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Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by the predictable onset of mood and physical symptoms secondary 
to gonadal steroid fluctuation during the luteal phase of the menstrual cycle. Although menstrual-related affective dysfunction 
is responsible for considerable functional impairment and reduction in quality of life worldwide, currently approved 
treatments for PMDD are suboptimal in their effectiveness. Research over the past two decades has suggested that the 
interaction between allopregnanolone, a neurosteroid derivative of progesterone, and the gamma-aminobutyric acid (GABA) 
system represents an important relationship underlying symptom genesis in reproductive-related mood disorders, including 
PMDD. The objective of this narrative review is to discuss the plausible link between changes in GABAergic transmission 
secondary to the fluctuation of allopregnanolone during the luteal phase and mood impairment in susceptible individuals. 
As part of this discussion, we explore promising findings from early clinical trials of several compounds that stabilize 
allopregnanolone signaling during the luteal phase, including dutasteride, a 5-alpha reductase inhibitor; isoallopregnanolone, 
a GABA-A modulating steroid antagonist; and ulipristal acetate, a selective progesterone receptor modulator. We then reflect 
on the implications of these therapeutic advances, including how they may promote our knowledge of affective regulation 
more generally. We conclude that these and other studies of PMDD may yield critical insight into the etiopathogenesis of 
affective disorders, considering that (1) symptoms in PMDD have a predictable onset and offset, allowing for examination of 
affective state kinetics, and (2) GABAergic interventions in PMDD can be used to better understand the relationship between 
mood states, network regulation, and the balance between excitatory and inhibitory signaling in the brain.

1 Introduction

Premenstrual dysphoric disorder (PMDD) is a cyclical 
mood disorder characterized by emergence of affective 
symptoms near the onset of the luteal phase of the 
menstrual cycle and subsequent improvement of those 
symptoms within 3–4  days of onset of menstruation. 
The diagnosis is heterogeneous in terms of its 
symptomatology; to meet the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-
5) criteria for PMDD, one must have a total of at least 
five of eleven possible symptoms, one of which must be 
mood changes manifested as either depression, anxiety, 
affective lability, or irritability [1]. At least one associated 
symptom, such as decreased interest, impairment in 

concentration, lethargy, change in appetite, hypersomnia/
insomnia, feeling overwhelmed, or physical symptoms 
such as breast tenderness or joint pain, must also be 
present [1]. PMDD is also characterized by its temporal 
rather than symptom-based presentation. Symptoms 
must be present in a majority of menstrual cycles, and 
luteal phase worsening, improvement with menses, and 
absence of symptoms during the week following menses 
must all occur for a diagnosis to be made. Additionally, 
prospective daily documentation of mood in relation to 
menses is necessary to establish whether temporal criteria 
are met [1], as patient self-report is subject to recall bias 
and poor reliability. It is necessary to distinguish whether 
significant affective symptoms are present during menses 
and/or the follicular phase, as this would be suggestive of 
different or perhaps coincident affective pathology, and 
the approach to treatment of PMDD differs (at least, to an 
extent) from that for other affective disorders. Detection 
and examination of pathophysiologic mechanisms specific 
to PMDD can be challenging given that women with 
PMDD are predisposed to developing major depression 
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Key  Points 

The relationship between gamma-aminobutyric 
acid (GABA) and allopregnanolone is an important 
therapeutic target in premenstrual dysphoric disorder 
(PMDD).

Early findings from studies of dutasteride, 
isoallopregnanolone, and ulipristal support this notion, 
and provide optimism for expansion of a treatment 
armamentarium currently characterized by a small 
number of suboptimal options.

PMDD research has potential not only to reduce 
substantial global symptom burden, but also to provide 
critical insights into the pathophysiology underlying 
affective state dysregulation.

[2], and luteal phase mood worsening of an active affective 
disorder (with which PMDD can be confounded) appears 
to occur in about 60% of women [3].

Why certain women are susceptible to menstrual 
cycle-related mood dysregulation has been a fundamental 
question in PMDD research. Early studies investigating 
hormone levels showed no difference between healthy 
women and those with PMDD [4], but the link between 
estrogen/progesterone fluctuation and changes in mood 
states was definitively established with paradigms 
that suppressed the hypothalamic–pituitary–gonadal 
(HPG) axis and normal ovarian cycling (typically via 
gonadotropin-releasing hormone agonism) [5–9]. These 
latter studies demonstrated in women with PMDD that 
affective symptoms are alleviated by eliminating menstrual 
cycles and that subsequent exogenous administration of 
estrogen or progesterone (“add back”) results in recurrence 
[9, 10]. Further, the last study showed that the change in 
hormone levels rather than the levels themselves trigger 
the PMDD symptoms [10]. Notably, identical hormone 
manipulations in women without a history of PMDD 
result in no symptom appearance. Taken together, these 
findings suggest that there is a subgroup of women who 
are differentially vulnerable to experiencing behavioral 
changes associated with otherwise normal changes in 
reproductive steroids. The attendant consideration is that 
there are uniquely aberrant signaling effects that must 
occur in the brain due to steroid hormone fluctuation 
in PMDD, a hypothesis for which there is mounting 
support both from studies of PMDD specifically [11] as 
well as from work on peripartum and perimenopausal 
mood disorders (which are similarly characterized by 
maladaptive responses to steroid hormone changes) [12, 
13]. This paper reviews our current understanding of the 

