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Abstract
Therapeutic deficiencies with monoaminergic antidepressants invites the need to identify and develop novel rapid-acting 
antidepressants. Hitherto, ketamine and esketamine are identified as safe, well-tolerated rapid-acting antidepressants in 
adults with treatment-resistant depression, and also mitigate measures of suicidality. Psilocybin is a naturally occurring 
psychoactive alkaloid and non-selective agonist at many serotonin receptors, especially at serotonin 5-HT2A receptors, and 
is found in the Psilocybe genus of mushrooms. Preliminary studies with psilocybin have shown therapeutic promise across 
diverse populations including major depressive disorder. The pharmacodynamic mechanisms mediating the antidepressant 
and psychedelic effects of psilocybin are currently unknown but are thought to involve the modulation of the serotonergic 
system, primarily through agonism at the 5-HT2A receptors and downstream changes in gene expression. It is also established 
that indirect effects on dopaminergic and glutamatergic systems are contributory, as well as effects at other lower affinity 
targets. Along with the direct effects on neurochemical systems, psilocybin alters neural circuitry and key brain regions pre-
viously implicated in depression, including the default mode network and amygdala. The aim of this review is to synthesize 
the current understanding of the receptor pharmacology and neuronal mechanisms underlying the psychedelic and putative 
antidepressant properties of psilocybin.

Key Points 

Psilocybin is a psychoactive alkaloid with psychedelic 
and putative antidepressant effects. Its actions are pro-
posed to be primarily mediated by agonism at serotonin 
5-HT2A receptors and downstream changes in gene 
expression.

Psilocybin modulates the serotonergic system and 
indirectly affects the dopaminergic and glutamatergic 
systems.

Psilocybin alters neural circuitry between areas such 
as the default mode network and amygdala, which may 
mediate antidepressant effects.

1  Introduction

Major depressive disorder (MDD) is a prevalent multifacto-
rial mood disorder and a leading cause of long-term dis-
ability worldwide [1]. Much of the socioeconomic burden 
associated with MDD is attributable to treatment-resistant 
depression (TRD), characterized by failure to achieve full 
remission following treatment with two conventional antide-
pressants [2, 3]. In 2013, TRD was reportedly responsible for 
a 40–50% increase in direct and indirect medical care costs 
when compared with treatment-responsive depression [4]. 
Conventional first-line antidepressants, including selective 
serotonin reuptake inhibitors (SSRIs), norepinephrine reup-
take inhibitors (NRIs), and serotonin-norepinephrine reup-
take inhibitors (SNRIs), often exhibit a therapeutic delay 
of at least 2 weeks [5], and are associated with treatment-
limiting adverse effects (e.g., sexual dysfunction) [6, 7]. In 
recognition of the inadequacy of conventional first-line anti-
depressants and the unmet needs of individuals with TRD, 
along with the recent US Food and Drug Administration and 
European Medicines Agency approval of esketamine [8], 
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there is a growing interest in rapid-acting antidepressants 
(RAADs), characterized by therapeutic efficacy following 
one or few doses [5]. Although there is no well-characterized 
time frame of therapeutic action for RAADs, these treat-
ments show therapeutic efficacy within a few days to a week 
[9]. For example, ketamine, a RAAD, was shown to alleviate 
depressive symptoms within hours of administration, which 
stands in contrast to monoamine-based antidepressants that 
require at least 4 weeks before therapeutic benefits are exhib-
ited [10–12].

Although the pathophysiology and neurobiology of 
depression are not completely understood, the traditional 
‘serotonin hypothesis’ of MDD asserts that a deficit of cen-
tral serotonin subserves depressive symptoms [13]. Recent 
studies have suggested additional mechanisms wherein fac-
tors associated with depression such as chronic stress can 
result in increased levels of extracellular glutamate and 
overactivity of N-methyl-d-aspartate (NMDA) receptors. 
This imbalance in glutamatergic neurotransmission ulti-
mately results in excitotoxic effects and subsequent neu-
ronal atrophy in brain regions associated with depression, 
including, but not limited to, the prefrontal cortex (PFC) 
and hippocampus [14–22]. It is important to note, however, 
that  these recent studies stand in contrast to the widely 
accepted theory of glutamatergic activity, in which neuronal 
atrophy in the brain reward circuitry results in decreased glu-
tamatergic synaptic excitation [19]. The foregoing findings 
are proffered as explanatory for the antidepressant properties 
of ketamine, an NMDA antagonist proven effective for the 
rapid-onset treatment of TRD and MDD with suicidality [8]. 
However, the non-enduring efficacy of ketamine in many 
patients who are acute responders, as well as the absence of 
sufficient remission in most patients taking ketamine, invites 
the need for identifying and developing alternative RAADs 
[23, 24]. As such, there is a renewed interest in the potential 
role of classical psychedelics for the treatment of TRD.

