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Abstract A growing body of observational literature on the

association between glucose-lowering treatments and all-

cause mortality has been accumulating in recent years.

However, many investigations present designs or analyses

that inadequately address the methodological challenges in-

volved. We conducted a systematic search with a non-sys-

tematic extension to identify observational studies published

between 2000 and 2012 that evaluated the effects of glucose-

lowering medications on all-cause mortality. We reviewed

these studies and assessed the design and analysis methods

used, with a focus on their ability to address specific

methodological challenges. We described these method-

ological issues and their potential impact on observed asso-

ciations, providing examples from the reviewed literature, and

suggested possible approaches to manage these method-

ological challenges. We evaluated 67 publications of obser-

vational studies evaluating the association between glucose-

lowering treatments and all-cause mortality. The identified

methodological challenges included trade-offs associated

with the outcome of all-cause mortality, incorrect temporal

sequencing in administrative databases, inadequate treatment

of time-varying hazards and treatment duration effects, un-

clear definition of the exposure risk window, improper han-

dling of time-varying exposures, and incomplete accounting

for confounding by indication. Most of these methodological

challenges may be adequately addressed through the appli-

cation of appropriate methods. Observational research plays

an increasingly important role in assessing the clinical effects

of diabetes therapy. The implementation of suitable research

methods can reduce the potential for spurious findings, and

thus the risk of misleading the medical community about

benefits and harms of diabetes therapy.

Key Points

Observational research plays an important role in

evaluating the clinical effects of diabetes treatment

on all-cause mortality but many observational

studies are based on designs or analyses that

inadequately address the methodological challenges

involved.

Most of these methodological challenges may be

suitably addressed through application of appropriate

methods.

Greater attention to the principles described in this

review paper may serve to address many recurrent

methodological issues and reduce the potential for

spurious findings in the observational literature on

the association between diabetes treatment and

mortality.
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1 Introduction

Recent years have witnessed a growing body of observa-

tional literature evaluating the effect of several glucose-

lowering therapies on all-cause mortality, with results often

inconsistent. Whereas in some observational studies the use

of specific diabetes treatments have been associated with

an increased mortality risk, others have found no asso-

ciation, while others have found beneficial effects (see

electronic supplementary material [ESM], Tables 1–3).

The availability of large databases, often derived from

routine healthcare transactions, have promoted the multi-

plication of observational studies throughout the world to

investigate the effect of therapeutics on health outcomes [1,

2]. However, if not rigorously conducted, investigations

based on observational data can be affected by method-

ological problems that compromise their validity, with

misleading results.

The objective of this review was to evaluate the study

design and analytical methods employed in observational

studies of the association between diabetes therapy and all-

cause mortality, with a focus on whether specific

methodological challenges were addressed, their potential

impact on observed associations, and the possible ap-

proaches to manage these challenges.

2 Context and Scope

This review was conducted as one of several related re-

views on the topic of methodological challenges for ob-

servational evaluation of the effect of diabetes therapy on

different clinical outcomes. The other reviews are related

to cardiovascular disease [3], malignancies, and kidney

disease. Each review employed an independent search

strategy, and used a different set of observational studies as

the evidence base. The recurrence of methodological

challenges, and the application of epidemiology principles

to address them, may lead to some degree of overlap across

these reviews.

3 Identification of Relevant Literature, Data

Abstraction, and Data Review

We conducted a systematic search with a non-systematic

extension to identify observational literature that evaluated

the effects of diabetes therapy on all-cause mortality. This

search used PubMed to identify articles published from

January 2000 through December 2012, combining search

terms for glucose-lowering medications, all-cause mor-

tality, and features of study design and analysis, including

methodological issues, likely to occur in observational re-

search (see ESM, search strategy). We did not restrict to

any specific type of primary diabetes and we broadly

considered all observational studies independently of their

use of primary or secondary data. We restricted the search

to observational investigations on diabetes therapy with all-

cause mortality as a primary or secondary outcome. We

excluded non-English language studies, studies not con-

ducted in humans, and those focusing on secondary dia-

betes or gestational diabetes (see ESM, search strategy).

The titles and abstracts of identified articles (N = 1366)

were further screened for eligibility by three team members

(EG, VG, EP), and in cases where the abstract was unavail-

able or provided insufficient detail, the full text was

evaluated. Any discordance among reviewers was resolved

by consensus. This systematic search led to 65 articles. We

extended the systematic search by reviewing bibliographies

of original articles, reviews, and meta-analyses to identify

additional articles, and selectively searching other data

sources, including the Cochrane database, Web of Science,

and websites of medical societies, for the period January

2000 to December 2012. This non-systematic step led to the

inclusion of two additional articles, for a total of 67 studies

(Fig. 1), which included 11 studies evaluating the asso-

ciation between glucose-lowering medications and all-cause

mortality as the primary and only outcome in a general

diabetic population; 43 studies evaluating the association

between glucose-lowering medications and all-cause mor-

tality as the primary or secondary outcome, alone or in

combination with cardiovascular outcomes, in a general

population or in populations affected by pre-existing car-

diovascular conditions, i.e. as a proxy for cardiovascular

mortality; 13 studies evaluating the association between

glucose-lowering medications and all-cause mortality as the

primary or secondary outcome, alone or in combination with

cancer outcomes, in a general population or in populations

with cancer (i.e. as a proxy for cancer mortality).

