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Abstract

Purpose We evaluated the use of logistic regression to

model the probabilities of spontaneously reported vaccine–

event pairs being adverse reactions following immuniza-

tion (ARFI), using disproportionality and unexpectedness

of time-to-onset (TTO) distributions as predictive variables

and the presence of events in the global product informa-

tion as a dependent variable.

Methods We used spontaneous reports of adverse events

from eight vaccines and their labels as proxies for ARFIs.

Three logistic regressions were built to predict ARFIs

based on different combinations of the proportional

reporting ratio (PRR; disproportionality measure) and two

Kolmogorov–Smirnov (KS) tests (‘between vaccines’ and

the ‘between events’) of TTO distribution: model 1, using

the PRR estimate and its 95 % lower confidence interval

(CI) limit; model 2, using the p values of the two KS tests;

and model 3, using the PRR (point estimate and lower CI

limit) and both KS tests. The performance of the regres-

sions (model fit statistics, calibration, and discrimination)

was measured on 100 bootstrap samples.

Results Model 3, using two quantified causality criteria,

provided the best performance for all measures. The

p value of the ‘between vaccines’ KS test was the most

significant predictive factor. Model 1 had the worst

performance.

Conclusions Logistic regression allows estimation of the

probability of a vaccine–event pair being an ARFI using

two causality criteria at the population level assessed in

spontaneous report data: the strength of association (dis-

proportionality measure) and temporality (TTO distribution

tests). Logistic regression combines and weights these

causality criteria based on their respective ability to predict

known safety issues.

Key points

The performance of three logistic regression

models, incorporating different combinations of

quantified causality criteria, was evaluated for the

detection of safety signals from vaccine

spontaneous report data

The logistic regression model integrating only the

measure of the strength of association appeared to

have the lowest performance for predicting known

safety issues

The unexpectedness of the time-to-onset

distribution for a given vaccine–event pair (when

compared with the time-to-onset distribution of

the same event reported following exposure to

other vaccines) appeared to be best predictor of

the reported event being a known safety issue

Logistic regression offers a framework in which

quantified causality criteria can be combined to

evaluate the probability of a vaccine–event pair

being an adverse reaction following immunization

based on our existing knowledge of vaccine safety

profiles
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1 Introduction

Data mining algorithms (DMAs) have been developed for

screening spontaneous report databases (SRDs). The

majority of these algorithms detect product–event pairs (P–

Es) presenting a disproportionate number of reports com-

pared with the expected number from other/all products

and other/all events within the same SRD [1, 2]. This

measure of disproportionality offers a proxy of the strength

of association between a product and an event while

accounting for the absence of exposure data characteristics

of spontaneous data [3].

These DMAs were first developed for screening the

SRDs held by regulatory authorities: the Empirical Bayes

Geometric Mean (EBGM) for the Food and Drug Admin-

istration SRD [2], the information component (IC) for the

World Health Organization (WHO) SRD, the proportional

reporting ratio (PRR) for the UK SRD, and the reporting

odds ratio for the Netherlands Pharmacovigilance Foun-

dation Lareb SRD. Over time, the use of these DMAs

extended to SRDs held by drug and vaccine manufacturers.

In this study, we focus on the GlaxoSmithKline (GSK)

vaccines SRD containing spontaneously reported adverse

events (AEs) following immunization by a GSK vaccine.

These DMAs all share the same objective: to estimate

the strength of association. However, this is only one of a

number of causality criteria at the population level for

determining whether a vaccine may have caused a partic-

ular AE (others include temporal relationship, dose-

response relationship, consistency of evidence, specificity,

biological plausibility, and coherence) [4]. The use of the

causality criterion strength of association does not neces-

sarily require prior medical insight or external data sources.

DMAs have thus focused only on strength of association,

allowing signals of disproportionate reporting to be gen-

erated autonomously and in an automated way for all P–Es.

According to the WHO, establishment of the temporal

relationship as a causality criterion at the population level

is based on the principle that, ‘‘vaccine exposure must

precede the occurrence of the event’’ [4]. With a few

exceptions, this is mostly the case for events reported in

SRDs, whether causally or just coincidentally related to

vaccination. We recently demonstrated that a temporal

relationship for a vaccine–event (V–E) pair from an SRD

could be quantified by measuring the deviation of its time-

to-onset (TTO) distribution from the overall patterns of

reported TTO of that vaccine with other reported AEs and

of that AE with other vaccines [5–7]. In other words,

temporality could be quantified by measuring the unex-

pectedness of the reported TTO distribution, just as the

strength of association is quantified by measuring how

unexpected the number of reports is for a given V–E pair.