(patho)physiology of luteal-phase mood worsening and 
subsequent recovery with menses, specifically focusing 
on the relationship between neuroactive steroid hormones 
and the gamma-amino butyric acid (GABA)-ergic 
system. Examples of novel pharmacologic approaches 
with early positive findings will be used to illustrate how 
modulating GABAergic function via progesterone-derived 
neurosteroids represents a promising avenue for furthering 
our understanding of, and developing effective treatments 
for, PMDD.

2  Neurobiological Basis 
of Hormone‑Related Affective Switching

Reproductive steroids such as estrogen and progesterone act 
extensively throughout the central nervous system, exerting 
profound effects at nearly every level of signaling (reviewed 
in [14]). Full disclaimer: to describe hormone-related 
mood changes in terms of one neurotransmitter system 
is undeniably reductionistic, with any such description 
conveying, at most, the function of a single contributing 
component within a complex, multifaceted system. 
Nonetheless, there is increasing evidence that the interplay 
between GABA receptors and neuroactive steroids is central 
to the regulation of mood in the context of PMDD and other 
hormone-related mood disorders.

2.1  GABA and Mood Regulation

GABA is the major inhibitory neurotransmitter in the central 
nervous system (CNS). It has been shown to be important 
not only for regulation of the balance of excitatory/inhibi-
tory signaling at local and global levels [15–17] but as well 
for the spatiotemporal organization of network activity [18]. 
GABAergic interneurons, for example, can be thought of as 
choreographing or “sculpting” the network activity underly-
ing most emergent brain functions (e.g., attention, salience 
determination, affect regulation). Given that neural circuit 
dysfunction is a core feature of affective disorders [19], it is 
not surprising that dysregulation of the GABAergic system 
has been consistently observed in depression, anxiety, and 
other stress-related pathology [20–22]. Factors that have 
been shown to increase the risk for GABAergic dysregu-
lation include chronic stress [23], glucocorticoid exposure 
[24], female sex [25], and age [26], among others. Patients 
with MDD have been observed to have decreased levels of 
GABA in cerebrospinal fluid [22, 27], with postmortem 
analyses showing decreases in both enzymes that synthe-
size GABA [28] as well somatostatin (SST)-expressing 
GABAergic interneurons, particularly in prefrontal cortex 
(PFC) [29, 30].
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How and to what extent these changes in GABA function 
affect observed network changes in MDD, which include 
increases in default mode network (DMN) activity and 
decreases in salience network and central executive network 
activity [31–35], are not entirely understood. GABA’s cen-
tral role in signal processing appears to begin at the level of 
cortical microcircuits [22, 36], widely distributed multicel-
lular units consisting of excitatory glutamatergic pyrami-
dal neurons and various subtypes of GABAergic inhibitory 
interneurons (including those that express somatostatin, 
those that express serotonin 3a receptors/vasoactive intesti-
nal peptide, and those that express parvalbumin; the distri-
bution and individual function of each of these interneuron 
subtypes is beyond the scope of this review but is discussed 
in [37]). Neocortical pyramidal neurons within a given 
microcircuit receive synaptic excitatory input from thalamus 
(feed-forward signals) and other cortical regions (feedback 
signals), information which is “tuned” by inhibitory signals 
from GABAergic interneurons before being propagated via 
action potentials to other areas of the brain; the pattern of 
activity transmitted by these microcircuits represents a criti-
cal component of neural coding [38]. When GABA’s inhibi-
tory function is compromised, as is seen following stress and 
in depressive disorders, the resultant shift toward excitatory 
activity can produce deficits in information processing and 
subsequent effects on behavior and cognition. For example, 
it has been demonstrated that optogenetically increasing the 
ratio of excitatory:inhibitory activity in adult mouse medial 
prefrontal cortex results in profound impairments in fear 
conditioning and social behavior, which are associated with 
alterations in local electroencephalographic (EEG) patterns 
[39]. Similarly, increasing the relative excitatory balance 
via blockade of SST+ neurons in the frontal cortex of mice 
affects the expression of anxiety and depressive behaviors, 
with acute inhibition producing an increase in these behav-
iors and chronic inhibition/ablation producing a decrease 
(likely reflecting a compensatory effect within the associated 
network) [40]. Region-specific changes in GABA function 
have been shown to affect the functional connectivity of 
these regions with others in their network [41–44], linking 
microcircuit level changes to observed macro-level associa-
tions between GABA, brain networks, and behavior.