Information on study type, exposure, outcome, effect on

mortality, and relevant methodological aspects were ab-

stracted from the 67 selected articles and summarized in

table format (see ESM, Tables 1–3) by three members of

the team (AP, EG, VG). Subsequently, articles were in-

dependently reviewed by three methodologically trained

epidemiologists (EP, AP, JS) for a critical evaluation of the

methodology, and then discussed at meetings for consen-

sus. During these meetings, results of the review were

discussed and a list of methodological issues and their

possible management, compiled up to that point in time,

was reassessed and updated based on potential new ele-

ments arising from the ongoing critical review of the lit-

erature. Any difference in opinion was discussed among a

broader set of authors (EP, JS, SS, AP, EG, VG) to achieve

consensus.
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4 Major Methodological Issues

From the critical evaluation of the methodology of 67

observational investigations assessing the association be-

tween diabetes therapy and all-cause mortality, we identi-

fied the following recurrent methodological issues that may

lead to biases: (1) trade-offs associated with the outcome of

all-cause mortality; (2) incorrect temporal sequencing; (3)

inadequate treatment of time-varying hazards and treat-

ment duration effects; (4) unclear exposure risk window

definition; (5) improper handling of exposures that change

over time; and (6) incomplete accounting for confounding

by indication.

4.1 Trade-Offs Associated with the Outcome

of All-Cause Mortality

Disagreements over attributing cause to mortality can dis-

tract from the objectives of a research study; therefore, all-

cause mortality may be preferred over cause-specific

mortality due to its relatively unambiguous nature. Fur-

thermore, information on the association between a

therapeutic regimen and all-cause mortality may be of great

interest to patients and healthcare professionals.

However, two main issues may contribute to determin-

ing whether the assessment of mortality is clinically rele-

vant and methodologically accurate [4]. First, the value of

all-cause mortality as an outcome varies with the stage of

diabetes, and may be more useful in advanced stages of

diabetes, where it more accurately approximates overall

benefit and risk of treatment [4]; therefore, in less advanced

stages of diabetes, specific causes of death may be

preferable. Second, all-cause mortality may obscure po-

tential insight related to biological mechanism of a drug

effect and mediators of the effect (e.g. clinical events such

as heart failure, myocardial infarction, and kidney disease)

that might be targets for intervention themselves. There-

fore, while all-cause mortality may represent a suitable

proxy for cardiovascular disease overall, which accounts

for more than 70 % of deaths in patients with diabetes [5],

it will be less suitable for the identification of specific

cardiovascular outcomes such as myocardial infarction or

stroke, which represent clinically relevant outcomes. Fol-

lowing a similar logic, all-cause mortality may not

adequately approximate non-cardiovascular outcomes, e.g.

cancer risk or cancer mortality (see Sect. 5.2). If specific

causes of deaths are not available, overall mortality will

provide a better approximation of cancer mortality in

studies restricted to diabetic populations with pre-existing

cancer [6, 7]. However, even in such a setting, the contri-

bution of cancer mortality to overall mortality might de-

crease with increasing levels of diabetes severity. Dehal

et al. [7] described how cardiovascular mortality accounts

for a greater percentage of deaths in patients receiving

insulin than in patients not receiving insulin therapy;

therefore, when the outcome of interest in a population
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Fig. 1 Flowchart of included studies
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with diabetes is a cause-specific mortality other than car-

diovascular, specific strategies to deal with competing

risks should be considered in order not to overestimate

risks [8, 9].

In summary, the evaluation of all-cause mortality across

different glucose-lowering medications may be preferred

over cause-specific mortality due to its relatively unam-

biguous nature and clinical relevance. When the emphasis

is on cause-specific outcomes, specific causes of death,

when available, may provide useful insight into the

mechanisms underlying a drug effect and also contribute to

the elucidation of effect mediators.

4.2 Incorrect Consideration of Temporal Sequencing

in Healthcare Databases

A temporal sequence that properly positions exposure

relative to when covariates and outcomes are assessed is

crucial for causal inference (Fig. 2) [10]. Baseline patient

characteristics should be evaluated during the time pre-

ceding the first exposure to the drug of interest, and follow-

up for outcome occurrence should start after criteria for

cohort entry are met and exposure status determined. Only

about 10 % of the reviewed studies presented an adequate

temporal sequencing [11–17].

A clear chronology with appropriate sequencing of

these factors reduces opportunities for including follow-

up time during which events cannot occur, i.e. immortal

time [18]. This event-free person-time may be incorrectly

attributed to the drug exposure and lead to an apparent

reduction in risk by diluting the treated person-time with

time that, by definition, has no risk for study outcomes.

