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Abstract
In the brain, d-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, 
d-serine, the main coagonist of synaptic N-methyl-d-aspartate receptors (NMDARs), is degraded into α-keto acids and 
ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), 
which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is impli-
cated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia 
had lower d-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. 
Inhibiting DAAO activity and slowing d-serine degradation by using DAAO inhibitors to enhance NMDAR function may 
be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research 
in DAAO inhibitors.
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Key Points 

Sodium benzoate and luvadaxistat (TAK-831) are two 
potent d-amino acid oxidase (DAAO) inhibitors. Clinical 
evidence suggests that both may be promising therapeu-
tic agents to treat schizophrenia.

Adjuvant treatment with sodium benzoate improved psy-
chotic symptoms and cognitive impairment in patients 
with chronic schizophrenia.

The results of INTERACT, a phase II trial, revealed that 
add-on TAK-831 improved cognitive function but not the 
negative symptoms of schizophrenia.

The exact mechanism of action of DAAO inhibitors 
remains unclear.

1 Introduction

Schizophrenia is a severe mental disorder, with an incidence 
of approximately 1% in all races [1]. In addition to posi-
tive and negative symptoms, cognitive impairment plays a 
major role in determining the overall function of patients 
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with schizophrenia [2–4]. However, current antipsychotics 
developed based on dopaminergic and serotonergic theories 
have limited efficacy in negative symptoms and cognitive 
impairment [5, 6]. N-methyl-d-aspartate receptor (NMDAR) 
hypofunction is implicated in the pathogenesis of schizo-
phrenia [7–11]. Ketamine and phencyclidine (PCP), two 
NMDAR antagonists, produced schizophrenia-like negative 
symptoms and cognitive impairment [12, 13]. Hyperlocomo-
tion and increased stereotyped behaviors in knockout mice 
with NR1 subunit deficits were attenuated through treat-
ment with antipsychotics [14]. In a genome-wide associa-
tion study (GWAS) by the Psychiatric Genomic Consortium 
[15], 108 loci surpassed genome-wide significance; among 
them, several genes, including GRM3, GRIN2A, SRR and 
GRIA1, were related to glutamatergic transmission. The 
results of a recently published GWAS [16] employing a 
fine-mapping approach supported the pathological roles of 
two glutamatergic transmission-related genes, GRIN2A and 
SP4, in schizophrenia. The structures of NMDARs comprise 
several different combinations of subunits, such as GluN1/
GluN2, GluN1/GluN2/GluN3 and GluN1/GluN3. NMDAR 
activation requires the simultaneous binding of glutamate 
and positive allosteric modulators (glycine or d-serine) to 
the GluN2 subunit and the glycine modulatory site (GMS) 
on the GluN1 subunit, respectively [17]. In general, GMSs 
are not fully saturated [18–20], and a small change in the 
concentrations of coagonists may alter NMDAR activity 
[21]. Clinical trials have demonstrated that some NMDAR-
enhancing agents were beneficial to schizophrenia [22–25], 
even to antipsychotic-resistant schizophrenia [26, 27]. The 
results of a meta-analysis [28] which enrolled 40 randomized 
controlled trials of NMDAR-enhancing agents indicated that 
add-on treatment of NMDAR-enhancing agents significantly 

improved the negative symptoms in schizophrenia, even in 
treatment-refractory schizophrenia.

d-Serine, the main coagonist of synaptic NMDARs, is 
involved in excitatory neurotransmission, synaptic plastic-
ity and cognitive behavior [29–32]. l-Serine is converted 
into d-serine through isomerization reactions catalyzed 
by serine racemase (SR) [33, 34]. Thereafter, d-serine is 
degraded by SR again through an α,β-elimination reaction 
[33, 35] or by d-amino acid oxidase (DAAO) through oxida-
tive deamination [35, 36] and is ultimately removed from the 
synapse by the alanine-serine-cysteine transporter (Asc-1) 
[37, 38]. In the brain, DAAO is a peroxisomal flavoenzyme 
[35, 36]. Through oxidative deamination by DAAO, d-serine 
is degraded into α-keto acids and ammonia; flavin adenine 
dinucleotide (FAD) is simultaneously reduced to dihydrofla-
vine-adenine dinucleotide (FADH2), which is subsequently 
reoxidized to FAD, with hydrogen peroxide produced as a 
byproduct [36] (Fig. 1). Compared with control samples, 
patients with schizophrenia had lower d-serine levels in 
peripheral blood [39, 40] and the cerebrospinal fluid [41] but 
higher DAAO expression and activity in the brain [42–46]. 
Inhibiting DAAO activity and slowing d-serine degradation 
by using DAAO inhibitors to enhance NMDAR function 
may be a new strategy for use in the treatment of schizophre-
nia [47]. The results of INTERACT, a 12-week, multicenter, 
randomized, double-blind, placebo-controlled, parallel-
group phase II trial, showed that luvadaxistat (TAK-831), 
a highly selective and potent DAAO inhibitor, improved 
the cognitive function of patients with schizophrenia [47]. 
Sodium benzoate, another potent DAAO inhibitor, improved 
not only psychotic symptoms and cognitive impairment in 
schizophrenia but also cognitive function in early-stage 
Alzheimer disease and late-life depression [48–51]. DAAO 