This allowed the development of a new generation of

DMAs able to screen SRDs to flag P–Es with unexpected

TTO distributions autonomously and automatically, with-

out prior medical insight or other data sources.

As stressed in the original proof-of-concept study [5],

the two types of DMAs—TTO and disproportionality

(strength of association)—are complementary theoretically

and in their limitations. The TTO DMA is based on TTO

data, which are neglected by the disproportionality DMA

and recognised to be an important criterion to assess pos-

sible causality during medical evaluation of individual case

reports. On the other hand, TTO DMA can only be per-

formed on the subset of spontaneous reports presenting

TTO values within the window of interest. It excludes

spontaneous reports for which TTO information is missing

or occurs after the predefined time window. Consequently,

TTO DMAs may miss the detection of P–E pairs that have

only a small number of reports with available TTO infor-

mation. Disproportionality DMAs require adjustment to

account for different reporting rates between demographic

or secular strata, but can be performed on uncommon or

long-term AEs.

The use of TTO DMAs raises the practical problem of

quantitative signals that can be generated by either unex-

pected numbers of reports or unexpected TTO distributions.

The flagging of P–E pairs as quantitative signals only when

they are detected as both disproportionate and temporal

signals would result in a signal detection system with lower

sensitivity and higher specificity than either individual

method alone. Knowing that we would systematically lose

the ability to detect uncommon and long-term events, this

option is not viable for a signal detection system. On the

other hand, flagging P–E pairs that are unexpected either in

terms of number of reports or in TTO distribution would

result in a signal detection system with low specificity and

high sensitivity [6]. Consequently, further methodological

research was needed to build a signal detection algorithm

that could account for two, and potentially more, quantified

causality criteria at the population level.

The logistic regression framework was selected and

analysed for its potential to combine multiple factors, and

because previous papers have demonstrated the usage of

logistic regression to weight causality criteria at the indi-

vidual level to model medical expert judgement [8, 9].

Here, we illustrate how logistic regression can be used

to model the probability of a V–E pair being an ARFI,

meaning an AE causally related to immunization, using

disproportionality and unexpectedness of the TTO distri-

bution as predictive variables and the presence of events in

the global product information (GPI) as a predicted

dependent variable. The estimated parameters of the

logistic regression provide the weight of each causality
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criterion to define the probability of being an ARFI [10],

using the current knowledge of the V–Es already recog-

nized as being a safety concern, a piece of information

neglected by both disproportionality and TTO methods.

We use this approach for the two causality criteria at the

population level that can currently be automatically and

autonomously assessed with DMAs from the SRD without

prior medical knowledge.

2 Methods

2.1 The Proportional Reporting Ratio

We selected the PRR [1, 11] for the disproportionality

measure as we highlighted that measures based on the

relative reporting ratio, like the EBGM or IC, are biased

downwards when used on the GSK Vaccines SRD [12].

The PRR is calculated based on a 2 9 2 table, as in

Table 1:

The PRR can be expressed as

PRR ¼ A=ðA þ BÞ
C=ðC þ DÞ

¼ A� ðC þ DÞ
C � ðAþ BÞ

where A, B, C, and D are defined in Table 1. A 95 %

confidence interval around the PRR can be derived [1]:

e
ln PRRð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
A
� 1

AþB
þ1

C
� 1

CþDð Þ
p

To account for demographic and secular differences

between vaccinated populations, the PRR was stratified by

sex, age, region, and year by using a Mantel–Haenszel

measure of effect [13].

We considered the stratified PRR estimate (PRRE) to

summarize the strength of association, and its 95 % lower

confidence limit (PRRLL) to account for measure variability,

as both measures are often used in DMA based on PRR [14].

2.2 Time-to-Onset Signal Detection

TTO signal detection is a non-parametric DMA for

detecting V–Es with a TTO distribution that is significantly

different from:

– the TTO distribution of the same vaccine with the other

reported events (‘between events’ test)

And

– the TTO distribution of the same event reported after

administration of other vaccines (‘between vaccines’

test)

at a given significance alpha level and within a given

time window [5]. The two-sample Kolmogorov–Smirnov

(KS) test statistic is sensitive to differences in the distri-

bution from which the two samples were drawn, such as

differences in location, dispersion, or skewness.