Immortal time bias can occur when exposure status de-

pends on information that is not yet known at the time of

cohort entry but becomes known during study follow-up

(Fig. 3). In many of the reviewed studies, exposure status

is defined on the basis of future use of a specific diabetes

treatment [19–30], combination of treatments [20, 30–33]

or treatment dose [19, 34–36]. This invites immortal time

bias, particularly when coupled with a follow-up that

begins before the exposure status with a specific diabetes

treatment is defined. Examples in this regard come from

studies that used a specific calendar date (time-defined

cohort entry) [22, 23] or diagnostic definition (event-de-

fined cohort entry) [20, 21, 25–27, 29, 33, 37] to identify

cohort entry and start of follow-up, but defined exposure

Time

Follow-up period 
for outcome occurrence

assessment

Exposure 
Ini�a�on –

Cohort Entry

Baseline period 
for covariate 
assessment 

Fig. 2 Study temporal sequence. A temporal sequence that properly positions exposure relative to when covariates and outcomes are assessed is

crucial for causal inference. Baseline covariates are assessed during the time preceding the first exposure to the drug of interest, and follow-up for

outcome occurrence starts after criteria for cohort entry are met and exposure status determined

Exposure status = 
Any-�me users 

of a drug of interest

Exposure status = 
Any-�me non-users 
of a drug of interest

Receipt 
of a drug

Cohort Entry and 
Start of Follow-up 

(Index date) 

Reset exposure status at index  to users of a future exposure 
using  informa�on collected during follow-up

Check for future exposure

Reset exposure status at index to non-users of a future exposure 
using  informa�on collected during follow-up

Check for future exposure

Follow-up

Follow-up

Fig. 3 Biased exposure status based on future information. An exposure status that depends on information that becomes known during study

follow-up invites immortal time bias
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status on the basis of future drug use ‘at any time during

follow-up’ (Fig. 4) [31, 32, 34, 38]. Defining cohort entry

by exposure to a drug of interest (exposure-defined co-

hort, especially a new-user cohort; see Sect. 4.3) sub-

stantially reduces the opportunity for immortal time bias

to affect a study but does not remove it entirely. For ex-

ample, if a study follows a cohort of drug initiators but

then compares monotherapy with combination therapy,

where these subgroups are identified by the use of par-

ticular drugs ‘at any time during follow-up’ [20, 30–33],

then immortal person-time has been created by this ex-

posure definition. Alternately, if cohort entry is defined by

more than one drug prescription/dispensing or more than a

certain duration of treatment but follow-up starts at the

first prescription/dispensing [24, 32, 39], then immortal

person-time may be a source of bias.

Similarly, information on future exposures and par-

ticular events occurring during follow-up should not inform

cohort inclusion or exclusion criteria. Several studies in-

cluded or excluded patients on the basis of information

collected during follow-up, such as the use of insulin after

cohort entry [6, 24, 32, 34], use of glucose-lowering

combinations [34, 40] or switching to other glucose-low-

ering therapy [24, 41]. By conditioning inclusion or ex-

clusion criteria on the basis of future information, these

studies have the potential for bias arising from immortal

time acting through selection.

A clear chronology with appropriate sequencing of co-

variate assessment, cohort entry and exposure status

definition, and follow-up initiation will also reduce the

potential for bias that might arise through adjustment for

covariates that have been affected by exposure to treat-

ment, i.e. intermediate variables. When a covariate has

been influenced by exposure to the drug being studied,

adjusting for the covariate in the analysis has the effect of

adjusting away some of the drug effect, typically resulting

in a bias toward the null [42, 43] (Fig. 5). However, this

bias is unpredictable and can lead to larger effects in par-

ticular situations, such as the scenario of collider bias [44].

Case–control studies in which patient characteristics that

are used for covariate adjustment are measured during the

time leading up to the date of case or control identification

can be particularly subject to this bias [45–47]. However,

cohort studies are not exempt from this methodological

concern [20–22, 24, 27, 32, 34, 48–52]. Examples of

variables identified during follow-up that are likely to be

Any-�me users 
of a drug of interest

Any-�me non-users 
of a drug of interest

Any-�me users 
of 1st-line therapy

Any-�me non-users 
of 2nd-line therapy

Receipt 
of a drug

Time-Defined Cohort Entry 
(e.g. Jan 01 2000) and 

Start of Follow-up

Immortal Time
Death

Event-Defined Cohort Entry 
(e.g. Diabetes Diagnosis) and 

Start of Follow-up

Reset exposure status at index

Reset exposure status at index

Assessment for outcome occurrence

Receipt of a 
1st line drug

Reset exposure status at index

Reset exposure status at index

Receipt of a 
2nd line drug

Fig. 4 Immortal time bias. In the example, the period of time between the start of the follow-up and the exposure, i.e. receipt of a drug of