2.2  Allopregnanolone and the GABAergic System

Allopregnanolone, a 3-alpha-reduced neurosteroid 
metabolite of progesterone, exerts effects on GABA 
signaling through positive allosteric modulation of the 
GABA-A receptor [45] (by convention, a neurosteroid is a 
steroid hormone that is both made and acts in the brain; a 
neuroactive steroid, by contrast, acts in the brain but is made 
in the periphery [46, 47]). Allopregnanolone appears to bind 
to at least two distinct sites on the GABA-A receptor [48, 

49] to modulate both tonic and phasic activity, potentiating 
the effects of GABA at low (nM) concentrations [50] and 
directly opening receptor channels at higher (μM) ones 
[51, 52]. Unlike benzodiazepines, which also modulate the 
GABA-A receptor, allopregnanolone binds to and modulates 
extrasynaptic alpha-5 and delta subunit containing GABA 
receptors (which mediate tonic inhibition) [53, 54] and 
additionally plays a role in receptor trafficking [55]. 
Consequent to its pharmacologic profile, allopregnanolone 
administration produces anesthetic, analgesic, anxiolytic, 
and antiseizure effects [56–59]. At the circuit level, 
allopregnanolone—through both phasic (synaptic) and 
tonic inhibition [60]—appears to exert significant effects on 
networks and regions underlying mood regulation [61–65]. 
Allopregnanolone has been shown to modulate oscillations 
in basolateral amygdala via its interaction with GABA 
receptors, an effect that mitigates stress-induced changes 
in salience network function and promotes behavioral 
resilience [61]. Similar effects have been observed for 
allopregnanolone on reward processing regions [nucleus 
accumbens, prefrontal cortex(PFC)] through regulation of 
dopamine release by the GABA-A receptor [63, 66–68]. 
There is also evidence that allopregnanolone can acutely 
alter resting-state functional connectivity between amygdala 
and other brain regions important for mood regulation, 
including dorsomedial PFC, hippocampus, and insula [62]; 
these connectivity effects may be menstrual cycle-phase 
dependent [64], consistent with elevations of progesterone 
and allopregnanolone during the luteal phase.

Allopregnanolone has received particular attention 
for its putative role in the affective changes that can 
occur following childbirth [69]. Postpartum depression 
(PPD) is hypothesized to be caused by dysregulation of 
GABAergic signaling following the precipitous decline 
in allopregnanolone levels after delivery, a speculation 
supported by clinical trials demonstrating the efficacy of 
intravenous synthetic allopregnanolone (Brexanolone) 
in PPD [70, 71]. Consistent with this hypothesis, PPD is 
characterized by changes in default mode, salience, and 
reward network function [72, 73], systems that are modulated 
by allopregnanolone, as above. Unlike the decrease in 
allopregnanolone preceding PPD, allopregnanolone levels 
increase rather than decrease prior to the symptomatic 
portion of the luteal phase in PMDD. This apparent 
inconsistency could be partially resolved by the fact that the 
onset of PPD in many cases is during the third trimester [74, 
75], when allopregnanolone levels are high and increasing 
rather than decreasing. Nonetheless, observations of changes 
in GABA-A receptor subunit composition and subsequent 
paradoxical behavioral effects (e.g., anxiogenesis rather 
than anxiolysis) following allopregnanolone administration 
[76, 77] have suggested that the behavioral consequence of 
allopregnanolone modulation of GABA receptors cannot 
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solely be explained by absolute allopregnanolone levels 
(consistent with [10]).

2.3  Mediators of Differential Sensitivity to Ovarian 
Steroids

Though the biological mediators underlying differential 
sensitivity to ovarian hormone fluctuation are far from being 
definitively understood, research has begun to shed light 
on factors that may play a role. At the systems level, there 
appear to be alterations in hypothalamic–pituitary–adrenal 
(HPA) axis function in women with premenstrual mood 
dysregulation, including a heightened sensitivity to stress 
during the luteal phase [78, 79]. Though findings are mixed 
[80] and may represent effects present only in a subgroup 
of women [81], higher baseline cortisol concentrations 
[82] and blunted glucocorticoid responses to mental stress 
[83, 84], as well as decreased allopregnanolone responses 
to both exogenous stress and adrenocorticotropic hormone 
administration [83, 85], have been demonstrated during 
the luteal phase in women with PMDD. Allopregnanolone 
serves an important allostatic role in the stress response. 
This occurs primarily via potentiation of GABA signaling 
at the GABA-A receptor, which plays a critical role 
in negative modulation of the HPA axis [86–90] (of 
note, allopregnanolone has also been shown to directly 
downregulate expression of the corticotropin-releasing 
hormone gene [91]). GABAergic afferents to the 
paraventricular nucleus of the hypothalamus mediate HPA 
responses to stress [88], and administration of GABA 
antagonists and mimetics (the latter of which include 
allopregnanolone) amplify and attenuate, respectively, 
glucocorticoid responses following stressful stimuli [88, 
91]. The above HPA-axis changes in PMDD therefore 
suggest that the diminished restraint of axis function (and 
subsequent consequences on affective regulation) may be 
in part due to impaired allopregnanolone upregulation of 
GABA activity following stress [92]. Decreased responsivity 
to allopregnanolone and other GABAergic agents have also 
been observed in animals following chronic social isolation 
[93], as well as during pregnancy [94, 95], conditions that 
are characterized by similar HPA-axis dysregulation [96, 
97]. As with PMDD, response reduction appears to be 
mediated by changes in GABA-receptor subunit composition 
[95, 98, 99].