Classical psychedelics include three distinct groups of 
hallucinogens: tryptamines, including psilocybin; lyser-
gamides such as lysergic acid diethylamide (LSD), and 
phenethylamines such as mescaline [25]. Of these, psilo-
cybin has generated the most interest because of its pro-
posed similarity to the rapid-acting properties of ketamine 
as well as its low physiological toxicity and abuse liability 
[26]. In addition, psilocybin has a short acute window of 
2–6 h, which contributes to more manageable and inex-
pensive clinical trials, differing greatly from mescaline 
and LSD with acute windows of 6–8 h and 8–20 h, respec-
tively [27, 28]. Although preliminary studies have sup-
ported the efficacy of psilocybin [29–31], a recent phase II 
clinical trial comparing the relative antidepressant effects 
of psilocybin with the SSRI escitalopram found no sig-
nificant differences in antidepressant effects between these 
two agents. In the aforementioned study, patients in the 

psilocybin group received two separate 25 mg doses  of 
psilocybin 2 weeks apart plus 6 weeks of daily placebo. 
Those in the escitalopram group received two separate 1 
mg doses of psilocybin 3 weeks apart plus 6 weeks of 
daily oral escitalopram. In addition, both the psilocybin 
and escitalopram groups received psychotherapy. Subse-
quently, the psilocybin group reported a mean change of 
−8.0 ± 1.0 points in 16-item Quick Inventory of Depres-
sive Symptomatology-Self-Report (QIDS-SR-16) scores 
from baseline, whereas the escitalopram group reported 
a mean change of −6.0 ± 1.0 points (p = 0.17). The 
foregoing results provide important insights regarding 
the efficacy of psilocybin, specifically, that psilocybin 
did not perform better than a conventional monoamin-
ergic antidepressant. However, due to the nature of the 
study design and limitations in the analytic methodology 
employed (e.g., analyses of secondary outcomes were not 
corrected for multiple comparisons), the relative anti-
depressant efficacy of psilocybin remains incompletely 
understood [32].

Psilocybin is a naturally occurring psychedelic found 
in the Psilocybe genus of mushrooms [30]. It exists as a 
prodrug that is dephosphorylated upon administration in 
the stomach, intestines, kidneys, and blood through the 
action of alkaline phosphatases and esterases into its active 
form, psilocin [33]. Psilocybin and other tryptamines are 
structurally similar to serotonin. Notably, the indole ring at 
the fourth position of the tryptamine structure of psilocin 
is reportedly responsible for the hallucinogenic effects 
associated with the drug [26]. In the liver, further metab-
olism of psilocin  through demethylation and oxidative 
deamination by monoamine oxidase (MAO) or aldehyde 
dehydrogenase  reduces the hallucinogenic effects [33]. 
Although numerous studies have positioned psilocybin as 
an emerging RAAD, the exact mechanisms responsible for 
its putative antidepressant and anxiolytic effects remain 
incompletely characterized. In addition, the role of the 
psychedelic experience in mediating antidepressant effects 
is unknown [34, 35].

Herein, the aim of this review is to present the current 
understanding of the putative antidepressant mechanisms 
of psilocybin. This review is not intended to synthesize 
the extant evidence regarding the efficacy of psilocybin 
for the treatment of depression and other mental disorders 
(reviewed elsewhere) [36], but rather to outline key mech-
anistic properties that may mediate its RAAD activity and 
psychedelic effects. The overarching aim is to provide a 
synthesis of the pharmacology, creating an important scaf-
fold for identifying derivatives for future drug discovery 
and development.
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2 � Receptor Pharmacology

2.1 � 5‑HT2A Receptor Agonism and Downstream 
Effects

The psychedelic effects of all classical psychedelics 
are mediated by full or partial agonism at serotonergic 
5-hydroxytryptamine 2A (5-HT2A) receptors (5-HT2ARs) 
[25, 37]. The actions of psilocybin on the 5-HT2ARs and 
the possible involvement of these receptors in mediating 
the hallucinogenic effects of psilocybin were first reported 
by Glennon et al. in 1984, who noted a significant correla-
tion between the binding affinities for 5-HT2 receptors and 
the dose that produced 50% of the maximal effect (ED50) 
[38].

