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Abstract

Introduction The potential for routine sequence symme-

try analysis (SSA) signal detection in health claims data-

bases to detect new safety signals of medicines is unknown.

Objective Our objective was to assess the potential utility

of SSA as a signal detection tool in health claims data for

detecting medicines with potential heart failure (HF)

adverse event signals.

Methods We applied the SSA method to all subsidized

single-ingredient medicines in Australia. The source of

data was the Australian Government Department of

Veterans’ Affairs (DVA) administrative claims database

using data collected between 2002 and 2011. We used first

ever HF hospitalization and frusemide initiation as indi-

cators for HF. A signal was considered to be present if the

lower limit of the 95 % confidence interval for the adjusted

sequence ratio was greater than one. To identify potential

new signals of HF, we excluded medicines where HF or

edema was listed in the product information (PI) of that

medicine or for any other medicine in the same class. We

also excluded medicines that were used in HF treatment

and medicines indicated for diseases that may contribute to

the development of HF.

Results We tested 691 medicines. HF signals were

detected for 12 % (80/691) using the hospitalization event

and 22 % (153/691) using frusemide initiation. Among

medicines that did not have HF listed in the PI, SSA found

11 % (44/397) associated with HF hospitalization and

15 % (60/397) associated with frusemide initiation. Of the

medicines tested in which no other medicine in the same

class had HF or edema in the PI, and where the medicine

was not indicated for a disease that is a risk factor for HF,

potential new signals were generated for 2–3 % of these

medicines tested (12 of 397 medicines using HF hospital-

ization and 9 of 397 medicines using frusemide initiation).

Conclusion SSA generated potential new signals of HF

for some anti-glaucoma and anti-dyspepsia medicines. For

some of the potential signals, the event is biologically

plausible and some have pre-marketing and post-marketing

case reports to support the finding. Confirmation of these

signals using cohort studies is required.
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Key Points

Prior to this research, the utility of sequence

symmetry analysis (SSA) as a signal detection tool to

detect new adverse event signals from administrative

claims database was unknown.

Using first ever heart failure hospitalization or

initiation of frusemide as proxies for heart failure

adverse event signals, SSA identified a positive

signal for 2–3 % of medicines tested that did not

have heart failure or edema listed in their product

information (heart failure hospitalization 12/397,

frusemide 9/397).

Potential new heart failure signals were identified for

some anti-glaucoma and anti-dyspepsia medicines

given biologically plausibility and pre-marketing and

post-marketing case reports.

SSA could be a feasible tool to identify potential new

signals of adverse events of medicines for further

investigation.

1 Introduction

Data mining can be applied to large data for two purposes:

to describe the general properties of the data in the data-

base or to generate hypotheses about the data to make

predictions [1]. In a pharmaco-surveillance context, the

main objective of data mining is to discover potentially

clinically relevant medicine–event associations [2]. Health

regulators have incorporated computerized data mining

techniques to generate safety signals of medicines in

adverse event spontaneous reporting databases. The tech-

niques currently applied to spontaneous reporting databases

to detect adverse event signals include disproportionality

techniques, proportional reporting ratio (PRR), reporting

odds ratio (ROR), and Bayesian methods [3–6]. The

validity of these methods as a data mining or safety signal

detection tool in spontaneous reporting databases has been

investigated, and the potential of these methods to detect

adverse event signals has been shown to be low to mod-

erate (sensitivity 32 %, positive predictive value 20–44 %)

[7, 8].

Data mining in computerized population-based health

claims data may have the potential to complement spon-

taneous reporting systems for the detection of unknown

adverse event signals. Health claims data are unlikely to be

affected by the under-reporting or reporting bias that may

occur in spontaneous reporting systems because claims

data are collected routinely and stored electronically [9],

thus it may capture all subsidized medicine users and

outcomes.