interest, is immortal as patients must survive until the first exposure to a drug of interest in order to be classified as users of that particular

medication

Exposure
Intermediate 

variable
Outcome

Fig. 5 Overadjustment bias (directed acyclic graph). Overadjustment

bias occurs as a result of adjusting for an intermediate variable in the

causal path between exposure and outcome, i.e. an outcome risk

factor that has been influenced by the exposure
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intermediate between glucose-lowering therapy and overall

mortality include comorbidities identified post-treatment,

such as myocardial infarction and cancer [46, 53], drug

utilization during follow-up [20, 22, 24, 27, 32, 34, 45, 46],

and metabolic information such as mean body mass index

(BMI) and HbA1c that are ascertained after cohort entry

(and initiation of treatment) [36, 52].

In summary, a study that defines cohort entry on the

basis of the first exposure to particular drugs to be studied

and involving a well-defined temporal sequence of co-

variate assessment, exposure definition, and start of follow-

up, facilitates inferences regarding drug effects and reduces

the potential for bias arising from immortal time and

overadjustment.

4.3 Time-Varying Hazards and Treatment Duration

Effects

Diabetes is associated with the development of cardiovas-

cular, renal, and neurological outcomes, and may be as-

sociated with an increased risk of cancer development [54,

55]. The occurrence of these disease-specific outcomes

develops on different time scales, including both overall

age and duration of diabetes, and their contribution to

overall mortality also varies according to these time scales.

Similarly, risks and benefits that result from the use of

medications may vary over time. Early susceptibility or

intolerance to drugs may lead to rapid occurrence of

medication-related adverse effects and discontinuation of

the medication, potentially resulting in a ‘survivor cohort’

of prevalent drug users that is composed of people who are

less susceptible to a range of outcomes by virtue of having

passed through this early high-risk period, Furthermore,

prevalent drug users who continue to take the medication

may be demonstrating adherence to treatment that makes

them more likely to do well on any therapy. Therefore,

these individuals may spuriously appear to receive more

benefit from the use of a drug when compared with patients

who have just newly initiated a glucose-lowering agent.

Similarly, when a new medication is initiated in response

to diabetes progression, it is also possible that comparing

prevalent drug users to new users may lead to findings of

spurious drug benefit as patients escalating therapy may

have higher baseline mortality risk than a survivor cohort

of prevalent users with adequate glucose control. An ex-

isting data source is likely to contain some glucose-low-

ering medication users that represent such a survivor

cohort; therefore, their inclusion will depend on the study

design used.

An incident user design (or new user design), which

identifies cohorts of patients at the time they start a new

drug, is particularly well suited to evaluate drug effects that

vary over time [10, 56, 57]. The well-defined start of

follow-up in these cohorts of new users has the effect of

‘synchronizing’ patients on a same time scale that is rele-

vant to the drug effect, making it possible to assess whether

and by how much the risk of an outcome changes con-

comitantly with duration of use. Although a new user de-

sign is better suited to detect or assess time-dependent drug

effects, less than 20 % of the reviewed investigations

employed a new user design [11–13, 15, 17, 24, 32, 35, 39,

41, 58]. A new user design should be applied to cohorts of

patients initiating both the medication being studied and

that to which it is compared, with the design being en-

hanced by a comparison medication (or class of medica-

tions) that is frequently used for patients at a similar stage

of diabetes as this better distinguishes drug effects from

disease effects (see Sect. 4.6). For example, if the study

drug is typically used at more advanced diabetes stages, i.e.

second- or third-line therapies, then a comparator

medication that is similarly used is likely most appropriate.

Conversely, comparing a second- or third-line glucose-

lowering medication with a first-line glucose-lowering

medication such as metformin leads to extensive method-

ological challenges, even for a new user cohort study, since

only a subset of the cohort is appropriate for comparison

(this subset may be explicitly identified by propensity score

(PS) matching; see Sect. 4.6). A variant of the new user

study design suitable for studies involving patients in more

advanced diabetes stages compares patients switching or

augmenting from a first-line diabetes treatment to the study

drug with similar switchers/augmenters to a comparison

drug [59].

The risk of developing clinical conditions that increase

mortality may also vary over time according to duration or

cumulative dose of diabetes therapy; thus, to account for

these time varying hazards, an investigation should include

analyses that estimate mortality risk according to duration

or cumulative exposure to glucose-lowering agents. For

this purpose, the number of drug dispensings and the dis-

pensed dose (e.g. mg or IU) during the follow-up period

can be used to estimate the cumulative exposure.

Specifically, the person-time with similar exposure cate-

gories (defined as total dispensed dose or treatment dura-

tion) can be pooled together and the observed outcomes

can be assigned to categories of cumulative exposure, e.g.

subjects with a 1-year exposure to a glucose-lowering

medication will be compared to subjects with 1-year ex-

posure with a comparator agent [60]. In this analysis,

subjects are balanced with regard to all baseline covariates

and follow-up starts after the accumulation of pre-specified

levels of dispensed dose or time on therapy. Stratified

analyses by duration of follow-up could also assist in

establishing whether the effect of the drug interacts with

time of exposure. Less than 15 % of the reviewed studies

included analyses assessing the effect of duration or
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cumulative exposure to glucose-lowering agents [13, 19,

24, 34–36, 41, 61].