Recent work has examined molecular factors that may 
underlie vulnerability to behavioral changes secondary to 
steroid hormone fluctuation. Genetic differences between 
patients with PMDD and healthy controls have been 
observed for the estrogen receptor 1 (ESR1) gene [100, 101], 
with current evidence suggesting a complex relationship 

whereby ESR1 may affect behavioral traits that influence 
PMDD and vulnerability to PMDD independently [101]. 
The ESR1 gene has also been implicated in peripartum 
depression, suggesting the possibility of a common 
genetic vulnerability to reproductive steroid-related mood 
disorders [102–104]. An association has been observed for 
the ESC/Z complex [105], a family of genes responsible 
for ovarian-steroid-regulated epigenetic gene silencing. 
The possible involvement of genes modulating epigenesis 
is intriguing, as it suggests a mechanism for the transduction 
of environmental events into enduring alterations in 
transcriptional and hence neural responses to hormonal 
changes. Preliminary findings have implicated differential 
expression of genes coding for BDNF, estrogen-dependent 
calcium homeostasis, and the endoplasmic reticular stress 
response in the pathogenesis of PMDD, as well [106, 107]. 
A single nucleotide polymorphism in the BDNF gene 
(Val66Met) has been shown in preclinical experiments and 
a small clinical study, to be associated with cycle-dependent 
behavioral fluctuations [108, 109]; PMDD patients with the 
Val66Met genotype demonstrated reduced fronto-cingulate 
activity in response to an emotional processing task during 
the luteal phase compared with healthy controls [109]. 
Genetic associations for GABA-related genes are sparser, 
though it was recently shown that copy number variations 
in a gene encoding the GABA-A receptor B2 subunit are 
enriched in individuals with a PMDD diagnosis [110]. 
Overall, the evidence for molecular factors associated with 
PMDD is promising, but at this juncture, provides limited 
information about the mechanisms producing vulnerability 
or degree of clinical relevance.

Increased levels of several markers of immune 
activation, including pro-inflammatory interleukins (e.g., 
IL-4, IL-10, IL-12) and interferon-gamma, have been 
observed in PMDD [111, 112], and the interaction between 
GABA and the immune system represents a complex 
reciprocal relationship [113, 114]. GABA and GABA 
agonists (including allopregnanolone) can downregulate 
inflammatory function of several types of immune cells (e.g., 
peripheral macrophages, T cells), many of which contain 
GABA receptors [114, 115] and are able to metabolize 
GABA [114]; inflammation has conversely been strongly 
implicated in the structural and functional changes in 
GABAergic circuitry secondary to stress that are associated 
with affective dysregulation [113, 116–119]. Inflammation/
inflammatory conditions have been observed to reverse 
the polarity of the typical GABA signal (i.e., normally 
inhibitory GABAergic signals become excitatory) through 
alterations in chloride homeostasis [120]. Accordingly, one 
hypothesis is that inflammatory responses in PMDD may 
mediate paradoxical GABAergic responses to increasing 
allopregnanolone levels [121, 122].
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2.4  Targeting the Allopregnanolone–GABA 
Relationship in PMDD

Irrespective of how differential sensitivity arises, 
dysfunction of GABA signaling secondary to fluctuations 
in allopregnanolone levels represents both a potential 
pathophysiologic mechanism underlying behavioral 
changes in PMDD and an appealing target for therapeutic 
intervention. In the following section, we examine 
approaches that stabilize progesterone/allopregnanolone 
function during the luteal phase either through direct 
blockade or decreased biosynthesis. We first discuss 
preclinical experiments and comment on mechanisms 
of currently approved treatments, then review early 
phase findings for three compounds, each of which 
interferes with allopregnanolone signaling via a distinct 
mechanism: dutasteride, a 5-alpha reductase inhibitor; 
isoallopregnanolone, a GABA-A modulating steroid 
antagonist; and ulipristal acetate, a selective progesterone 
receptor modulator.