Studies using data mining methods in health claims data

have thus far investigated the ability of the method to

detect known adverse event signals [10–13], for example

non-steroidal anti-inflammatory drug (NSAID)-induced

myocardial infarction [10] and cerivastatin-induced rhab-

domyolysis [12]. Data mining has also been studied to

assess unknown adverse event signals [14–16]. The meth-

ods studied include MUTARA (Mining Unexpected Tem-

poral Association Rule) [14], Gamma Poisson Shrinker

[16], and Information Component [15]. Sequence symme-

try analysis (SSA) has been used to detect known adverse

event signals using health claims data [17–19] and also has

potential to be used as a signal detection tool for unknown

events. SSA has been shown to have moderate sensitivity

(61 %) and high specificity (93 %) to detect known adverse

event signals in health claims data [20]. The method was

also found to be consistent across different databases [21],

suggesting that SSA may be a robust method to detect

adverse events across databases. However, the utility of

SSA as a signal detection tool in health claims data to

detect potential clinically relevant and new safety signals

has not been explored. In this study, we aimed to explore

the utility of SSA as a signal detection tool to identify

potential new signals of adverse events. We used the

adverse event heart failure (HF) as a test case because it is

a clinically important adverse event and HF is potentially

preventable.

2 Methods

2.1 Source of Data for Signal Detection

Australian Government Department of Veterans’ Affairs

(DVA) health claims data between 1 January 2002 and 31

December 2011 (i.e., 10 years) were used as the data

source. The DVA database consists of health claims data

for the veteran population who have served in Australia’s

armed forces and their eligible dependents and spouses.

The DVA database contains information on all medicines

and healthcare utilization by veterans for which DVA pay a

subsidy. This includes data for all medicines dispensed on

the Pharmaceutical Benefits Scheme (PBS) and Repatria-

tion Pharmaceutical Benefits Scheme (RPBS) as well as

hospitalizations. The dataset covers a treatment population

of 250,000 veterans [22]. Medicines are coded using the
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World Health Organization (WHO) anatomical and thera-

peutic chemical (ATC) classification [23] and the Schedule

of Pharmaceutical Benefits item codes [24]. Hospitaliza-

tions are coded according to the WHO International

Classification of Diseases (ICD), 10th revision, Australian

modification [25].

2.2 Tested Medicines

A total of 788 subsidized medicines were identified in the

database. Only single-ingredient products were tested.

After combination products were excluded, a total of 691

single-ingredient products were tested.

The Australian approved product information (PI) for

each tested medicine was extracted from the Australian

Therapeutic Goods Administration (TGA) website and

reviewed to identify whether heart failure was a listed

adverse event for each tested medicine (Table 1) [26]. We

classified the medicines as having a known HF adverse

event if HF was listed as an adverse event in the PI of the

medicine. We also included medicines with edema listed as

an adverse event in the PI as known heart failure to avoid

confounding bias because edema can be a sign of under-

lying HF or a complication of HF [27]. All selected

medicines were reviewed and classified by two clinical

researchers (IAW, LKE) as (1) a medicine indicated for

diseases with potential to cause HF or (2) a medicine

indicated for or used as an adjunct in HF treatment. This is

because, in the search for potential new HF signals, inde-

pendence between the medicine and the outcome of

interest, in this case HF, was assumed. Medicines that

could be related to the HF outcome, for example medicines

indicated for use following myocardial infarction, may

have a higher incidence of use amongst people with HF

post-myocardial infarction, because the risk of HF increa-

ses following myocardial infarction [28]. Thus, HF is not

necessarily an adverse event of the medicine itself.

2.3 Signal Detection Method and Adverse Event

Outcome to be Identified

SSA [29] was carried out for all 691 medicines. HF was

measured in two ways: (1) using the first occurrence of HF

hospitalization (ICD-10 code I50.0, I50.1, I50.9) and (2)