In summary, an incident user design increases the

chances of identifying more comparable patients with re-

spect to underlying risk of mortality, and is well suited to

detect or assess time-dependent drug effects. To account

for the time-varying mortality risk that might be associated

with duration or cumulative dose of diabetes therapy, an

investigation should include analyses that estimate mor-

tality risk according to duration or cumulative exposure to

specific glucose-lowering agents.

4.4 Definition of Exposure Risk Window

Glucose-lowering agents may contribute to overall mor-

tality through different biological mechanisms, which can

lead to increased or decreased risk of specific comorbidi-

ties. This underlying mechanism should be reflected in the

exposure time window, i.e. the time period during which

any harmful or beneficial effect with regard to a specific

outcome can be attributed to a drug of interest. If a plau-

sible biological mechanism cannot possibly lead to an in-

creased or decreased mortality risk as a causal consequence

of a short-term drug exposure, it is reasonable to consider a

lag time between drug initiation and start of outcome fol-

low-up. Such a lag time is highly dependent on background

knowledge and the specific research hypothesis; therefore,

it must be cautiously applied and carefully tailored to a

particular study. The use of a lag period reduces the

chances of protopathic bias (or alternatively termed reverse

causation), which may occur when conditions with some

preclinical phase, e.g. cancer, influence treatment choice. If

a glucose-lowering medication is selectively chosen for

patients with early signs of an underlying disease, e.g.

decreased glycemic control caused by an undiagnosed

malignancy, then the medication may appear to cause the

disease or the disease-related mortality because it was

initiated closer to the occurrence of an outcome than would

a comparator medication (Fig. 6). Less than 10 % of the

reviewed studies have considered lag periods before the

start of outcome follow-up [24, 62–64].

The appropriate duration of the exposure risk window

may also be quite relevant in the assessment of the effects

of glucose-lowering medications on mortality. It is plau-

sible, for example, that shortly before death, patients stop

or change treatment. Thus, the exposure risk window is

often extended for some time (latency or grace period),

both to reflect an exposure latency period and to address

the potential for treatment discontinuation or change close

to an outcome (Fig. 7; see Sect. 4.5). Less than 10 % of the

reviewed studies have considered latency periods after

drug discontinuation [12, 13, 15, 17, 65, 66]. Sensitivity

analyses evaluating the change in point effect estimates

driven by the inclusion or exclusion of latency or grace

periods can facilitate the interpretation of the findings and

help test the robustness of the results.

In summary, in the assessment of the effects of glucose-

lowering agents on mortality, it is recommended to clearly

identify the biological hypothesis to test and to accordingly

choose the appropriate exposure risk window, considering

lag or latency periods, and conducting sensitivity analyses

to address uncertainty.

4.5 Exposures that Change Over Time

Diabetes therapy is often characterized by high levels of

treatment discontinuation, switching, or augmentation with

a new agent. Diabetes treatment can change due to the

advancement of the underlying diabetic condition or be-

cause patients may experience adverse effects associated

with specific glucose-lowering agents. Both scenarios have

the potential of leading to the observation of an increase in

the risk of mortality shortly after therapy change or dis-

continuation, and may cause bias. An as-treated (AT)

Preclinical Period

Not Detectable Phase Detectable Phase

Onset of 
Cancer

Cancer 
mortality 

approximated 
by all-cause 

mortality

Paraneoplas�c
Symptoms

Diabetes 
Therapy 
Ini�a�on 
or Change

Fig. 6 Protopathic bias (sometimes termed reverse causation) can

occur when conditions with some preclinical phase, e.g. cancer,

influence medication selection. In the example, a glucose-lowering

therapy is selectively chosen for patients with early signs of an

undiagnosed malignancy. In such a context, a medication of interest

may appear to cause cancer-related mortality because it is initiated

closer to the occurrence of the outcome than a comparator medication

Unmeasured 
outcome, i.e. 