Here, we use the two p values generated by the ‘between

events’ and ‘between vaccines’ KS tests to summarize the

unexpectedness of TTO data over the 60-day period after

vaccination. The time window of 60 days was previously

associated with high performance in terms of positive pre-

dictive value [6].

The algorithm identifies an unexpected TTO distribution

for a V–E through detection of TTO distributions that

deviate from the overall reported TTO distributions for

other reported events with the vaccine of interest and for the

event of interest with other vaccines. The assumption that

underpins this approach is that most reported V–E pairs are

not causally related, so that the overall TTO distributions

are dominated by reporting biases and noise [7]. This

assumption that most reported V–E pairs are not causally

related also underpins the disproportionality approach and,

if violated, generates the so-called masking effect [15, 16].

2.3 Data Selection

For practicality reasons, the calculation of PRR estimates

and KS p values was restricted to eight vaccines: RotarixTM,

EngerixTM, CervarixTM, FluarixTM, InfanrixTM, InfanrixTM

Hib, HavrixTM, and TwinrixTM. These vaccines together

represented more than half of the vaccine spontaneous

reports in the SRD at the data lock point date of 1 February

2010 and covered a diverse range of vaccine characteristics.

They were thus considered representative of the entire SRD

at GSK vaccines (Tables 2, 3). The entire SRD was used to

compute the PRR and KS p values for these eight vaccines.

2.4 The Dependent Variable

The dependent variable (‘ARFI’) was based on the safety

information from the GPI of each vaccine.

For each V–E, the Medical Dictionary for Regulatory

Activities (MedDRA)1 Preferred Terms corresponding to a

medical term listed in the GPI for that vaccine were assigned

Table 1 Contingency table

Reports with the

event of interest

Reports without the

event of interest

Reports with the vaccine of

interest

A B

All other reports C D

1 Medical Dictionary for Regulatory Activities is a clinically

validated international medical terminology used by regulatory

authorities and the regulated biopharmaceutical industry throughout

the entire regulatory process, from pre-marketing to post-marketing

activities, and for data entry, retrieval, evaluation, and presentation.
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the value 1 and the others the value 0. The list of events in the

GPI is considered as a proxy of the list of events causally

related to the vaccine. Indeed, medical terms in the GPI are

generated from either clinical or post-marketing experience.

For data obtained from randomized clinical trials, a signif-

icant excess of cases in the vaccine group compared with a

control can be causally attributed to the vaccine at a given

significance level due to the properties of randomized clin-

ical trials. Post-marketing data may be generated from a

variety of settings, such as pharmaco-epidemiological

studies, electronic health records, and spontaneous reports;

when there is no equivalent of a randomized study, potential

signals may be highly biased and are consequently usually

subject to evaluation based on causality criteria at the pop-

ulation and individual levels [4] before being included in the

GPI. However, not all medical terms followed this process

before being included in the GPI. In addition, listed medical

terms had to be mapped to MedDRA preferred terms for

consistency with spontaneous report data, which are coded

using the MedDRA dictionary. Consequently, the ARFIs

used could be considered as mainly, if not completely, based

on causality assessments.

2.5 Logistic Regression Models

Logistic regression models the relationship between a

dependent binary variable (the ‘ARFI’ in this case) and

predictive variables. For any V–E pair, an estimated

probability of being an ARFI can be derived based on the

estimated model parameters.

Three different models, characterized by different

choices of predictive variables, have been studied:

Model 1 Using disproportionality information only

logit ARFI 1ð Þð Þ ¼ a1 þ b1
1PRRE þ b1

2PRRLL:

The logistic regression modelled the probability of a V–

E being an ARFI based on the disproportionality measure:

the stratified PRR and its 95 % lower limit.

These two predictive variables may have missing val-

ues, for example in the case of a vaccine causing a rare

event, which would then be likely to be reported solely

after the vaccine of interest and never with other vaccines.

As missing values cannot be handled as such by the logistic

regression model, it was important to categorize the PRRE

and its PRRLL. The two variables were thus categorized as

follows2: ‘N/A’; ‘[0, 0.8]’; ‘]0.8, 1.2]’; ‘]1.2, 2]’; ‘]2, 5]’;

‘]5, 10]’; ‘]10, 100]’; ‘100?’.