5-HT2ARs are highly expressed in the visual cortex, 
thus, receptor activity in visual cortical neurons may be 
sufficient to mediate psychedelic effects, specifically the 
propensity for visual hallucinations associated with psilo-
cybin [25]. Increased expression of 5-HT2ARs may also 
underlie disease states associated with visual hallucina-
tions, including, but not limited to, schizophrenia and Par-
kinson’s disease [39]. Accordingly, overactivity in cortical 
5-HT2ARs is likely contributory to the characteristic visual 
hallucinations associated with psilocybin. When compared 
to ketamine employed as a dissociative anesthetic, psilocy-
bin elicits significant visual hallucinatory effects but lacks 
strong negative effects  associated with the psychedelic 
experience (e.g., loss of physical integrity, pronounced 
anxiety, emotional withdrawal) [40, 41].

Multiple 5-HT2AR knockout and receptor antagonism 
experiments support the role of these serotonin recep-
tors in mediating the psychedelic effects of psilocybin. 
Administration of the 5-HT2AR antagonist, ketanserin, to 
healthy humans attenuated hallucinatory effects following 
psilocybin administration. In comparison, antagonism at 
other 5-HT2 receptors, such as the 5-HT2C receptors, did 
not completely attenuate psilocybin-induced hallucinatory 
effects [42, 43]. Likewise, administration of psilocybin 
to 5-HT2AR knockout mice resulted in no head-twitch 
response, likely corresponding to attenuated hallucinatory 
effects. In addition, re-expression of 5-HT2ARs in cortical 
pyramidal neurons was able to successfully restore hallu-
cinogen-induced head twitching [44, 45]. The results of 
these mice studies strongly suggest that the hallucinatory 
effects of psilocybin are mediated by 5-HT2ARs; however, 
other factors characteristic of a psychedelic experience 
(e.g., locomotor responses, anxiolytic effects, alterations 
in time perception) were not investigated [46].

Downstream effects at the 5-HT2ARs are mediated by 
secondary messenger signaling and alterations in gene 
expression [25]. Multiple studies have suggested that 

hallucinogenic 5-HT2AR agonists elicit different down-
stream mechanisms when compared with non-halluci-
nogenic 5-HT2AR agonists [47]. It is important to note 
that binding to other 5-HT2 and non-5-HT2 receptors 
also contributes a role in mediating the psychopharmaco-
logical actions of psilocybin. Experiments conducted by 
González-Maeso et al. determined that activation of phos-
pholipase C-β is elicited by both 5-HT2AR hallucinogens 
(e.g., LSD) and non-hallucinogens; however, activation of 
phospholipase C-β through coactivation of heterotrimeric 
Gq/11 and pertussis toxin-sensitive Gi/o proteins is unique 
to hallucinogens, including psilocybin. In addition, co-
activation of Gi/o requires Gβγ subunit-mediated activa-
tion of Src [48]. These Gi/o proteins are further coupled 
to metabotropic glutamate receptor 2 (mGlu2) receptors, 
ultimately forming a co-expressed 5-HT2A/mGlu2 complex 
[47]. Formation of the 5-HT2A/mGlu2 complex has been 
shown to be a key component in the hallucinatory effects 
of certain 5-HT2AR agonists.

 In mGlu2-knockout mice, administration of the sero-
tonergic hallucinogens 4-iodo-2,5-dimethoxyphenyl-iso-
propylamine (DOI) and LSD did not induce head-twitch 
behavior [49]. Additionally, administration of DOI in 
mGlu2-knockout mice over-expressing a chimeric mGlu2 
construct which cannot be complexed with 5-HT2ARs in 
the frontal cortex did not restore head-twitch behavior [50, 
51]. Binding of hallucinogens to the foregoing complex ulti-
mately resulted in downstream G protein signal transduc-
tion and unique gene effects. In contrast, non-hallucinogenic 
5-HT2AR agonists induced the foregoing events through a 
different signal transduction cascade. This difference in G 
protein activation and specific signaling pathways between 
5-HT2AR hallucinogens and non-hallucinogens  is referred to 
as the ‘agonist trafficking of receptor signaling theory’ [52].