excluded from 
appropriate 

exposure category

Early 
symptoms of 

mortality 
outcome

Discon�nua�on of 
diabetes therapy and 

censoring  with no 
latency period

Receipt 
of a drug

Receipt 
of a drug

Fig. 7 Informative censoring. In the example, diabetes therapy is

discontinued subsequently to early symptoms of a future outcome,

and the observation is censored without any exposure latency period
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analysis, which terminates exposure to a medication at

treatment discontinuation, is often the approach of choice

for the assessment of the safety of therapeutics in obser-

vational studies. However, it may be prone to bias in

contexts characterized by high rates of treatment non-ad-

herence and strong association between non-adherence to

specific diabetes therapies and mortality risk (Fig. 7). In

this setting, discontinuation represents a form of informa-

tive censoring by being an early marker for a study out-

come, which will be removed from the appropriate

exposure category if exposure is terminated immediately

upon discontinuation. Accordingly, an assessment of

mortality timing relative to exposure can identify potential

for informative censoring. Sensitivity analyses with vary-

ing grace periods can be used to address potential infor-

mative censoring [12, 13, 15, 17, 65, 66]. An intention-to-

treat (ITT) approach, which analogously to an ITT analysis

in a randomized controlled trial (RCT) carries forward the

initial exposure status and disregards changes in treatment

during follow-up, is not affected by informative censoring

bias in the same way. However, it might be subject to

exposure misclassification, which increases with longer

follow-up periods and shorter time on treatment before

discontinuation, and remains open to differential loss to

follow-up [10, 67]. In most cases, such misclassification

tends to reduce the effect of a medication and will produce

conservative results [68, 69], which is an important moti-

vation for the choice of an ITT approach as the primary

analysis in RCTs evaluating drug efficacy. Although ITT

analysis is by far the most commonly used approach across

the recent observational literature on diabetes therapy and

all-cause mortality, it may be worth considering results

arising from both AT and ITT analyses, in light of the

strengths and limitations inherent in each approach. Only a

few reviewed studies used both the approaches [15, 17].

To account for time-varying exposures, several studies

utilized Cox models analyzing exposure to drugs as a time-

dependent variable [11, 14, 35, 65, 66, 70]. These models

make the assumption that treatment changes are indepen-

dent of the outcome and may lead to biased results in the

presence of patient characteristics that vary over time

(time-varying confounders), affecting both diabetes treat-

ment choice and mortality risk [71], a likely scenario in the

context of a chronic disease requiring therapy adjustments

commensurate to its natural progression. Few studies have

accounted for time-dependent confounders [62]. Suitable

strategies exist to address time-dependent confounding,

such as marginal structural models or G-computation.

However, these methodologies require extensive pro-

gramming and, as with any observational method, are

based on the assumption that important predictors for

treatment can be identified and are available in the data

source (assumption of no unmeasured confounding). We

refer interested readers to specialized papers dedicated to

these topics [72–75].

In summary, in light of the strengths and limitations

inherent in each approach, both AT and ITT analyses

should be considered in evaluating the effects of glucose-

lowering agents on overall mortality. Sensitivity analyses

assessing when most deaths occur can assist in identifying

informative censoring. When selecting the strategy to ac-

count for time-varying exposures in the analysis, the re-

searcher may be faced with a trade-off between

methodological transparency and the ability to address

confounding.

4.6 Confounding

In pharmacoepidemiological studies, confounding by

indication [76], or drug channeling bias [77], is one of the

most important threats to validity. Physicians prescribe

drug treatments in light of the diagnostic and prognostic

information available at the time of prescribing. If pre-

dictors of patient outcomes are unevenly distributed among

treatment groups, then failing to control for such factors

will result in confounded estimates of the differences be-

tween them [2, 78].

Diabetes mellitus is an established risk factor for all-

cause and cardiovascular mortality [79–82], and although

the nature of the association remains unclear [83], it has

also been shown to be associated with a decreased survival

after cancer diagnosis [84]. Thus, patients treated with

glucose-lowering medications used later in the course of

diabetes, such as second- or third-line agents, might ex-

perience greater mortality risk compared with patients

managed with diet alone or with first-line therapy, which

can lead to confounding (Fig. 8) if not taken into account

in the study design. Confounding will be minimized by the

choice of a proper comparator group, i.e. with a similar

stage of diabetes and medical surveillance. Comparison

groups that have been used in the recent literature include

Diabetes 
dura�on or severity

Intensifica�on/change  of 
diabetes therapy

Death

Fig. 8 Confounding by duration or severity of diabetes (directed

acyclic graph). In the example, a glucose-lowering drug is selectively

chosen for patients with higher diabetes severity who are therefore

more likely to die than patients receiving a comparator medication, so

that the observed drug effect is a combination of drug effect and

selection effect
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non-diabetic individuals [7, 25, 26, 85–87] (less than 10 %

of the reviewed studies), untreated diabetic patients [9, 22,

46, 63, 88–90] (less than 10 % of the studies), diabetic

patients receiving a comparator drug [11–13, 15–17, 19,

20, 23, 24, 30–33, 39–41, 45, 48–52, 64–66, 70, 91–94]

(about 50 % of the studies), and combinations of the above,

often in the form of any identifiable patient that did not use

a specific agent of interest [6, 14, 21, 25–27, 36–38, 47, 61,

62, 95–103] (approximately one-third of the reviewed

studies).