Model 2 Using unexpectedness of the TTO distribution

only

logit ARFI 1ð Þð Þ ¼ a2 þ b2
1KSBE þ b2

2KSBV:

The logistic regression modelled the probability of a V–

E being an ARFI based on the unexpectedness of the TTO

distribution, summarized by the p value of the ‘between

events’ (KSBE) and ‘between vaccines’ (KSBV) KS tests.

The p values KSBE and KSBV were categorized as fol-

lows: ‘N/A’; ‘0’; ‘[Min, Q1[’; ‘[Q1, Median[’; ‘[Median,

Q3[’; ‘[Q3, 0.01]’; ‘]0.01,1]’, where Min, Q1, Median, and

Q3 correspond to the minimum, first quartile, median, and

third quartile observed in the interval ]0, 0.01] for the

p values KSBE and KSBV, respectively. This dynamic cat-

egorization should ensure interpretability and that each

category contains a sufficient number of observations.

Model 3 Using both the disproportionality and the

unexpectedness of the TTO distribution.

Table 2 Description of the therapeutic indication of the vaccines under study

Vaccine Therapeutic indication (extracted from http://www.medicines.org.uk/emc on 14 August 2014)

EngerixTM Active immunization against hepatitis B virus infection caused by all

known subtypes in non-immune subjects

HavrixTM (adult and pediatric) Active immunization against infections caused by hepatitis A virus

CervarixTM Vaccine for use from the age of 9 years for the prevention of premalignant

genital (cervical, vulvar, and vaginal) lesions and cervical cancer causally

related to certain oncogenic human papillomavirus types

InfanrixTM Vaccine indicated for booster vaccination against diphtheria, tetanus, pertussis,

and poliomyelitis diseases in individuals from 16 months to 13 years of age

inclusive who have previously received primary immunization series against these diseases

InfanrixTM Hib Active immunization against diphtheria, tetanus, pertussis, poliomyelitis

and Haemophilus influenzae type b disease from the age of 2 months

RotarixTM Active immunization of infants aged 6–24 weeks for prevention of

gastroenteritis due to rotavirus infection

FluarixTM Prophylaxis of influenza, especially those who run an increased risk of

associated complications. FluarixTM is indicated in adults and children from 6 months of age

TwinrixTM (adult and pediatric) Indicated for individuals who are at risk of both hepatitis A and hepatitis B infection

2 [A,B] refers to an interval between A and B, both values included in

the interval whereas ]A,B,[ refers to an interval between A and B,

both values excluded.
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The logistic regression modelled the probability of a V–

E being an ARFI based on the disproportionality measure

and the unexpectedness of the TTO distribution.

logit ARFI 1ð Þð Þ ¼ a3 þ b3
1PRRE þ b3

2PRRLL þ b3
3KSBE

þ b3
4KSBV

with the same categorization as for model 1 and 2.

2.6 Measures of Performance

The performance of a logistic regression can be summa-

rized by the following characteristics:

Model fit statistics A global test (Wald test) measures

how likely it is that the group of predictive variables

could be of no use in predicting the value of the

dependent variable (‘ARFI’ here). The more unlikely

(small p values), the better the model fits the data [17].

Discrimination The concordance statistic (also known as

C statistic or area under the curve) [18] measures the

probability that a random listed V–E pair has a higher

probability than a random non-listed V–E pair. The

closer to 1, the better the model discriminates.

Calibration This refers to the agreement between the

observed and predicted outcome for the dependent

variable (‘ARFI’ here). The widely used Hosmer–

Lemeshow test [19] tests the null hypothesis that there

is no difference between the observed and predicted

values of the response variable. The more unlikely

(small p values), the worse the calibration.

Steyerberg [20] showed that bootstrap resulted in the

most accurate estimate of model performance, providing a

bias close to zero. Bootstrapping replicates the process of

sample generation from an underlying population, of the

same size as the original data set, by drawing samples with

replacement from the original data set. We consequently

took 100 bootstrap repetitions of the entire GSK Vaccines

SRD and, for each one, performed the KS tests, calculated

the PRR, and ran the three logistic regression models

described above. For each bootstrap repetition and each

logistic regression, we measured the different performance

criteria of the logistic regression model applied to the

subset of eight vaccines described above.