3  Evidence and Rationale for Stabilizing 
GABA Function in PMDD

Both preclinical and clinical findings have pointed toward 
a key role for GABA-receptor plasticity in hormone-
related affective regulation. In animal-based experiments 
of hormone withdrawal, knockout of the delta-subunit 
of GABA-A receptor has been shown to mitigate the 
anxiogenic effect of allopregnanolone withdrawal [123] 
and produce increased levels of depression- and anxiety-like 
behaviors during the postpartum drop in progesterone levels 
[99]. Studies have shown that exposure to progesterone-
derived neurosteroids, though anxiolytic with acute 
exposure, can provoke anxiety-like behavior responses in 
rodents if administered over a slightly longer time frame 
(e.g., if administered continuously for 48 h), an effect that 
is mediated by a change in the subunit composition of 
GABA-A receptors [76, 77, 124]. Though human data are 
scarce, women with PMDD appear to have altered sensitivity 
to the GABAergic effects of allopregnanolone. While healthy 
women experience luteal phase GABA-mediated sedation 
[as manifested by decreased saccadic eye velocity (SEV)] 
when administered allopregnanolone, women with PMDD 
demonstrate the opposite effect (increased luteal phase SEV) 
[125]. Additionally, women with PMDD demonstrate higher 
degrees of luteal phase anxiety-potentiated startle [126] and 
acoustic startle [127], measures of physiologic arousal that 
have their neural basis in GABA function [128, 129]. This 
suggests a causal relationship between steroid hormone 
fluctuation, GABA signaling, and hyperarousal-associated 
symptoms of PMDD, including anxiety [130], sleep 

disturbance [131], and exaggerated response to perceived 
threat [132].

Currently approved treatments for PMDD may act 
by altering progesterone metabolism and stabilizing 
allopregnanolone levels. Selective serotonin reuptake 
inhibitors (SSRIs), the gold standard of treatment [133–135], 
exert rapid effects on PMDD symptomatology at relatively 
low doses compared with major depression [136, 137]. This 
therapeutic difference may reflect the impact of SSRIs on 
the enzymes responsible for the conversion of progesterone 
to allopregnanolone. SSRIs have been shown to promote 
formation of allopregnanolone from its precursor 5-alpha-
dihydroprogesterone by inducing 3-alpha hydroxysteroid 
dehydrogenase [138, 139], which may in turn produce 
a downstream effect on GABA signaling through this 
pathway [140, 141]. One open-label study demonstrated 
differential effects of SSRIs on peripheral luteal phase 
allopregnanolone depending on basal levels (i.e., increasing 
if baseline levels were low and decreasing if baseline 
levels were high), suggesting that the effects of SSRIs in 
PMDD may be achieved by normalizing steroid metabolism 
[142]. SSRIs may also increase GABA signaling through 
mechanisms unrelated to allopregnanolone; for example, 
increased brain GABA levels have been shown to occur 
acutely following SSRI treatment [143]. Ultimately, more 
work is needed to fully understand the mechanism of action 
of SSRIs in PMDD. Combined estradiol–progestin oral 
contraceptives (OCPs), also used in the treatment of PMDD, 
may derive their effect by stabilizing neurosteroid signaling 
through suppression of gonadotropin production which, 
by preventing ovulation, prevents the luteal phase-related 
surge in progesterone. This hypothesis is supported by two 
observations: OCPS are effective when given continuously 
but not conventionally (with one hormone free week to 
precipitate menstruation) [144–147] and shorter hormone-
free intervals (and thus less variation in hormone levels) 
have been associated with greater benefit compared with 
placebo [146, 147]. It should be noted however that the 
findings for OCPs are both scant and inconsistent [148, 149].

Recent experiments have investigated compounds that 
stabilize allopregnanolone signaling following ovulation in 
a more targeted fashion[150–152]. Martinez and colleagues 
explored the effects of dutasteride, a 5-alpha reductase 
inhibitor currently US Food and Drug Administration (FDA) 
approved for treatment of benign prostatic hyperplasia, in 
two double-blind, placebo-controlled crossover studies of 
PMDD (one using low-dose, 0.5 mg/day dutasteride, the 
other using high dose, 2.5 mg/day dutasteride) [150]. In 
the low-dose study, increases in allopregnanolone levels 
were observed from the follicular phase to the luteal phase 
irrespective of treatment group, and there was no effect on 
mood cycling in women with PMDD, suggesting that the 
dutasteride 0.5 mg/day had minimal effect on progesterone 
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metabolism and resultant allopregnanolone signaling. In 
the high-dose study, however, dutasteride successfully 
blunted the luteal-phase rise in plasma allopregnanolone 
and was associated with a significant decrease in PMDD 
symptoms, with six of eight participants who received 
high-dose dutasteride no longer meeting criteria for PMDD 
after treatment. Consistent with observations of differential 
sensitivity described above, dutasteride had no effect on 
mood in healthy control women at either dose, despite 
similar effects on allopregnanolone levels.