Non-diabetic individuals are not likely to be an appro-

priate comparison group because unmeasured lifestyle

factors such as diet, exercise, socioeconomic status, and

BMI, as well as unmeasured severity of underlying co-

morbidities, are more likely to be unbalanced between

patients with and without diabetes. Untreated diabetic pa-

tients are not optimal comparators either. Patients with

diet-controlled diabetes typically have less severe disease

than drug users, and thus are at lower risk of mortality; or,

conversely, diabetic individuals not receiving medications

might have differential barriers to treatment and surveil-

lance for comorbidities compared with medication users,

and thus be at higher mortality risk. Both these scenarios

will increase the plausibility of unmeasured confounding as

an alternate explanation for an observed association be-

tween diabetes therapy and all-cause mortality.

Comparisons restricted to treated patients with diabetes

offer improved confounding control, particularly where

they include drug new users (or alternatively new switch-

ers/augmenters) that are prescribed in clinical practice to

patients with overlapping baseline characteristics [104].

Patients initiating therapies more commonly used at ad-

vanced diabetes stages, i.e. second- or third-line therapies

or combinations of two or more agents, might be charac-

terized by increased diabetes severity compared with a

first-line agent such as metformin or an agent used as

monotherapy [11, 20, 30–33, 45, 52, 65, 90]. Thus, when

the exposure of interest is represented by second- or third-

line therapies or specific combinations of two or more

glucose-lowering agents, choosing initiators of alternative

second- or third-line agents, or combinations, as com-

parators can reduce confounding. Such a study design

strategy facilitates the choice of a proper comparator

group, i.e. one that is characterized by similar healthcare

utilization, medical conditions, and diabetes duration or

severity. Nevertheless, less than 10 % of the reviewed

studies employed this strategy in the study design [12, 13,

17, 40, 49, 94].

Once a comparison group has been selected, several

strategies at the study design or analysis level can be im-

plemented to further control for confounding, including

restrictions in the study population, matching, stratification,

weighting, or regression models. Many adjustment

methods are constrained by the number of covariates that

can be accounted for per outcome [105]. In the setting of a

large number of potential confounders such as found in

research with large healthcare utilization databases, PS

methodology is an effective strategy for confounding ad-

justment, especially when the study outcomes are relatively

uncommon [106]. A PS is the estimated probability of re-

ceiving one treatment exposure versus another [107] con-

ditioning on a set of predefined covariates, which in the

context of diabetes therapy will emphasize healthcare uti-

lization measures and variables capturing diabetes severity

and duration, e.g. cardiovascular comorbidities and dia-

betes complications such as neuropathy, nephropathy, and

retinopathy. This score can be used to reduce confounding

via matching, stratification, regression adjustment, or some

combination of these strategies [108]. PS matching in

particular offers investigators the ability to balance treat-

ment groups across all potential confounders and to inspect

the achieved balance across covariates by comparing these

variables before and after matching in a similar manner to

the comparison of randomized treatment groups in an RCT

[109, 110]. Covariate balance inspection and metrics [111]

and complementary strategies such as stratification by PS

levels [112] have been recommended to assess whether PS

matching has properly worked in reducing confounding.

The high-dimensional PS algorithm, an automated exten-

sion of PS methodology, which empirically selects co-

variates across thousands of diagnostic, procedural, and

drug treatment codes, may help the researcher in identi-

fying proxies for confounders, which are unmeasured in

healthcare claims data, ultimately addressing aspects of

unmeasured confounding [113–115].

In summary, the choice of a proper comparator group,

i.e. one that is characterized by similar healthcare utiliza-

tion, medical conditions, and diabetes duration or severity,

combined with PS methodology, is an effective strategy to

balance important baseline risk factors across treatment

groups and reduce confounding. Covariate balance in-

spection and complementary strategies such as stratifica-

tion by PS levels are useful tools to assess whether PS

matching has properly worked to reduce confounding.

5 Other Issues

5.1 Medical Surveillance or Detection Bias

Differential surveillance for outcomes represents a plausi-

ble scenario that could lead to the detection of more out-

comes among some patients in comparison with others,

thus leading to bias, particularly for outcomes with a long

detectable pre-clinical phase (e.g. many cancers). Although

largely removed from consideration for an outcome such as

Limitations in Observational Studies of the Association Between Diabetes Treatment and Mortality 303



all-cause mortality, it remains possible for differential

surveillance to affect overall mortality through a mechan-

ism that involves differential identification of an interme-

diate condition (e.g. cancer) that is diagnosed at an earlier

stage where treatment is more successful so that time to

death is extended.

In such a context, if patients are characterized by dif-

ferential medical surveillance as a consequence of their

diabetic condition or their diabetes treatment, this can

precipitate cancer diagnosis at less or more advanced

stages and thus lead to differential mortality risk. This

scenario is particularly problematic in the context of

comparisons with patients ostensibly characterized by dif-

ferent medical surveillance, e.g. non-users [9], or non-

diabetic patients [7, 25, 26, 86]. Patients with pre-existing

diabetes may have different use of cancer screening com-

pared with non-diabetic populations and more advanced

cancer stages at diagnosis [116–119]. This scenario may

confer increased mortality risk and could lead to bias in the

setting of studies evaluating mortality risk in patients with

pre-existing cancer with or without diabetes [7, 25, 26, 86].