The performance of each of these models was described

graphically with box plots showing the distribution of the

median and first and third quartile values (indicated by the

middle, top, and bottom lines of the box, respectively). The

interquartile range, containing the middle 50 % of the data,

is thus represented by the vertical length of the box, whilst

the range of the data is the vertical distance between the

smallest and largest values, including or excluding outliers.

The impact of the predictive variables categories on the

estimated probability values was evaluated. The estimated

probability distribution was also compared between the

sources of the data included in the GPI (clinical develop-

ment or post-marketing experience).

The results and figures were produced using SAS9.2.

The following procedures were used: PROC NPAR1WAY

for the calculation of the two-sample KS test p values and

PROC LOGISTIC for the logistic regression.

3 Results

The original dataset contained 9474 V–Es to be modelled

for their probability of being an ARFI, using the three

logistic regression models based on data from the eight

vaccines under study; 803 (8.5 %) were considered as

ARFIs based on the safety information from the GPI. Over

the 100 bootstrap samples, there were an average of 7,831

different V–Es, of which 9.2 % on average were consid-

ered as ARFIs.

3.1 Model Fit Statistics

The global Wald test showed that the three logistic models

were highly significant. The two most significant models

were model 2 (using only the KS test p values) and model 3

(using the KS test p values and the PRR), followed by

model 1 using only the PRR (Fig. 1).

Table 3 Characteristics of spontaneous reports in the GlaxoSmithKline Vaccines spontaneous report database, by vaccine

Vaccine Age at event (years):

median (Q1–Q3)

Female

(%)

Year of reporting:

median (Q1, Q3)

Number (%) of

spontaneous reports

Number of

countries

Engerix TM 31.0 (18.0, 43.0) 64.2 1999 (1993, 2005) 34,347 (23.4 %) 92

HavrixTM 23.0 (11.0, 40.0) 57.8 2004 (1998, 2007) 9,066 (6.2 %) 58

CervarixTM 15.0 (12.0, 17.0) 99.5 2009 (2008, 2009) 3,437 (2.3 %) 63

InfanrixTM 5.0 (1.5, 10.0) 45.5 2006 (2003, 2007) 9,732 (6.6 %) 59

InfanrixTM Hib 1.5 (0.8, 1.9) 42.5 2002 (1999, 2003) 1,027 (0.7 %) 21

RotarixTM 0.3 (0.2, 0.6) 46.3 2008 (2007, 2009) 2,800 (1.9 %) 73

FluarixTM 41.0 (19.0, 60.0) 60.0 2005 (2002, 2007) 6,864 (4.7 %) 69

TwinrixTM 31.0 (19.0, 45.0) 57.6 2006 (2003, 2008) 9,836 (6.7 %) 51
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For model 1, both the PRRE and the PRRLL were highly

significant predictive variables at similar alpha levels. For

model 2, a considerable difference in significance was high-

lighted between KSBV (highly significant) and KSBE (not

significant at alpha level = 0.01) predictive variables. For

model 3, KSBV was the most significant predictive variable,

followed by the PRRE. The PRRLL factor was borderline, with

a significance level of 0.01; the KSBE factor was not significant.

3.2 Discrimination

Model 3 discriminates between the GPI-listed and unlisted

V–Es better than do models 1 and 2 (Fig. 2).

3.3 Calibration

The distribution of the p values for the Hosmer–Lemeshow

test shows that the null hypothesis (no difference between

observed and predicted values) was not rejected at alpha

level 0.01 (represented by a horizontal line across the

graph) for any bootstrap samples used for logistic regres-

sion models 2 and 3 (Fig. 3). However, the null hypothesis

was rejected for 61 of 100 bootstrap samples for model 1.

This suggests that the logistic regression model was well

calibrated when the p values of the KS tests were used as

predictive variables (as in models 2 and 3) but not when

only the stratified PRR and its lower limit were used as

predictive variables (as in model 1).

3.4 Distribution of the Estimated Probability

Figure 4 shows the monotonic relationship between the

p value KSBV and the estimated probability of a V–E being

an ARFI by the model 3: the lower the p value, the higher

the estimated probability. V–E with very low KSBV p val-

ues (0 or in the first quartile of values in the interval ]0,

0.01]) have an estimated probability far above the average

percentage of listed V–Es. For example, V–Es presenting a

null KSBV p value have a median probability around 70 %

(Fig. 4—upper left panel).