Administration of LSD to several 5-HT2AR-expressing 
brain regions is associated with increased expression of 
early growth response genes; egr-1 and egr-2, as well as 
c-fos, jun-B, period-1, gpcr-26, fra-1, N-10, and I-κBα, and 
decreased expression of sty-kinase [41]. Alterations in the 
expression profiles of egr-1 and egr-2 are unique to 5-HT2AR 
hallucinogens, whereas increased c-fos expression occurs 
upon administration of both hallucinogenic and non-hallu-
cinogenic 5-HT2AR agonists (e.g., R-lisuride). The forego-
ing gene expression findings may present key mediators in 
5-HT2AR agonist-induced hallucination, such that egr-1 and 
egr-2 expression may be necessary for the induction of hallu-
cinogenic effects, whereas c-fos expression corresponds only 
to neuronal activity at the 5-HT2ARs and is not sufficient 
to modify downstream pathways that produce hallucinatory 
effects [41, 48]. Expression of egr-1 has previously been 
implicated in neuronal plasticity [53]. Electrical stimulation 
of the perforant pathway and subsequent induction of long-
term potentiation (LTP) resulted in increased expression of 
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egr-1 in the ipsilateral granule cell neurons. As such, egr-
1 expression occurs in conditions conducive to synaptic 
enhancement (e.g., LTP), suggesting that psilocybin may 
activate key neuroplastic pathways underlying its putative 
antidepressant effects [53, 54].

Hallucinogenic 5-HT2AR agonists also show differences 
in signaling cascades, when compared with non-halluci-
nogenic 5-HT2AR agonists, through varied β-arrestin-2 
expression and subsequent β-arrestin-2-dependent mecha-
nisms. Multiple studies conducted by Schmid et al. have 
demonstrated that serotonin-induced head twitching in mice 
is normally partially mediated through β-arrestin-2 interac-
tions. In comparison, the hallucinogenic 5-HT 2AR agonist 
DOI induces head twitching independent of β-arrestin-2 
interactions [55, 56]. Taken together, the foregoing findings 
present important differences in signaling cascades between 
hallucinogenic and non-hallucinogenic 5-HT2AR agonists.

Although the visual hallucinatory effects of psilocybin 
are largely associated with increased activity in 5-HT2ARs of 
the visual cortex, previous studies have suggested that over-
expression of 5-HT2ARs is present in patients with MDD, 
with expression correlating positively to the severity and 
duration of depression [39]. As a result, downregulation of 
5-HT2ARs may be associated with the putative antidepres-
sant and anxiolytic properties of psilocybin [36]. However, 
the mechanism of 5-HT2AR overexpression in depressed 
patients is not well characterized. In accordance with the 
foregoing observation, re-expression of 5-HT2ARs in the 
PFC in 5-HT2AR knockout models (i.e., rescue experiments) 
restored anxiety symptoms [57]. Collectively, these find-
ings suggest a possible role for 5-HT2AR downregulation 
and desensitization in mitigating depressive and anxious 
symptoms [58].

The downregulation of 5-HT2ARs by psilocybin may be 
mediated via brain-derived neurotrophic factor (BDNF). A 
mouse model experiment conducted by Trajkovska et al. 
noted a decrease in 5-HT2ARs in mice over-expressing 
BDNF. The preceding result suggests possible downstream 
expression of BDNF following the binding of psilocybin, 
ultimately leading to downregulation of 5-HT2ARs [59]. 
This relationship is further supported by findings that 

glutamatergic modulation of α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid (AMPA) and NMDA receptors on 
cortical pyramidal cells subsequent to 5-HT2AR agonism has 
been shown to increase expression of neurotrophins, includ-
ing BDNF [36]. Glutamatergic modulation of NMDA recep-
tors and increased BDNF are the predominant proposed 
antidepressant mechanisms of ketamine, thus suggesting 
the parallel involvement of this mechanism in mediating 
antidepressant effects of psilocybin [60].