Furthermore, certain diabetes treatments have the po-

tential to increase medical surveillance and lead to earlier

cancer detection following treatment initiation. Patients

receiving metformin or glucagon-like peptide-1 agonists

might experience gastrointestinal effects, prompting diag-

nostic work-ups such as colonoscopy and thus earlier de-

tection of cancers at less advanced stages than users of

other diabetes treatments or non-diabetic patients. This

scenario may be at play in several studies evaluating

mortality risk in diabetic patients with pre-existing cancer

receiving different diabetes treatment [6, 29, 38, 103].

In the setting of the assessment of diabetes therapy on

overall mortality in populations with pre-existing cancer, the

choice of a comparator group that is characterized by a

similar intensity of medical surveillance, along with ac-

counting for cancer stage [6, 26, 29], will reduce the detri-

mental consequences of differential medical surveillance.

5.2 Misclassification of Exposure, Outcome,

and Covariates

Claims data record accurately dispensed medications with

respect to date and quantity dispensed and are considered

to have generally better data quality than self-reports and

physician notes [120–123]. Nonetheless, many of the re-

viewed studies relied on self-reported information [7, 22,

29] and inpatient or outpatient medical records [11, 16, 31,

39, 45, 46, 48–51, 94, 96, 98] to investigate the effect of

glucose-lowering agents on mortality, which may lead to

exposure misclassification. However, even in the setting of

claims data, chronic therapies with multiple refills, such as

glucose-lowering medications, can undergo some form of

misclassification depending on how the days’ supply is

calculated and how long of a latency period is considered

after drug discontinuation. These aspects paired with an

understanding of the pharmacokinetics and pharmacody-

namics of the drug of interest should be considered to limit

the chances of exposure misclassification.

Misclassification of the outcome is generally not a sig-

nificant instance in observational studies evaluating all-

cause mortality. However, misclassification may arise in

studies assessing overall mortality as a proxy for specific

causes of death. While it may be reasonable to assume that

all cause-mortality is an approximation for cardiovascular

mortality in the context of a diabetic population, this as-

sumption might not hold for all-cause mortality as a proxy

for cancer-related mortality [41, 64], as shown by two

observational studies performed in diabetic populations

without pre-existing cancer [9, 61]. Thus, whenever

specific causes of death are the endpoint of interest, mor-

tality from specific causes, when available, becomes a

preferred outcome measure to overall mortality.

Misclassification of confounding variables can lead to

incomplete control of these variables and, ultimately,

residual confounding. Thus, prioritizing sensitivity instead

of specificity for covariate definition might be a helpful

strategy to minimize the chances of confounder

misclassification.

6 Discussion

In a review of observational studies evaluating the asso-

ciation between glucose-lowering medications and all-

cause mortality, we identified several methodological is-

sues that can affect inferences, including limitations in-

herent to the outcome of all-cause mortality, incorrect

temporal sequencing in administrative databases, inade-

quate treatment of time-varying hazards and treatment

duration effects, unclear definition of the exposure risk

window definition, improper handling of exposures that

change over time, and incomplete accounting for con-

founding by indication (Table 1). The following consid-

erations could be helpful in reducing the impact of these

methodological issues: (1) carefully consider the trade-offs

associated with the outcome of all-cause and cause-specific

mortality; (2) use a cohort entry defined by the first ex-

posure to the drugs of interest (exposure-defined cohort)

and follow a well-defined temporal sequence of covariate

assessment, exposure definition, and start of follow-up to

facilitate quantification of the effects of glucose-lowering

medications and reduce potential for immortal time bias;

(3) employ a new user design based on drug initiators to

increase the chances of identifying more comparable

treatment groups with respect to the underlying risk of
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mortality, and to account for medication effects that vary

over time; consider analyses that estimate mortality risk

according to duration or cumulative exposure to specific

glucose-lowering agents; (4) clearly identify the biological

hypothesis to test and accordingly choose the exposure risk

window; use sensitivity analyses on the lag time and la-

tency period; (5) in light of the strengths and limitations

inherent in each approach, consider both AT and ITT ap-

proaches and use sensitivity analyses to assess informative

censoring; recognize the trade-offs in selecting a strategy

for dealing with time-varying exposures; and (6) choose an

appropriate comparator group, i.e. characterized by similar

healthcare utilization, medical conditions, and diabetes

duration or severity, and utilize appropriate methods to

account for confounding; check covariate balance and use

complementary strategies such as stratification by PS levels

to assess whether PS matching has properly worked to

reduce confounding.

7 Conclusions

The methodological issues identified in this review may be

adequately addressed through application of appropriate

methods; therefore, greater attention to the principles de-

scribed in this paper is warranted. The implementation of

suitable research methods can reduce the potential for

spurious findings and thus the risk of misleading the

medical community about benefits and harms of diabetes

therapy.
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