Another means of blocking allopregnanolone’s effect is 
via isoallopregnanolone, an isomer of allopregnanolone that 
has been shown to antagonize the former’s effects at the 
GABA receptor while exerting minimal influence on baseline 
GABA-mediated  Cl− current [153]. Isoallopregnanolone, 
marketed as Sepranolone by Asarina Pharmaceuticals, is 
currently in phase II of its development for treatment of 
PMDD. The first phase II study of isoallopregnanolone 
(NCT01875718) [151] was unfortunately hampered by 
two major methodological flaws. First, participants with 
non-luteal phase mood symptoms were included, meaning 
non-PMDD mood pathology (MDD, bipolar disorder) may 
have confounded the results. Second, a large percentage of 
women with pure PMDD (31%) had ovulation identified 
either too early or too late due to a technical error with 
the luteinizing hormone (LH) assay, which resulted in 
treatment occurring outside of the luteal phase (in some 
cases, treatment started early and was terminated before the 
end of the luteal phase; in others, treatment started late and 
extended into menses). Despite these issues, the study found 
significant treatment effects both in the whole sample as 
well as in the subgroup of women with confirmed PMDD 
who received treatment as intended [151]. A subsequent set 
of parallel studies of Sepranolone conducted by Backstrom 
et  al. (NCT03697265) found that, while no significant 
difference was observed between two different doses (10 
and 16 mg) of isoallopregnanolone and placebo for total 
symptom scores for the five worst premenstrual days, 
perceived distress scores were significantly lower in the 
isoallopregnanolone group and there was a trend toward less 
subjective impairment [154]. Additionally, when the analysis 
was extended to include nine luteal phase days rather than 
five, the 10 mg dose of isoallopregnanolone was found to 
be significantly better than placebo for total daily symptom 
scores, with significantly fewer participants experiencing 
minimal or no symptoms. It was unclear why the 16 mg 
dose failed to perform similarly, though the investigators 
speculated that differences in group composition (a higher 
percentage of previous non-PMDD affective disorders in 
the 16 mg group) and potential nonlinear dose-response 
characteristics may have contributed to this outcome.

Finally, there is emerging evidence suggesting that 
signaling can be stabilized indirectly through modulation 

of progesterone receptor function. A recent randomized-
controlled trial of ulipristal acetate (UPA), a negative 
selective progesterone receptor modulator (SPRM) approved 
for the treatment of uterine fibroids, found significant 
reduction in PMDD symptoms for UPA relative to placebo 
across 3 months of treatment [152]. Interestingly, this effect 
appeared to be mediated exclusively by improvements in 
mood, as there was no significant difference in physical 
symptoms (e.g., breast tenderness, bloating) between 
UPA and placebo groups. A concurrent substudy [155] 
demonstrated similar benefit of UPA relative to placebo 
(93% response rate for ulipristal versus 53% for placebo) 
and found enhanced functional magnetic resonance 
imaging (fMRI) responses in regions implicated in top-
down emotional control (dorsomedial prefrontal cortex 
and dorsal anterior cingulate cortex) in the treatment group 
during a task designed to measure reactive aggression. 
Deficits in cortical regulation of limbic reactivity have been 
suggested as physiologic markers of decreased tolerance to 
stressful stimuli in PMDD [156], and the findings from the 
UPA substudy provide evidence that these changes may be 
ameliorated by progesterone-modulating treatment.

Ulipristal was hypothesized a priori to have benefit 
in PMDD in large part due to its inhibitory effect on 
progesterone (and consequently, allopregnanolone) 
synthesis, mediated primarily by reduction and stabilization 
of luteinizing hormone release by the pituitary [157]. It 
was therefore surprising that most participants in the first 
UPA study of PMDD (approximately 75%) continued to 
cycle, given that prior studies of uterine fibroid treatment 
demonstrated an ~80% rate of amenorrhea with ulipristal 
administration [158]. This suggests that the effect of 
ulipristal was not mediated wholly by decreased, stabilized 
allopregnanolone levels. A possible explanation is that 
ulipristal may exert its effect, in part, by antagonizing 
intracellular and membrane-bound progesterone receptors 
(PR) within the CNS [158]. Though the relationship between 
progesterone receptors and brain networks underlying affect 
is not fully understood, PR are widely distributed in regions 
critical for emotion regulation [159], and manipulations 
of PR function have been shown to influence mood [160]. 
These effects appear to be mediated by genomic and 
nongenomic actions of PR on classical neurotransmitter 
systems [161, 162] and neuroendocrine function [163].