The KSBE p value does not show such a monotonic

relationship with the estimated probability. The category

with the highest median estimated probability has an esti-

mated probability around 20 % only (Fig. 4—upper right

panel).

The relationship between the PRR estimate (lower limit)

and the estimated probability is nonlinear, with a local

maximum in the median estimated probability for the ‘]0.8,

1.2]’ (‘]0.8, 1.2]’) category followed by a local minimum

for the ‘]10, 100]’ (‘]0, 0.8]’) category.

The median estimated probability of listed V–Es was the

same whatever the source: clinical development or post-

marketing (Fig. 5). However, the mean estimated

Fig. 1 Wald test p value distribution for the test of the null

hypothesis that beta = 0 for the logistic regression models 1, 2, and 3

Fig. 2 Area under the receiver operating curve (C statistic) distri-

bution for the three logistic regression models

Fig. 3 Hosmer–Lemeshow test p value distribution for the three

logistic regression models
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probability was higher for ARFIs detected at the clinical

level. This could be because some of these ARFIs may

present a very distinctive pattern in terms of dispropor-

tionality and TTO distribution. Regardless of the data

source, the estimated probability was higher for ARFIs

than for the not listed events.

As an example, model 3 gave the highest probability of

being an ARFI for the ten V–E pairs shown in Table 4.

None of these V–E pairs would have been detected by

the stratified PRR when using a threshold of two on the

95 % lower limit, except for the pair RotarixTM–Diarrhoea.

However, a TTO signal would have been generated for all

of them, except for the pair TwinrixTM–Fatigue, using a

threshold of 0.01 for the p value of both KS tests.

Model 1, which uses only disproportionality informa-

tion, estimates a higher probability (36 %) for V–Es having

PRRE = PRRLL = ‘]0.8,1.2]’ because it is within this range

Fig. 4 Distribution of probability estimated by model 3 for each category of the different parameters: a PBV, b PBE, c PRRLL, and d PRRE. The

horizontal line represents the average percentage of vaccine–event pairs listed in the global product information. BE between events, BV between

vaccines, E estimate, LL lower limit, PRR proportional reporting ratio

Fig. 5 Distribution of the estimated probability according to the

source of data having led to some events to be listed in the global

product information
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of values that the observed frequency of known safety

issues was observed. Models 2 and 3 estimate a higher

probability for V–Es with small p values for the KS tests,

and model 3 fluctuates around these probabilities to take

into account the disproportionality information. When

PRRE = PRRLL = ‘]0.8,1.2]’, model 3 estimates higher

probabilities than does model 2.

4 Discussion

Our analyses have shown that the logistic regression can be

used to predict ARFI based on the combination of several

predictive causality criteria at the population level. Among

the combinations tested, the logistic regression based both

on KS p values and on PRR provided the best model in

terms of fit, calibration, and discrimination. The logistic

regression model based on KS p values only (model 2)

provided similar performance results in terms of fit and

calibration but lower performance in terms of discrimina-

tion. The logistic regression model based solely on PRR

(model 1) gave the poorest performance for all measures.

In model 1, the disproportionality information summa-

rized by the PRR estimate and its 95 % lower limit poorly

predicted the presence of AEs in the GPI for the eight

vaccines under study. The unexpectedness of a TTO dis-

tribution, used in model 2 and 3, was a better predictor of

the presence of AEs in the GPI than the disproportionality

information used in model 1.

Taking the GPI as a proxy of the list of events causally

associated with the vaccines, we can conclude that tem-

porality seems to be a stronger predictor of causality than

the strength of association for the eight vaccines under

study, at least when temporality and strength of association

are estimated in the context of spontaneous report data.

This highlights the importance of using this quantified and

objective temporality criterion for signal detection in the

SRD. More specifically, the more confidently one can

reject, for a specific event, the null hypothesis of a common

TTO distribution between the vaccine of interest and the

other vaccines (KSBV), the higher the estimated probability

of a causal association between that event and the vaccine

of interest. On the other hand, the p value of the KSBE was

evaluated by both models 2 and 3 as not being a significant

predictive factor of causality, at least when used with

KSBV. The diverse categories of AEs may generate dif-

ferences in the reported TTO distribution independently

from causal association between the vaccine and event.