the first initiation of frusemide dispensing (ATC code

C03CA01). SSA has been described in detail previously

[30]. SSA is an algorithm that uses administrative claims

databases that contain individual prescription or hospital

records to make an assessment between a medicine and a

potential adverse drug reaction (ADR). The principle

behind this method is to determine the ratio of sequences of

two medicines or a medicine and an event. One medicine is

suspected of causing an ADR, also called the index med-

icine, and the second medicine is a medicine used to

counteract or treat the ADR, for example anti-diarrheal

medicines are used to treat diarrhea. The second medicine

serves as an indicator for the ADR. The sequence of dis-

pensing of both medicines in the same person is identified

in the prescription database: the medicine suspected of

causing the ADR may be supplied first and the indicator

may be supplied second, or vice versa. The observed

sequence ratio is calculated by dividing the number of

people with the indicator for the ADR that was dispensed

second by the number of people with the indicator for the

ADR dispensed first. This is called the crude sequence ratio

(CSR). We used a 1-year time period for SSA, as previous

analysis had demonstrated this to be an appropriate time

span in which to detect adverse events [20]. A run-in period

of 1 year was used to ensure incident events were

identified.

SSA is robust towards cofounders that remain

stable over time because the patient population serves as its

own control. However, SSA is sensitive to changing trends

over time in the medicine or outcome of interest. To adjust

for the trend over time, a null-effect sequence ratio (NSR)

was calculated [29]. The NSR estimates the sequence ratio

that might be expected due to the trends in medicine use,

assuming that the investigated medicine and the outcome

are unrelated. The adjusted sequence ratio (ASR) was

obtained by dividing the CSR by the NSR. A non-para-

metric resampling technique was used to create the boot-

strapped confidence intervals (CIs) for the NSR. First, the

number of observations in the SSA analysis were randomly

selected with replacement to obtain a bootstrapped dataset.

The ASR was then calculated on this dataset. This was

repeated 500 times, and a bootstrap distribution of the ASR

estimate was created. A 95 % CI was generated for the

bootstrapped ASR distribution using the bootstrapped-t

method. A signal was considered to be present when the

lower limit of the 95 % CI was greater than one. All

analyses were carried out using SAS 9.3 (SAS Institute,

Inc., Cary, NC, USA).

2.4 Identification of Potential New Heart Failure

Signals

To identify new HF adverse events, we defined adverse

event signals where medicines were associated with sig-

nificant positive SSA signals that (1) did not have HF or

edema listed in the PI, (2) other medicines in the same

class did not have HF or edema listed as an adverse event

in the PI, (3) were not indicated for HF treatment or were

not indicated for diseases that have the potential to cause

HF.
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3 Results

Figure 1 describes the identification of potential new HF

signals. Of the 691 tested medicines, 80 (12 %) were

associated with HF hospitalization and 153 (22 %) were

associated with frusemide initiation.

The list of SSA signals for HF hospitalization and fru-

semide initiation is provided in Appendices A and B in the

Electronic Supplementary Material (ESM). Anti-diabetics,

beta-blockers, statins, anti-glaucoma, and NSAIDs were

amongst medicines that were associated with excess HF

hospitalization and frusemide initiation (Appendix A and B).

After excluding medicines that had edema listed in the

PI for the medicine or HF or edema listed as an adverse

event for other medicines in the same class and medicines

indicated for use in HF treatment or for diseases with

potential to cause heart failure, 2–3 % were potentially

new HF signals (Fig. 1).

Initially, there were 44 SSA signals for HF hospital-

ization amongst medicines that did not have HF or edema

listed as an adverse event in the PI. Of these, 28 signals

were for medicines where HF or edema was listed in the PI

for other medicines in the same class (Fig. 1). A further

four signals were for medicines indicated for the treatment

of HF or indicated for diseases with the potential to cause

HF. After excluding these 32 potentially confounded sig-

nals, 12 (35) signals remained. Three of the signals were

for anti-glaucoma medicines and two were for anti-his-

tamine medicines (Table 1).

Using frusemide initiation as an indicator of HF, 60

signals were identified amongst medicines that do not have

HF in the PI. Of these, 34 signals were for medicines where

HF or edema was listed in the PI for other medicines in the

same class (Fig. 1). A further 17 signals were for medicines

indicated for the treatment of HF or indicated for diseases

with potential to cause HF (Fig. 1). After excluding these

Fig. 1 Flow chart for identification of new heart failure signals by sequence symmetry analysis. HF heart failure, PI product information
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51 potentially confounded signals, nine new signals

remained (Fig. 1). Two of these were anti-glaucoma

medicines and two were for anti-dyspepsia medicines

(Table 1).