UPA and other selective hormone receptor modulators 
are particularly appealing due to their tissue specificity, 
addressing the major problem of hormone receptor ubiquity 
and off-target effects. Tissue specificity is dependent on 
several factors, including receptor distribution [164], 
conformational changes induced by ligand binding 
[165], posttranslational receptor modifications [166], 
and interaction with tissue-specific coregulators [167]. 
Tamoxifen, a selective estrogen receptor modulator (SERM), 
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has been an important first line treatment for estrogen-
receptor positive breast cancer for over 30 years; it exhibits 
anti-estrogenic activity in breast tissue, but estrogenic 
activity in liver, endometrium, vagina, and bone, avoiding 
typical anti-estrogenic consequences such as vulvovaginal 
atrophy and osteoporosis [168]. Clomiphene, another SERM 
used for treatment of infertility, stimulates gonadotropin-
releasing hormone by blocking estrogen receptors in the 
hypothalamus while exerting estrogenic/protective effects on 
bone [169, 170]. Ulipristal’s benefit for uterine fibroids lies 
in its relative selectivity for endometrial tissue [171–173] 
but, as above, exerts its effect in part via interaction with 
CNS progesterone receptors. Future research may identify 
other receptor modulators that act selectively in the brain, 
thereby augmenting the psychotropic armamentarium 
without accompanying undesirable side effects.

4  Clinical Perspectives/Discussion

Currently utilized treatments for PMDD are only modestly 
effective. Conservative estimates of SSRI treatment 
response rates appear to be around 60% [133, 174–176], 
and SSRIs may produce untoward side effects that limit 
their use [e.g., sexual dysfunction, gastrointestinal (GI) side 
effects]. Beyond SSRIs, there are few empirically validated 
treatments. Oral contraceptives have mixed evidence, as 
above, and the trials are notable for their significant placebo 
effects [148, 177, 178]. Lithium and quetiapine may offer 
some benefit when first-line treatments fail [179–181], and 
there is a small amount of evidence for supplementation with 
calcium, magnesium, and/or vitamin B6 [182–187]. GnRH 
agonists such as leuprolide can prevent PMDD symptoms 
[9, 188–190] by suppressing pituitary-stimulated ovarian 
steroid synthesis and release altogether, but this approach 
essentially induces menopause (albeit reversibly), resulting 
in vasomotor symptoms, increased risk of osteoporosis and 
cardiovascular disease, and an inability to conceive. These 
treatment limitations, in conjunction with the observation 
that PMDD affects about 5% of women and produces 
morbidity on par with major depressive disorder [191, 
192], make clear the need for the development of targeted 
treatments with greater efficacy and fewer adverse effects.

This article reviews emerging evidence for the 
significance of the relationship between the neurosteroid 
allopregnanolone and GABA in PMDD, with clinical trials 
of dutasteride, isoallopregnanolone, and ulipristal serving 
as proof-of-concept for stabilizing GABA function via 
allopregnanolone antagonism. Though our article focuses 
specifically on the etiopathogenesis of PMDD, other 
considerations for future study exist, including further 
delineation of neural markers that characterize the disorder. 
Readers interested in commentary on how brain imaging 

techniques can facilitate understanding of PMDD are 
encouraged to explore another review recently published in 
this journal [193].

Subsequent large-scale randomized control trials (RCTs) 
are necessary to replicate initial findings for the above-
described interventions that stabilize allopregnanolone 
signaling. Additionally, studies designed to address 
outstanding questions may provide further insight into 
the optimal treatment and underlying pathophysiology 
of PMDD. For instance, what about ulipristal makes it 
ineffective for physical symptoms associated with PMDD, 
in contrast to Sepranolone and dutasteride? How can 
we better characterize the relationship between steroid 
hormone fluctuation and neural circuit function as it 
relates to symptom genesis? Are there factors outside of 
the allopregnanolone–GABA relationship that contribute 
to pathogenesis? Patients with PMDD appear to have a 
reduced response to traditional GABAergic modulators 
like benzodiazepines [194]; can allopregnanolone-
modulating treatments be used to restore sensitivity to other 
treatments that affect the GABAergic system, allowing for 
a combined treatment effect in patients who do not respond 
to monotherapy?

The idea that interfering with allopregnanolone’s 
action can result in symptom improvement may seem 
counterintuitive at first glance, given the clear benefit 
of administration of allopregnanolone in postpartum 
depression [69]. In the case of PPD, the therapeutic effect of 
allopregnanolone appeared consistent with the speculation 
that the precipitous decline in progesterone (and therefore 
allopregnanolone) following delivery results in a deficit 
in GABAergic signaling and subsequent symptoms [69]. 
What could not be explained by this hypothesis, however, 
was the frequent onset of perinatal depression during 
pregnancy (when levels of progesterone are high) [74, 75] 
and the persistence of remission following the withdrawal 
of brexanolone [70]. Similarly, PMDD is characterized 
by mood disturbances precipitated during times when 
progesterone and allopregnanolone are high and/or 
increasing (during the mid-luteal phase), suggesting that 
“withdrawal” from allopregnanolone cannot explain the 
mood dysregulation seen in PPD or PMDD. Nonetheless, 
these ostensibly paradoxical observations are consistent 
with a fundamental principle that exists throughout the 
endocrine system; namely, that changes in hormone levels 
are regulatory signals that can be as important as the 
levels themselves. For instance, the frequency at which 
gonadotropin-releasing hormone is secreted is the major 
determinant of subsequent gonadotropin production: 
rapid pulses stimulate transcription of alpha and LH-beta 
subunits, slow pulses stimulate follicle-stimulating hormone 
(FSH)-beta subunits, and continuous secretion will shut off 
gonadotropin secretion [195]. Similarly, glucocorticoid 
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feedback inhibition of stress-related adrenocorticotropic 
hormone (ACTH) elevation occurs on several different 
timescales: a fast, rate-dependent mechanism and a slow, 
proportional or dose/concentration-dependent mechanism 
[196, 197]. Therefore, PPD and PMDD can be thought of as 
analogous phenomena in the sense that they are the product 
of maladaptive responses to a change in the level of steroid 
hormone present, irrespective of the direction of the change 
(further discussion of the complex behavioral effects of 
progesterone and its metabolites can be found elsewhere) 
[198].