Fig. 1  d-Serine metabolism by 
d-amino acid oxidase (DAAO). 
l-Serine is converted into 
d-serine through isomeriza-
tion reactions catalyzed by 
serine racemase (SR) [33, 34]. 
Thereafter, through oxidative 
deamination by DAAO [35, 36], 
d-serine is degraded into α-keto 
acids and ammonia; flavin 
adenine dinucleotide (FAD) 
is simultaneously reduced 
to dihydroflavine-adenine 
dinucleotide (FADH2), which 
is subsequently reoxidized to 
FAD, with hydrogen peroxide 
produced as a byproduct [36]
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inhibitors may be another promising therapeutic approach 
[52, 53] capable of overcoming the limitations of current 
antipsychotics. However, the mechanism of action of DAAO 
inhibitors remains unclear. Evidence suggested that it may 
be related to redox modulation instead of an indirect increase 
in the d-serine level [54].

2  Evidence from Preclinical Studies

Inhibition of DAAO activity reversed schizophrenia-like 
behavior and prepulse inhibition in mutant mice with NR1 
subunit deficits and mice treated with MK-801 [55, 56]. 
Mutant mice with DAAO deficiency exhibited superior rec-
ognition memory performance and elevated D-serine levels 
in the hippocampus as well as increased anxiety-like behav-
iors [57, 58].

Numerous DAAO inhibitors, including 5-methylpyra-
zole-3-carbo-xylic acid (AS057278) [59], 6-chlorobenzo[d]
isoxazol-3-ol (CBIO) [56, 60, 61], 4H-thieno[3,2-b] pyrrole-
5-carboxylic acid (compound 8) [62], sodium benzoate [63], 
4-hydroxy-6-{2-[4(trifluoromethyl)phenyl]ethyl}-pyridazin-
3(2H)-one (TAK-831) [64] and 4-hydroxypyridazin-3(2H)-
one (compound 30) [65] have been investigated.

Chronic administration of AS057278, a selective DAAO 
inhibitor, increased d-serine in the cortex and normalized 
PCP-induced hyperlocomotion in rats [59]. Sershen et al. 
[61] employed the PCP-treated mouse model to explore 
whether CBIO and sodium benzoate increase the d-serine 
level in the brain and inhibit PCP-induced locomotor activity 
or not. The results indicated that d-serine inhibited PCP-
induced hyperactivity and suggested an interaction between 
sodium benzoate and d-serine with unknown mechanisms 
other than DAAO inhibition. Fradley et al. [66] showed that 
TAK-831 improved cognitive deficits and negative symp-
toms in an animal model of schizophrenia. Nagy et al. [65] 
investigated the effects of a novel DAAO inhibitor (com-
pound 30) on cognitive function (measured by passive avoid-
ance learning) and neuronal firing activity in rats. Their 
results revealed that low doses of DAAO inhibitor (com-
pound 30) seemed to exhibit efficacy similar to that of high 
doses of d-serine, with fewer side effects. The results also 
revealed a relationship between the neural and behavioral 
action of DAAO inhibition.

3  Evidence from Clinical Trials

3.1  Sodium Benzoate

Clinical evidence supported that sodium benzoate improved 
not only psychotic symptoms and cognitive impairment in 
schizophrenia but also cognitive function in early-stage 

Alzheimer disease and late-life depression [48–51, 54, 67, 
68]. The contents of those studies are briefly summarized 
in Table 1.