An inflammatory state characterized by a preponderance 
of pro-inflammatory cytokines, most notably tumor necrosis 
factor-alpha (TNF-α) and interleukin 6 (IL-6), has also been 
implicated in the pathogenesis of depression and measures of 
anhedonia [61–66]. Such findings correlate with the accepted 
mechanism of TNF-α in inducing IL-6 synthesis through 
phosphorylation of NFκB and activation of the mitogen-
activated protein kinase (MAPK) pathway via phosphoryla-
tion of p38 MAPK [67, 68]. Multiple studies have shown 
that treatment with proinflammatory cytokines, including 
TNF-α and IL-6, induce depression-like behavior assessed 
via forced swim tests [69, 70]. In addition, other studies 
have indicated a positive correlation between TNF-α and 
IL-6 levels and depressive scores [71, 72]. Moreover, IL-6 
and TNF-α antagonists have previously been proven effica-
cious in treating depressive symptoms [73]. Murine studies 
have shown that agonism at the 5-HT2AR by DOI results in 
downstream inhibition of TNF-α and subsequent inhibition 
of IL-6 release [74]. Furthermore, agonism at the 5-HT2AR 
by psychedelics including LSD, N,N-dimethyltryptamine, 
and psilocybin has demonstrated similar results [75–77]. 
Another study conducted by Nkadimeng et al., which inves-
tigated properties of the comorbidity of heart failure and 
MDD, demonstrated decreased damage to cardiomyocytes 
by TNF-α upon administration of psilocybin [78]. Taken 
together, these results suggest that 5-HT2AR agonism by 
psilocybin and other psychedelics mediates antidepressant 
effects via inhibition of TNF-α and IL-6 release (see Fig. 1).

2.2 � Other Receptors and Modulation 
of Serotonergic, Dopaminergic, 
and Glutamatergic Systems

Psilocin also has moderate affinity (Psilocin dissocia-
tion constant [Ki] <10,000 nM) for non-5-HT2 receptors 
including, but not limited to, 5-HT1A/B/D/E, 5-HT5, 5-HT6, 
5-HT7, alpha2A/B, and dopamine D3 (D3) receptors (see 
Table 1). It also has weak affinity for other 5-HT recep-
tors, including 5-HT3/5/6/7 and imidazoline 1 receptors [41, 
79]. Although it has previously been proposed that psilo-
cybin also has low affinity for dopamine D2 (D2) recep-
tors, it has subsequently been noted that 5-HT2AR agonism 
leads to increased dopamine levels in the ventral stria-
tum resulting in hallucinogenic-like symptoms including 

Fig. 1   Proposed mechanism of action for psilocybin in the treatment 
of major depressive disorder. A The proposed sequence of molecu-
lar mechanisms of psilocybin. Psilocybin is a prodrug that is dephos-
phorylated to the active compound, psilocin. Psilocin then binds to 
5-hydroxytryptamine 2A (5-HT2A) receptors, eliciting downstream 
effects including downregulation of 5-HT2A receptors. B Other pro-
posed downstream effects of psilocybin 5-HT2A receptor agonism  do 
not occur in a specified sequence. These effects include glutamatergic 
modulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors, increased 
brain-derived neurotrophic factor (BDNF) expression and dopaminer-
gic activity, as well as inhibition of tumor necrosis factor-alpha (TNF-
α) and interleukin-6 (IL-6) release [120]. 

◂
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depersonalization and euphoria [80]. Interestingly, pre-
treatment with the D2 receptor antagonist haloperidol fol-
lowed by psilocybin administration produced only a 30% 
reduction in euphoria, derealization, and depolarization, 
with no reduction in visual hallucinations [43, 44]. In 
contrast, addition of a mixed 5-HT2A/CR and D2 receptor 
antagonist, risperidone, reduced psilocybin-induced psy-
chotic effects [41]. These findings may suggest an indirect 
role of the dopaminergic system in eliciting hallucinations, 
as interactions between serotonergic and dopaminergic 
systems have been established [33]. Other studies have 
implicated the necessity of D2 antagonism for reducing 
psychotic effects independently of 5-HT2AR activity [41]. 
As such, the exact mechanism of dopaminergic modulation 
in mediating psychosis remains unclear.