4 Discussion

This study demonstrated the feasibility of using SSA as a

signal detection tool for detecting the potential adverse

outcome, HF. The method identified a statistically signifi-

cant ASR for 19 unique medicines where HF was not listed

in the PI and where the adverse event was not listed for

other medicines in the same class and the medicines were

not indicated for diseases with the potential to cause HF or

used in HF treatment.

The class of medicine with the strongest potential sign

was the prostaglandin anti-glaucoma eye drop. This group

of medicines had multiple medicines in the class with

positive signals from HF hospitalization or frusemide dis-

pensing (bimatoprost, travoprost, and latanoprost). Only

latanoprost had a statistically significant association with

both HF hospitalization and frusemide initiation indicators.

Travoprost and bimatoprost were associated with excess

HF hospitalization but not frusemide initiation. An asso-

ciation between anti-glaucoma prostaglandin analogues

(latanoprost, travoprost, and bimatoprost) and HF has not

been previously reported; however, there is some evidence

to support our finding. In post-marketing experience, the

Uppsala Monitoring Centre (UMC) had received 13

spontaneous reports of latanoprost eye drops associated

with HF by 2010 [31]. One of these was classified as a

definite reaction that occurred upon rechallenge. A pre-

marketing clinical trial for travoprost reported one case of

edema and three cases of HF in travoprost-treated patients

[32]. There were no reports of these adverse events in

placebo-treated patients. Latanoprost and travoprost are

prostaglandin F2 alpha (PGF2a) analogues that have the

potential to cause vasoconstriction to the coronary artery

and renal blood vessels [33, 34]. Vasoconstrictor activity of

PGF2a on the renal cortical nephron may result in enhanced

sodium retention [35]. When considering Bradford Hill

Table 1 List of potential new

heart failure signals
Medicine Causala Non-causalb Adjusted sequence ratio 95 % CI

Heart failure hospitalization

Betahistine 70 26 2.67 1.47–4.21

Travoprost 80 41 1.98 1.24–2.84

Bimatoprost 101 58 1.83 1.25–2.51

Sulfasalazine 51 28 1.70 1.01–2.55

Fexofenadine 357 250 1.36 1.14–1.60

Latanoprost 347 239 1.34 1.12–1.58

Glucosamine 159 124 1.33 1.01–1.69

Tobramycin 422 308 1.32 1.13–1.53

Terbinafine 321 235 1.32 1.10–1.56

Loratadine 667 514 1.23 1.09–1.37

Mupirocin 1001 824 1.22 1.11–1.34

Paracetamol 2309 1990 1.09 1.03–1.16

Frusemide dispensing

Teriparatide 8 2 5.02 1.07–23.7

Lodoxamide 20 7 2.50 1.06–5.91

Famotidine 289 134 1.69 1.38–2.08

Latanoprost 1893 1214 1.48 1.38–1.59

Pilocarpine 216 146 1.43 1.16–1.77

Brinzolamide 324 240 1.37 1.16–1.62

Betahistine 202 157 1.31 1.07–1.62

Ranitidine 2677 1877 1.24 1.17–1.31

Paracetamol 12,674 11,536 1.06 1.04–1.09

CI confidence interval
a Causal: Number of subjects hospitalized for HF or prescribed frusemide after the suspected medicine
b Non-causal: Number of subjects hospitalized for HF or prescribed with frusemide before the suspected

medicine
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criteria [36], this potential signal meets a number of cri-

teria: the SSA result provides evidence of temporality and

consistency, with a number of medicines from the same

class showing similar results. Further consistency is evi-

dent with the pre-marketing and post-marketing case

reports of HF. Finally, biological plausibility supports the

SSA signal for prostaglandin analogue-associated HF.

Collectively, this is suggestive of a potentially new signal

that warrants further investigation.

