key, as discussed already in 
the TCR section of this article. Therapy with CAR T cells 
against carbonic anhydrase-9 (CAIX), for example, deliv-
ered to 12 patients with CAIX-expressing metastatic renal 
cell carcinoma had to be stopped because of G2–G4 liver 
toxicity due to CAIX expression in the bile duct epithelium 
[112].

Several attempts have been made to limit toxicity from 
CAR-ACT through engineering solutions [113]. For exam-
ple, the so-called split-signaling CARs entail the co-trans-
fection of T cells with two distinct CARs, one (zeta-CAR) 
that provides the main antigen binding ectodomain and a 
CD3ζ endodomain and a second (costimulatory-CAR) that 
recognizes a second antigen on target tumor cells with a 
different ectodomain linked to a costimulatory endodomain. 
Engagement of the zeta-CAR drives suboptimal activation of 
T cells upon antigen recognition, while engagement of the 
costimulatory-CAR boosts T-cell activation upon recogni-
tion of the second antigen. This combinatorial strategy there-
fore requires the simultaneous expression of the two antigens 
to fully activate CAR T cells, which occurs on the tumor, 
and avoids the CAR T-cell activation against normal tissues, 
which may express only one of the two antigens [114].

5  Management of Adoptively Transferred T 
cells to Reduce Autoimmune Toxicity

Agents suppressing effector T cells could be useful in the 
management of acute TCR-ACT autoimmune toxicities. 
Corticosteroids are most readily used, such as pulse cor-
ticosteroids (methylprednisolone) followed by a taper. Cli-
nicians must also familiarize themselves with drugs used 
in acute allotransplant rejection as further means to control 
acute autoimmunity, including rabbit anti-thymocyte globu-
lin (rATG-thymoglobulin), mycophenolate, tacrolimus, and/
or anti-CD52 antibody alemtuzumab [115].

Additional safety strategy approaches include suicide 
genes that can eliminate CAR-T or TCR T cells on com-
mand [116]. For example, T cells transfected with the herpes 
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simplex virus thymidine kinase (HSV-TK) can be subse-
quently eliminated by the use of the prodrug ganciclovir, 
which induces apoptosis specifically in HSV-tk transfected 
CAR T cells. This has been successfully tested in clinical 
trials in order to avoid graft versus host disease after allo-
genic hematopoietic stem cell transplantation [117–119]. 
Another strategy employs an inducible caspase 9 suicide 
gene, integrated in the delivered transgene [120–122]. This 
particular suicide gene can be selectively activated by a 
chemical inducer of dimerization (CID) small molecule, 
which has been shown to increase safety in an allogenic 
stem cell transplantation setting [120] and is about to be 
tested in CAR T cells in several phase I/II clinical trials (e.g., 
NCT03639844).

Beside suicide gene engineering, T-cell death can be 
achieved using antibody-dependent cell-mediated cytotox-
icity (ADCC). A pre-clinically validated suicide strategy 
is retroviral delivery of the CD20 molecule into T cells, 
which allows targeting transduced T cells in vivo with anti-
CD20 monoclonal antibody [123]. An alternative approach 
has combined epitopes from CD34 and CD20, enabling 
CD34 selection, cell tracking, as well as deletion after anti-
CD20 monoclonal antibody administration [124]. Another 
approach has introduced a 10-amino acid tag of c-myc 
protein into the TCR sequence allowing elimination with 
anti-myc tag monoclonal antibody administration [125]. 
Finally, another approach has used truncated human epi-
dermal growth factor receptor (EGFR) polypeptide/anti-
EGFR monoclonal antibody [126]. The above methods rely 
on elimination of transduced T cells through ADCC, which 
can be slow, especially following high-dose chemotherapy, 
and are unable to control a rapidly expanding T cell popula-
tion in the lymphodepleted host.

6  Conclusions

ACT immunotherapy shows great promise for treating and 
eradicating advanced metastatic cancers, but clinicians must 
familiarize themselves with its potential side effects. Except 
for CAR19, which is approved for B-cell malignancies in the 
US and Europe, all ACT is administered within clinical trials 
in specialized centers. Adverse events may be immediate or 
delayed, and although usually mild, they can be severe and 
persist for the duration of the genetically modified T-cell 
lifespan [127]. Unique to T-cell therapies is the potential for 
extraordinary long-term persistence of transferred T cells 
for up to 10 years or longer [128, 129]. This persistence 
extends the promise for long-term surveillance of residual 
tumor cells and possible elimination and definitive cure of 
tumors, but also increases the timeline of potential toxici-
ties far beyond those of chemotherapy or antibody-based 
therapies.

The rapidly growing knowledge regarding the interac-
tion between the immune system and tumors, together with 
rapid advances in technology, will support the development 
of TIL, TCR, and CAR-T ACT to move toward the goal of 
treating cancer with high degree of safety, high efficacy, and 
low cost. The CARTOX working group treatment algorithms 
for toxicity management in adults and pediatric patients pro-
vide guidelines for building the medical practice of CAR19 
T-cell therapy and offer a solid framework for establishing 
standardized and safe practices in the development of adop-
tive cell therapy with further CARs, TCRs, and TILs.
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