Modulation of the serotonergic and glutamatergic systems 
by psilocybin has also been reported. The actions of psilocy-
bin on the serotonergic system are similar to those of SSRIs, 
occurring via inhibition of the sodium-dependent seroto-
nin transporter (SERT). The foregoing mechanism leads to 
decreased serotonin reuptake, elevated serotonin levels in the 
synaptic cleft, and subsequent increases in serotonergic neu-
rotransmission [79]. Agonism at 5-HT2ARs may also result 
in activation of glutamatergic systems. 5-HT2AR activity 
subsequently increases the activity of pyramidal neurons in 
layer V of the PFC [81, 82]. Studies attribute the increase in 
activity to a glutamate-dependent interaction; early studies 
have implicated activation of presynaptic 5-HT2ARs on glu-
tamatergic thalamocortical afferents projecting to the PFC 
[83]. Recent studies suggest a different mechanism whereby 
activation of postsynaptic 5-HT2ARs on pyramidal neurons 
may lead to increased glutamatergic action [44]. Although 
contrasting views have been proposed, it can be surmised 
that alterations in glutamate release contribute to the puta-
tive rapid antidepressant effects associated with psilocybin.

Other RAADs such as ketamine also exhibit similar mod-
ulatory effects on the glutamatergic system, including but 
not limited to, mGlu2/3 antagonism [84]. The effects on the 
mGlu2/3 receptors are paralleled by the action of psilocybin 
on 5-HT2A/mGlu2. Binding of psilocybin to this complex 
likely results in inhibition of mGlu2 activity. For example, 
administration of the mGlu2/3 agonist LY354740 counteracts 
excitatory effects in cortical pyramidal neurons. Similarly, 
administration of DOI in the presence of LY354740 was not 
able to restore head-twitch behavior in mice whereas admin-
istration of DOI with the mGlu2/3 antagonist LY341495 
increased head-twitch behavior [85, 86].

Psilocybin also acts as a partial agonist with moderate 
binding affinity for the 5-HT1A receptor (Ki = 49.0 nM), spe-
cifically at 5-HT1A autoreceptors in the dorsal raphe nucleus 
(DRN) and median raphe nucleus [87, 88]. Accordingly, 
activity at the 5-HT1A receptor may lead to increased levels 
of serotonin and serotonergic modulation [88]. Decreased 
DRN size has been associated with MDD as the DRN is 
the largest serotonergic nucleus and a significant contribu-
tor to the serotoninergic innervation of the forebrain [89]. 
Alterations in the DRN may result in changes to normal neu-
ral communication and functional connectivity, ultimately 
allowing new connections and signals to be relayed [88]. 
Interestingly, psilocybin lessens 5-HT1A activity through 
partial agonism; however, in comparison to downregulation 
of 5-HT2ARs upon binding, this does not occur with 5-HT1A 
receptors. Rather than contributing to the antidepressant 
effects of psilocybin, dampening of 5-HT1A activity may 
conduce its hallucinatory effects. This has been supported by 
studies demonstrating that antagonism at 5-HT1A receptors 
(as well as 5-HT2A/C and dopamine D2 receptors) restored 

Table 1   Binding affinity of psilocybin and psilocin to 5-HT and other 
monoamine receptors

5-HT 5-hydroxytryptamine, 5-HT1A 5-hydroxytryptamine 1A 
receptor, 5-HT1B 5-hydroxytryptamine 1B receptor, 5-HT1D 
5-hydroxytryptamine 1D receptor, 5-HT1E 5-hydroxytryptamine 1E 
receptor, 5-HT2B 5-hydroxytryptamine 2B receptor, 5-HT2A 5-hydrox-
ytryptamine 2A receptor, 5-HT3 5-hydroxytryptamine 3 receptor, 
5-HT5 5-hydroxytryptamine 5 receptor, 5-HT6 5-hydroxytryptamine 6 
receptor, 5-HT7 5-hydroxytryptamine 7 receptor, α1A alpha-1A adr-
energic receptor, α1B alpha-1B adrenergic receptor, α2A alpha-2A 
adrenergic receptor, α2B alpha-2B adrenergic receptor, α2C alpha-2C 
adrenergic receptor, D1 dopamine 1 receptor, D2 dopamine 2 recep-
tor, D3 dopamine 3 receptor, D4 dopamine 4 receptor, D5 dopamine 
5 receptor, Ki dissociation constant, nM nanometer, SERT sodium-
dependent serotonin transporter

Receptor Psilocybin Ki (nM) [118, 
119]