The other group of medicines that featured in the signals

generated were the histamine antagonists. Betahistine has

weak H1 agonist activity and moderate H3 antagonist

activity [37]. A positive signal was found for betahistine

for both the hospital event and medication event. Fexofe-

nadine and loratadine, which are H2 antagonists, were both

positive for the hospitalization outcome. Two H2 antago-

nists (famotidine and ranitidine) were also positive. His-

tamine does have action on the heart, and a number of

studies have investigated the role of histamine antagonists

on HF and cardiac function, although results are not clear

cut [38–41]. With regards to the H2 antagonists, an alter-

native explanation is that they could have been co-pre-

scribed with NSAIDs to prevent gastric ulcers and that the

NSAID could have been the contributor to the observed

effect. As this study was a signal detection study, co-pre-

scribing was not assessed and cannot be ruled out as a

possible contributor.

The other potential signal of interest was for teri-

paratide, for which a risk estimate of 5 was observed.

Teriparatide is recombinant human parathyroid hormone

[42]. Parathyroid hormone has been implicated in HF [43,

44], so this potential signal is also worthy of further

investigation. While the above examples are potentially of

interest, we cannot rule out false positives. Previous work

has identified that SSA has moderate sensitivity and high

specificity [20] for known adverse reactions, which sug-

gests the possibility that these signals are false is low.

Similar to other signal detection studies using health

claims data, our SSA study generated HF signals for

medicines indicated for the treatment of diseases that

themselves may be associated with an increased risk of

developing HF, including statins (pravastatin, simvastatin)

and anti-thrombotic medicines such as dalteparin (Appen-

dices A and B). HF commonly develops after acute coro-

nary syndromes (ACS) such as myocardial infarction [45],

and initiation of statins and anti-thrombotic medicines are

indicated in patients with ACS. Thus, associations seen for

these medicines suggest confounding by indication may

have occurred. Confounding by indication could occur

when the indication for treatment is related to the risk of

future health outcome [46]. The same scenario was shown

in other data mining studies in health claims data. In one

study, the Bayes Multi-Item Gamma Poisson Shrinkage

(MGPS) method was applied to 259 different adverse

events for celecoxib and rofecoxib [10]. The study identi-

fied only one known adverse event, myocardial infarction,

associated with celecoxib, whereas other events that were

indicated for and related to celecoxib treatment such as

osteoarthritis and rehabilitation were detected [10]. In

another Bayesian data mining study performed on 3445

medicines and 5753 events, the potential for detecting

indications for use of the medicine or treatment of other

underlying diseases related to the medicine was highlighted

[47]. In this study [47], the antihypertensive medicine

nifedipine was found to be associated with hypertension

and diabetes. This study also highlighted the importance of

sound clinical interpretation of the results of signal detec-

tion studies, so that signals relating to the indication for use

of the medicine are not misinterpreted as new adverse

events.

A limitation of this study was that we only assessed one

outcome, HF, using two different measures. Future work is

required to investigate the potential of SSA as a routine

signal detection tool for other outcomes in health claims

data. Our results are not sensitive to side effects of fruse-

mide causing the examined medicine to be used. If fruse-

mide produces an adverse effect that needs to be treated

with the investigated medicines, the results would be

biased towards the null. Additionally, some of the fruse-

mide signals may be due to peripheral edema rather than

HF.

In this study, we made no adjustments to account for

potential multiple false-positive signals that could occur

when many medicine–event and medicine–prescription

pairs were tested. Since there is no adjustment for multiple

testing, 2.5 % of the ASRs are expected to have a 95 %

CI[1 by chance alone. However, only few potential new

signals were generated in this study after excluding

medicines indicated for HF or diseases with potential to

cause HF. These potential new signals both for HF hospi-

talization and frusemide initiation could therefore be pri-

oritized for further investigation. Hence, clinical

knowledge should be incorporated into the detection of

unknown ADR signals using the SSA method.

5 Conclusion

SSA provides an opportunity to interrogate large claims

datasets for the purpose of safety signal detection and may

help to complement signal detection tools already in use by

medicine regulatory authorities. We identified potential

new HF signals for the prostaglandin eye drops, which

were biologically plausible and were supported by case

reports. Further studies are required to investigate these

signals.
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