Lane et al. [48] conducted a 6-week, randomized, double-
blind, placebo-controlled trial in which sodium benzoate 
(1 g/day) was administered as an adjuvant therapy to patients 
with chronic schizophrenia who had been stabilized with 
antipsychotics for at least 3 months. The results revealed that 
sodium benzoate improved both the positive and negative 
symptoms of schizophrenia and enhanced cognitive function 
in the domains of processing speed and visual memory. Lin 
et al. [50] conducted a 12-week, randomized, double-blind, 
placebo-controlled trial in which dual NMDAR enhancers, 
sarcosine and sodium benzoate, were applied to treat chronic 
schizophrenia. The results showed that patients treated with 
a combination of sarcosine and sodium benzoate exhibited 
greater cognitive improvement than did those treated with 
sarcosine alone or placebo.

In clinical practice, clozapine is used as the last-line 
antipsychotic for patients with schizophrenia previously 
observed to be refractory to standard treatments with at least 
two specific antipsychotics [1]. Previous studies have indi-
cated that the efficacy of clozapine could not be augmented 
with NMDAR-enhancing agents [69–71]. This finding may 
be attributed to the fact that clozapine itself already acts as 
a potential NMDAR enhancer [72–75], thus attenuating the 
effectiveness of glycine, d-serine, and glycine transporter-1 
(GlyT1) inhibitor. A 6-week, randomized, double-blind, 
placebo-controlled trial [54] investigated the efficacy of 
sodium benzoate as adjunctive therapy for clozapine-resist-
ant schizophrenia. The enrolled patients were allocated into 
three treatment groups: sodium benzoate 1 g/day, sodium 
benzoate 2 g/day and placebo. The results were more prom-
ising than those of previous studies on clozapine augmen-
tation with other NMDA-enhancing agents [70–72]; both 
doses of sodium benzoate improved the negative symptoms 
and benzoate 2 g/day improved positive symptoms. The 
serum DAAO levels of the patients in the 2 g/day sodium 
benzoate group decreased more compared with those of the 
patients in the placebo group. However, the blood levels of 
five amino acids (d-serine, l-serine, glycine, d-alanine and 
l-alanine) in each of the groups did not change significantly 
from baseline to the endpoint. Importantly, the changes of 
serum catalase (CAT), a vital antioxidant, were correlated 
with the improvement of overall symptoms and positive 
symptoms in the sodium benzoate groups [54].

Lin et al. [49] conducted a 24-week, randomized, double-
blind, placebo-controlled trial which showed that sodium 
benzoate significantly improved cognitive function in patients 
with early-stage Alzheimer disease. Recently, sodium benzo-
ate was also found to improve cognitive function in women 
(but not in men) with behavioral and psychological symptoms 
of dementia [67]. Lane et al. [68] performed the resting-state 
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functional magnetic resonance imaging to analyze regional 
homogeneity and local functional connectivity in patients with 
mild cognitive impairment. The results showed that sodium 
benzoate was able to alter the brain activity; the alteration of 
brain activity was correlated with the change in cognitive func-
tion of the patients. In another study [51], patients with geriat-
ric depression were treated with sodium benzoate, sertraline 
(a commonly used antidepressant) or placebo for 8 weeks; the 
results showed that compared with the placebo group, those 
treated with sodium benzoate (but not those treated with ser-
traline) had substantial improvements in cognitive function 
and perceived stress scores.

In contrast to other clinical trials for chronic, treatment-
resistant, or clozapine-resistant schizophrenia [48, 50, 54], a 
12-week, randomized, double-blind, placebo-controlled trial 
[76] that evaluated the efficacy of sodium benzoate (1000 mg/
day) as an adjuvant treatment for early psychosis revealed that 
compared with placebo controls, add-on treatment of sodium 
benzoate did not produce better outcomes. The results were 
possibly influenced by recruiting patients who were younger 
(mean age of 21 years) with recent-onset disorder and a 
broader range of diagnoses in this study, including schizophre-
nia, schizophreniform disorder, affective psychosis, delusional 
disorder and other forms of psychosis not otherwise specified. 
The previous study reported the difference between bipolar 
disorder and schizophrenia on d-serine levels. Compared with 
the control subjects, patients with bipolar disorder had higher 
d-serine levels [77].