Psilocin Ki (nM) [79]

SERT > 10,000 3801.0
5-HT1A > 10,000 49.01
5-HT1B > 10,000 219.6
5-HT1D 2119 36.4
5-HT1E 194.8 52.2
5-HT2B 98.7 4.6
5-HT2A > 10,000 107.2
5-HT3 > 10,000 > 10,000
5-HT5 6181.0 83.7
5-HT6 413.5 57.0
5-HT7 597.9 3.5
α1A > 10,000 > 10,000
α1B > 10,000 > 10,000
α2A > 10,000 1379.0
α2B > 10,000 1894.0
α2C > 10,000 > 10,000
D1 > 10,000 > 10,000
D2 > 10,000 > 10,000
D3 > 10,000 2645.0
D4 > 10,000 > 10,000
D5 >  10,000 > 10,000
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normal electroencephalographic changes that occurred upon 
psilocybin administration [79, 90].

3 � Alterations in Neural Circuitry

Currently accepted neural models of MDD are characterized 
by overactivity of the amygdala due to altered connectivity in 
the default mode network (DMN), particularly in the medial 
prefrontal cortex (mPFC) [45, 91, 92]. Numerous functional 
magnetic resonance imaging studies have presented findings 
consistent with these models and suggest psilocybin induces 
decreased activity in brain regions and networks associated 
with MDD, including the amygdala and DMN, which may 
ultimately underlie its therapeutic effects. A study conducted 
by Carhart-Harris et al. reported that psilocybin decreased 
cerebral blood flow and venous oxygenation to the ventral 
medial prefrontal cortex (vmPFC), thalamus, as well as ante-
rior and posterior cingulate cortices (ACC and PCC, respec-
tively) immediately following intravenous infusion (i.e., dur-
ing the psychedelic state) [93]. Decreased blood flow in the 
aforementioned regions is correlated with decreased activity 
and as such implies decreased functional connectivity. In 
addition, cerebral blood flow to the thalamus and ACC was 
found to be positively correlated with the intensity of the 
psychedelic experience. Collectively, these findings suggest 
that psilocybin can normalize activity in the default mode 
network and restore normal neural connectivity in patients 
with MDD. Activation of 5-HT2ARs within the thalamus 
and mPFC may also decrease thalamic activity, leading to 
decreased consciousness, alertness, and sensory signals, 
which contribute to the psychedelic experience [94].

Previous studies have demonstrated the occurrence of over-
activity in the amygdala in response to negative stimuli in 
patients with MDD [95–97]. Using evaluation of affective pic-
tures (i.e., facial expression) conducted in patients with MDD 
post-psilocybin administration, multiple studies have demon-
strated attenuated right amygdala responses to negative stimuli 
and associated induction of positive affective states [25, 26]. 
However, an open-label study on patients with TRD reported 
contrasting findings, revealing that psilocybin increased right 
amygdala activity in response to fearful and happy faces at 
1 day post-treatment [98]. A separate study presented find-
ings consistent with prior models wherein decreased func-
tional connectivity between the vmPFC and right amygdala 
was observed, resulting in antidepressant effects such as 
lowered rumination at 1-week post-psilocybin administra-
tion. The decreased connectivity, however, was associated 
with the occurrence of increased  activity in the amygdala in 
response to fearful and neutral faces [37]. Inconsistent find-
ings reported in the literature may correspond to an alterna-
tive mechanism for the antidepressant effects of psychedelics 

compared with conventional antidepressants; however, further 
research is required.