Logistic regression has several advantages for improv-

ing quantitative signal detection. First, it uses current

knowledge of the safety profile of the vaccines under post-

marketing pharmacovigilance for attributing weights to the

different measures of unexpectedness, in terms of number

of spontaneous reports and TTO distribution. The model

can be calibrated on the actual SRD of interest and does not

need predefined thresholds extrapolated from other SRDs

with different characteristics or from occasional retro-

spective performance evaluations.

Second, the logistic regression model allows the linear

combination of predictive factors of causality. Causality

assessment is driven by several complementary criteria. The

fact that logistic regression can combine the use of two

causality criteria at the population level (the strength of

association and a more refined notion of temporality) pro-

vides an elegant solution for coping with the complemen-

tarity of these two measures, as previously highlighted [5].

Third, logistic regression solves the dilemma of what

threshold to use for defining disproportionate signals. The

current practice in quantitative signal detection is to treat

disproportionality scores dichotomously: above a given

Table 4 Ten vaccine–event pairs for which model 3 gave the highest probability of being an adverse reaction following immunization

Vaccine: event Listed? PRRE PRRLL KSBE KSBV Prob

model 1 (%)

Prob

model 2 (%)

Prob

model 3 (%)

EngerixTM: Myalgia Yes ]0.8, 1.2] ]0.8, 1.2] [Min, Q1[ 0 36 84 93

InfanrixTM: Pyrexia Yes [0, 0.8] [0, 0.8] [Min, Q1[ 0 9 84 86

RotarixTM: Diarrhoea Yes ]10, 100] ]10, 100] [Min, Q1[ [Min, Q1[ 16 86 84

EngerixTM: Pruritus Yes ]0.8, 1.2] ]0.8, 1.2] 0 [Min, Q1[ 36 69 83

EngerixTM: Vomiting Yes ]0.8, 1.2] ]0.8, 1.2] [Min, Q1[ [Q1, Median[ 36 70 83

EngerixTM: Abdominal pain Yes ]1.2, 2] ]0.8, 1.2] [Q1, Median[ [Min, Q1[ 24 74 82

TwinrixTM: Fatigue Yes ]0.8, 1.2] ]0.8, 1.2] [0.01 [Min, Q1[ 36 67 82

EngerixTM: Arthralgia Yes ]0.8, 1.2] ]0.8, 1.2] 0 0 36 65 82

HavrixTM: Headache Yes ]0.8, 1.2] [0, 0.8] [Median, Q3[ 0 12 77 81

CervarixTM: Pyrexia Yes ]0.8, 1.2] [0, 0.8] [Median, Q3[ 0 12 77 81

BE between events, BV between vaccines, E estimate, KS Kolmogorov–Smirnov, LL lower limit, Prob estimated probability, PRR proportional

reporting ratio

1054 L. Van Holle, V. Bauchau



threshold there is a quantitative signal and below it there is

no signal. We previously showed that published recom-

mendations on the use of thresholds may not be optimal [12]

depending on the SRD characteristics. The determination of

the ‘ideal’ threshold is complex and crucial in terms of

signal detection performance. By using categorized values

of the different measures of unexpectedness, we overcome

the uncertainty surrounding the ‘best’ threshold to use.

Indeed, the logistic regression model automatically attri-

butes higher weights to the categories with the highest

predictive value, based on the current knowledge of the

safety profile. It reduces the dependence to the choice of a

unique threshold (even if they are still dependent on our

choices of categories). Some events are solely reported after

a given immunization, not because they are caused by the

vaccination, but sometimes because the report is about a

lack of efficacy of the vaccine. For example, the AEs

‘Rotavirus infection’ or ‘Rotavirus test positive’ are unli-

kely to be spontaneously reported after any vaccination

other than RotarixTM. Consequently, these two events are

characterized by very high values of PRRLL. They actually

fall under the category ‘]10, 100]’. Depending on how

frequently an event listed in the GPI was characterized by a

PRRLL in the category ‘]10, 100]’, the logistic regression

weights this category for predicting ARFIs.

Fourth, logistic regression based on strength of associ-

ation and temporality can provide a score reflecting the

probability of a V–E being an ARFI. This is an intuitive

score for physicians and other non-statisticians. It can be

used directly as a signal detection algorithm: V–Es flagged

with a high probability of being an ARFI (based on

strength of association and temporality) and not yet in the

GPI may present the highest probability of a causal asso-

ciation between the vaccine and the event or at least share

characteristics of events already listed in the GPI. How-

ever, using a logistic regression model directly as a signal

detection algorithm brings challenges that will need careful

prospective evaluation. Indeed, including more causality

criteria in the logistic regression lowered our ability to

detect signals when the KSBV was missing. Indeed, when

KSBV is missing, the estimated probability based on the

other predictive variables (KSBE, PRRE, and PRRLL) will

always be low, as these variables are poor predictors. The

inclusion of several causality criteria in a signal detection

system partially replicates, at an aggregate level, the pro-

cess of signal evaluation where insufficient information

may prevent a conclusion from being drawn.