As with PPD, the putative link between GABA, 
allopregnanolone, and mood in PMDD represents a testable 
neurobiological hypothesis that has the potential to generate 
interventions that are specific, rapidly acting, effective, 
and well tolerated. This line of investigation also bears 
promise for the understanding of affective disorders more 
broadly, given both GABA’s role in non-hormone-related 
affective pathology as well as the uniquely predictable 
decompensation/recovery pattern in PMDD that allows for 
investigation of mood state kinetics. Affective disorders 
can be broadly thought of as disorders of affective state, 
meaning that associated symptoms (sadness, anhedonia, 
guilt, etc.) occur as part of a self-organized, replicable 
combination of psychological and physiological variables 
with associated characteristic cognitions (e.g., self 
and object relations). Disorders such as depression are 
heterogeneous in presentation (for instance, 227 different 
symptom permutations may lead to a diagnosis of depression 
according to DSM-5 [199]), but their unifying feature 
is the persistence and relative resistance to perturbation 
of the affective states themselves. This suggests that 
state kinetics—the processes that contribute to initiation, 
maintenance, and termination of behavioral states—are as 
critical to understanding mood disorders as the individual 
symptoms. Studying state kinetics is difficult in disorders 
such as major depression and bipolar disorder, as symptoms 
cannot be reliably induced or terminated. PMDD solves this 
problem, as the onset and offset of symptoms are linked 
to the menstrual cycle, providing multiple, repeatable 
opportunities to study and manipulate mood-state dynamics.

From a physiologic perspective, affective states emerge 
from the interplay of neural networks that regulate attention, 
hedonic response, determination of salience, and assignment 
of affective valence [200]. The dynamic processes by which 
states appear and then disappear are disrupted in depressive 
disorders, suggesting that depression emerges in part as a 
consequence of disturbed choreography between neural 
networks, a process largely mediated by GABAergic 
interneurons that pace pyramidal neuron excitability 
and the cortical oscillations that represent coordinated 
neuronal firing [24]. The observed efficacy of GABAergic 
modulation in PMDD overlays nicely with state-based 

frameworks, as it indicates that restoration or enhancement 
of GABAergic tonic inhibition may destabilize the dominant 
network activity that ostensibly underlies the persistence 
of the depressed state. PMDD also offers the opportunity 
to examine the exact nature of transitions from healthy 
to dysregulated network function, utilizing predictable 
switches into and out of behavioral states to study changes 
in GABA activity and how they produce associated network 
states and behavior.

Taken together, the above factors suggest that PMDD 
represents a model illness for studying the critical physiologic 
processes responsible for affective dysregulation. Though 
studies of hormone-mood relationships (which have focused 
primarily on cortisol and the HPA axis) have historically 
yielded little in the way of therapeutics, advancement in 
scientific tools and a more sophisticated understanding of 
neuronal function, brain network dynamics, and differential 
vulnerability have paved the way for treatments such as 
zuranolone for major depressive disorder, an orally acting 
version of allopregnanolone currently under priority review 
by the FDA [201]. Dutasteride, isoallopregnanolone, and 
ulipristal certainly represent important advances for PMDD, 
but any effectiveness they demonstrate comes with a broader 
implication; namely, that reproduction and reproductive 
hormones should be considered as potentially relevant when 
attempting to understand the susceptibility to and triggering 
of affective disorders writ large. Targeted interventions 
such as those described above may not only mitigate patient 
suffering, but can as well serve as probes that advance our 
understanding of the complex neural system interactions 
governing mood more generally.

5  Conclusions

The relationship between GABA and allopregnanolone is an 
important therapeutic target in PMDD. Early findings from 
studies of dutasteride, isoallopregnanolone, and ulipristal 
support this notion and provide optimism for expansion of a 
treatment armamentarium currently characterized by a small 
number of suboptimal options. PMDD research has potential 
not only to reduce substantial global symptom burden, but 
also to provide critical insights into the pathophysiology 
underlying affective state dysregulation.
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