Widely accepted models of MDD have reported altera-
tions in neuroplasticity, including reduced or maladaptive 
neuroplasticity due to neuronal atrophy, specifically in the 
PFC [99]. In vitro and in vivo studies have also demonstrated 
increased neuritogenesis and spinogenesis in the PFC upon 
5-HT2AR agonism [100]. Conventional antidepressants may 
work to restore and enhance neuroplasticity [101–103]. It 
has been proposed that 5-HT2AR activation increases corti-
cal neural plasticity [100, 104]. These models are consistent 
with the downstream alterations in gene expression occur-
ring upon 5-HT2AR agonism, most notably upregulation of 
BDNF. The role of BDNF and other neurotrophins in the 
pathogenesis of MDD is well understood, although their role 
in neuroplasticity remains heavily debated. Current models 
suggest that BDNF increases neuroplasticity by promoting 
neuronal proliferation and survival [105]. More specifically, 
studies have suggested that BDNF contributes an essen-
tial role in LTP; it is required for late LTP in hippocampal 
neurons, mediated by binding to its receptor, tropomyosin 
receptor kinase B (TrkB) [100, 105–107]. Activation of the 
BDNF-TrkB signaling pathway results in downstream acti-
vation of other signaling cascades, including the Ras/MAPK 
and phosphoinositide 3 kinase (PI3K) pathways. In addi-
tion, upon binding, TrkB recruits phospholipase Cγ, lead-
ing to activation of the calcium/calmodulin kinase pathway. 
Activation of the Ras/MAPK and PI3K signal transduction 
cascades ultimately increases intracellular calcium levels, 
resulting in further activation of important transcription 
factors involved in mediating changes to synaptic gene 
expression, such as cAMP response element binding pro-
tein (CREB) [105, 107]. Several BDNF-TrkB knockout mice 
experiments have supported the role of the BDNF-TrkB 
signaling pathway in mediating LTP. Notably, BDNF mutant 
and TrkB knockout mice were shown to have impaired LTP 
in the hippocampal CA3–CA1 region [108–112]. A study by 
Zhang et al. demonstrated that lipopolysaccharide-induced 
inflammation in mice resulted in a depression-like pheno-
type due to alterations in the BDNF-TrkB signaling pathway 
within the CA3 and dentate gyrus regions of the hippocam-
pus as well as in the PFC and nucleus accumbens [113]. 
Taken together, the foregoing findings highlight a possible 
role of the BDNF-TrkB signaling pathway in mediating the 
antidepressant effects of psilocybin upon 5-HT2AR agonism.

4 � Conclusions

In consideration of the molecular mechanisms presented 
herein, administration of psilocybin may be a potentially 
efficacious treatment for MDD and TRD. The mechanisms 
discussed  may underlie diverse physiological and behavioral 
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outcomes of psilocybin exhibited in human molecular stud-
ies comprising healthy subjects and/or patients with MDD 
(see Table 2). Notwithstanding, large clinical trials further 
demonstrating robust efficacy and safety are required to jus-
tify widespread implementation. In addition, further mecha-
nistic studies are warranted to establish a model of the neural 
modulatory effects of psilocybin in order to understand the 
mechanisms of psychedelics and associated psychedelic 
experience.

Currently, the most widely accepted molecular model of 
the antidepressant and psychedelic effects of psilocybin can 
be attributed to its activity on various 5-HT receptors, nota-
bly, agonism at 5-HT2ARs, instigating downstream changes 
in neuronal gene expression as well as an overall decrease in 
functional connectivity between brain regions implicated in 
MDD, such as the DMN. Ultimately, complex alterations in 
connectivity between neural networks occur, allowing new 
connections in the brain to be formed; this phenomenon has 
been referred to as a ‘pharmaco-physiological interaction’ 
[93].

In light of the association between 5-HT2AR agonism 
and antidepressant effects, it may be useful to consider 
the potential of other 5-HT2AR agonists for the treatment 
of MDD. Pimavanserin (Nuplazid), an antipsychotic drug 
used in the treatment of Parkinson’s disease psychosis, has 
shown promise for the treatment of MDD [114]. In contrast 
to typical antipsychotics, pimavanserin is not a dopamine 
receptor antagonist but rather a combined 5-HT2AR inverse 
agonist and antagonist [115]. Other 5-HT2AR agonists such 
as mescaline, LSD, N, N-dimethyltryptamine, and ayahuasca 
have also demonstrated potential for the treatment of depres-
sion and anxiety. For example, a randomized, double-blind, 
placebo-controlled study reported antidepressant and anxio-
lytic effects upon administration of LSD in patients with 
life-threatening diseases [116]. Similarly, an open-label trial 
reported a significant reduction in depressive symptoms 
with a single dose of ayahuasca; however, antidepressant 
effects of ayahuasca cannot be attributed to 5-HT2AR ago-
nism alone as it also inhibits MAO activity [116, 117]. Other 
studies examining 5-HT2AR psychedelics (e.g., mescaline, 
N,N-dimethyltryptamine) should provide additional insights 
regarding the pharmacodynamics of psychedelics to inform 
future drug discovery.
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