A hidden assumption behind our logistic regression

model is that the safety profile of the vaccine is for the

most part known and summarized in the GPI given the pre-

marketing data from clinical trials and parallel methods for

detecting signals including literature reviews, post-autho-

rization safety studies, and medical reviewing. Otherwise,

the logistic regression would be fitted based on too high a

proportion of V–Es being misclassified as not causally

associated, which could reduce the model performance for

detecting ARFIs. Furthermore, defining the dependent

variable as the presence of the event in the GPI makes the

‘ARFI’ a time-evolving dependent variable. A dependent

variable reflecting live changes in the GPI could generate

instability in the estimation of the parameter, leading to

instability in the estimated probability of V–Es being

ARFIs. Additional prospective research should be con-

ducted to monitor the stability of the predicted probabilities

over time. The other assumption underlying these logistic

regression models is that the measures of unexpectedness

that are most strongly associated with known safety prob-

lems are those that will also allow us to detect as yet

unknown safety problems.

Previous observations [6] suggest that the detection of

signals based on unexpected TTO distributions requires a

larger number of case reports than the detection of signals

based on disproportionate reporting, since the cases with

missing TTO information cannot be used by KSBV and

KSBE. Consequently, the use of logistic regression could

delay signal detection, at least for signals that had the

potential to be detected by their disproportionality profile

alone. On the other hand, the use of the aggregate and

weighted information about unexpected TTO distribution

and strength of association may flag new V–Es worth

further evaluation.

Finally, logistic regression offers a framework allowing

the use of several causality criteria along with current

knowledge of the safety profiles under monitoring. Addi-

tional research should be conducted to quantify the other

causality criteria at the population level, beyond ‘strength of

association’ and ‘temporality’. For example, ‘specificity’

could be captured as the percentage of reports for which the

vaccine was the only plausible cause for explaining the AE

post-immunization (or the 95 % binomial lower limit of that

percentage to account for variability). The ‘consistency of

evidence’ causality criteria could be a measure of concor-

dance between what has been measured in the SRD under

monitoring and another source (such as registries or

observational data). If the logistic regression models inte-

grating these additional causality criteria appear to perform

better than the one with temporality and strength of asso-

ciation, only then should we consider incorporating these

new quantified causality criteria.

In this study, the theoretical and practical relevance of

the logistic regression framework was analysed on vaccine

spontaneous report data. However, we envision this

framework to be also applicable to drugs, other SRDs, and

observational electronic healthcare databases. Different

settings may be needed to take into account specificities of

the products and database holders, and the dependent
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variable can be defined differently to facilitate early

detection. We take as reference the recent research paper

from Caster [21], where a shrinkage logistic regression

model was applied on Vigibase spontaneous report data to

model the probability that a drug–event pair is an emergent

safety signal. Instead of using solely the causality factors as

potential predictors of being an emergent safety signal,

they pragmatically used the different aspects of strength of

evidence based on report quality and content. A measure of

the unexpectedness of TTO distribution (originally devel-

oped for vaccine spontaneous reports and not yet assessed

on drug spontaneous reports) was not used by the model

but only a crude estimate of the plausibility of the reported

TTO. The logistic regression framework could easily

integrate this refined notion of temporality and would

automatically weight it relative to the other aspects of

strength of evidence. Indirectly, it would also assess if it is

as good a predictor for drug emerging safety signals as it

was for events listed in the GPI of the GSK vaccines under

study.

5 Conclusion

The logistic regression framework allows the combined use

of two causality criteria—the strength of association

(estimated by a disproportionality measure) and the tem-

porality (estimated by a KS test)—to estimate from spon-

taneous report data the probability that a V–E pair is an

ARFI. Logistic regression optimally weights the causality

criteria and combines them based on their ability to predict

known safety issues. A prospective evaluation of this

method is needed to evaluate its potential added value in

the pharmacovigilance toolkit.
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