3.2  TAK‑831

TAK-831is a highly selective DAAO inhibitor. Yoneyama et al. 
[64] investigated the brain distribution of TAK-831 in rats. The 
results showed remarkably different distribution between target 
(cerebellum) and reference (frontal cortex) regions. At a daily 
dose of 600 mg, TAK-831 achieved a target occupancy rate 
of over 90% [78] and was well tolerated with mild adverse 
events [79]. The results of the phase II trial released in March 
2021 revealed that add-on luvadaxistat (TAK-831) improved 
not negative symptoms but cognitive function in patients with 
schizophrenia [47]. Further, there has been an ongoing ran-
domized, double-blind, parallel, placebo-controlled phase II 
trial with a 12-month open-label extension to evaluate the effi-
cacy of add-on luvadaxistat (TAK-831) in treating cognitive 
impairment in patients with schizophrenia [80].

4  Analysis of the Mechanism of Action 
of DAAO Inhibitors

The exact mechanism of action of DAAO inhibitors remains 
unclear [53]. Preclinical and clinical studies revealed that 
TAK-831 increased d-serine levels [66, 79], whereas sodium 

benzoate did not change d-serine levels [61, 63]. Instead, 
the correlation between the changes in the catalase and the 
improvements of overall symptoms and positive symptoms 
was found in patients treated with sodium benzoate [54]. 
Overall, the mechanism of action of DAAO inhibitors may 
still be related to the enhancement of NMDAR function [53]. 
Schizophrenia is a highly heterogeneous disease in which 
oxidative stress may play a central role in pathogenesis 
[81]. Accumulating evidence suggests that schizophrenia 
is associated with redox imbalance [81, 82]. Lower acon-
itase, nicotinamide adenine dinucleotide dehydrogenase 
(NADH), and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) levels were identified in patients with schizo-
phrenia than in people without schizophrenia in postmor-
tem studies [83]. Analyses of plasma and cerebrospinal 
fluid revealed that patients with schizophrenia had lower 
glutathione (GSH) levels and higher oxidized glutathione 
levels than people without schizophrenia [84, 85]. Higher 
levels of thiobarbituric acid–reactive substances (TBARS) 
and lower catalase (CAT) and superoxide dismutase (SOD) 
activity were observed in schizophrenia [86, 87]. Changes 
in GSH, SOD and CAT levels were associated with changes 
in clinical symptoms of schizophrenia, indicating that these 
redox-involved factors may have potential to be biomarkers 
of schizophrenia and may be helpful in monitoring disease 
progression [54, 86–90]. There is a reciprocal connection 
between NMDAR activity and redox modulation. Cysteine 
residues of NMDAR are involved in redox modulation [91], 
and NMDAR dysfunction may lead to decreased antioxidant 
capacity, resulting in oxidative stress which in turn causes 
downregulation of NMDARs [82, 92]. Both ketamine and 
phencyclidine decreased glutathione levels in rat models of 
schizophrenia [93, 94]. Deficiency of the NMDAR subunit 
GluN2A resulted in vulnerability to redox dysregulation 
and delayed the maturation of paravalbumin interneurons 
[95, 96] which is considered to be a key pathophysiological 
mechanism of schizophrenia [82, 97, 98].

4.1  Sodium Benzoate Enhances NMDAR Function 
Through its Antioxidant Properties

DAAO inhibitors, such as sodium benzoate, may enhance 
NMDAR function through antioxidant activity instead of by 
inhibiting DAAO. Evidence showed that sodium benzoate 
modulates antioxidant defense mechanisms in a dose-depend-
ent manner [99–103]. El-Shennawy et al. [99] administered 
sodium benzoate to male rats at doses of 0, 1, 10, 50, 100, 
250, 500 and 1000 mg/kg/day for 90 consecutive days. The 
results revealed that subchronic use of sodium benzoate was 
risky at both low and high doses, and the toxicity of it was 
dose dependent. Sodium benzoate impaired the reproductive 
system, resulting in decreased sperm count, sperm motility, 
testicular 17β-hydroxysteroid dehydrogenase (17β-HSD) and 
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17-ketosteroid reductases (17-KSR) activity; increased abnor-
mal sperm and alteration of hormone levels. Overall, as the 
dose of sodium benzoate increased from 100 mg/kg/day, tes-
ticular nitric oxide (NO), malondialdehyde (MDA), xanthine 
oxidase (XO), tumor necrosis factor (TNF)-α, interleukin (IL)-
6, p53 protein, and caspase-3 activity increased significantly; 
by contrast, levels of the antioxidant enzymes glutathione per-
oxidase (GPx), glutathione S-transferase (GST), CAT, SOD, 
GSH and total antioxidant capacity (TAC) decreased signifi-
cantly. Olofinnade et al. [102] distributed 40 male rats into 
four groups: the control group and three groups that received 
sodium benzoate at doses of 125, 250 and 500 mg/kg/day, 
respectively, for 8 consecutive weeks. Consequently, the hema-
tological effects of and oxidative stress induced by sodium 
benzoate were also dose dependent. Significant decrease in 
serum MDA levels and increase in TAC were found as the 
dose of sodium benzoate increased. In addition, a significant 
increase in serum SOD and decrease in serum TNF-α were 
found in the group that received sodium benzoate at 125 mg/
kg/day. However, the caspase-3 levels and renal function of 
the sodium benzoate groups did not differ significantly from 
those of the control group. Khan et al. [104] distributed 25 
male rats into five groups: the control group and four groups 
that received sodium benzoate at doses of 70, 200, 400 and 
700 mg/kg/day, respectively, for 30 consecutive days. The 
activities of antioxidant enzymes SOD, CAT, GST and GPx 
in the liver gradually decreased in the groups receiving the 
daily doses of 200 mg/kg and higher. These changes were not 
observed in the group that received sodium benzoate at 70 mg/
kg/day. The mitochondria are the primary sites of intracel-
lular reactive oxygen species (ROS) production [105, 106]. 
Mitochondrial dysfunction causes excessive ROS production, 
resulting in oxidative stress. Protein DJ-1, with antioxidant 
properties, is involved in regulating the quality of and oxida-
tive stress in mitochondria [107]. Xu et al. [103] observed that 
a single dose of sodium benzoate (i.e., 100 mg or 200 mg/
kg) improved cognitive function, upregulated mitochondrial 
DJ-1 and the antiapoptotic factor Bcl-2 and reduced the levels 
of proapoptotic factors (e.g., cleaved caspase-3 and cleaved 
caspase-9) and ROS production in rats with intracranial hem-
orrhage. By contrast, with higher doses and prolonged use of 
sodium benzoate, the production of excessive levels of mito-
chondrial transcription factor A (mtTFA) and mitochondrial 
uncoupling protein 2 (UCP2), proteins associated with mito-
chondrial function, may lead to mitochondrial dysfunction 
[99].

5  Conclusions

An animal study showed that d-serine had poor ability to 
pass the blood–brain barrier (BBB) and higher doses were 
thus required [108]; administration of d-serine, particularly 

at high doses [109], increased the risk of nephrotoxicity in 
rats [110]. However, clinical trials reported nonsignificant 
increases in nephrotoxicity induced by high-dose (>60 mg/
kg/day) d-serine administration [111–113]. Whether long-
term administration of d-serine in high doses inflicts nephro-
toxicity or peripheral nerve injury [114] in humans remains 
uncertain. Co-administration of DAAO inhibitors reduced 
the required d-serine dose and DAAO activity, thus attenu-
ating the risks of side effects [56, 115]. d-Serine-induced 
nephrotoxicity was not reported in DAAO knockout rats 
[116]. Possibly, high-dose d-serine degraded by DAAO 
may increase the production of hydrogen peroxide [117] 
and reduce glutathione concentrations [118], leading to 
cell damage and oxidative stress. Antioxidant properties of 
sodium benzoate may also prevent oxidative stress which 
may be induced by high-dose d-serine. Collectively, DAAO 
inhibitors have the potential to serve as an effective treat-
ment for schizophrenia. The efficacy and safety of TAK-
831 and sodium benzoate are dose-dependent [66, 79, 102, 
103]. In rat models, the toxicity of sodium benzoate on the 
reproductive system and liver and renal function were dose- 
and duration-dependent [99, 104, 119, 120]. No side effects 
have been observed in previous clinical trials [48–51, 54, 
76], which may be due to the doses used being below the 
maximum dose recommended by the Food and Drug Admin-
istration [121]. In the future, researchers should conduct tri-
als that involve various populations and test several dosages 
of DAAO inhibitors with longer study duration to further 
elucidate the clinical efficacy and safety of DAAO inhibitors 
as a potential treatment for schizophrenia and other neuro-
cognitive disorders.
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