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Abstract
Despite significant progress in the understanding of the frontotemporal dementias (FTDs), there remains no disease-modify-
ing treatment for these conditions, and limited effective symptomatic treatment. Behavioural variant frontotemporal dementia 
(bvFTD) is the most common FTD syndrome, and is characterized by severe impairments in behaviour, personality and 
cognition. Neuropsychiatric symptoms are common features of bvFTD but are present in the other FTD syndromes. Current 
treatment strategies therefore focus on ameliorating the neuropsychiatric features. Here we review the rationale for current 
treatments related to each of the main neuropsychiatric symptoms forming the diagnostic criteria for bvFTD relevant to all 
FTD subtypes, and two additional symptoms not currently part of the diagnostic criteria: lack of insight and psychosis. Given 
the paucity of effective treatments for these symptoms, we highlight how contributing mechanisms delineated in cognitive 
neuroscience may inform future approaches to clinical trials and more precise symptomatic treatments for FTDs.

Key Points 

Current evidence-based treatments to date for neuropsy-
chiatric symptoms of frontotemporal dementias (FTDs) 
modulate serotonergic and dopaminergic systems.

Although off-label use of medications for neuropsychiat-
ric symptoms of FTDs may provide some improvement 
in symptoms, often efficacy is modest at best.

Future clinical trials aiming to treat neuropsychiatric 
symptoms in FTDs may consider targeting the specific 
underlying cognitive mechanisms and neurotransmitter 
systems that contribute to the symptoms and that may 
vary between patients.

1 Introduction

Frontotemporal dementias (FTDs) are a group of neurode-
generative conditions featuring neurodegenerative pathology 
in the frontal and or temporal lobes, and hallmark impair-
ments in behaviour and/or language. The most common type 
of FTD, behavioural variant FTD (bvFTD), typically affects 
adults < 65 years old and is characterized by severe impair-
ments in behaviour, personality and cognition [1]. According 
to the International Behavioural Variant FTD Criteria Con-
sortium (FTDC) revised diagnostic criteria, bvFTD features 
progressive changes in behaviour and cognition, and requires 
at least three of the following: behavioural disinhibition; 
apathy; loss of sympathy or empathy; perseverative, stereo-
typed or compulsive behaviours; hyperorality and dietary 
changes; and/or executive deficits [2]. Of significance, the 
revised criteria do not include the loss of insight that was 
originally described by Neary and colleagues and is a widely 
recognized feature of bvFTD [3]. The neuropsychiatric 
symptoms observed in bvFTD are common in these other 
clinical subtypes of FTD.

Frontotemporal lobar degeneration (FTLD) refers to the 
underlying neuropathological classification that encom-
passes several clinical syndromes including FTD, cortical 
basal syndrome (CBS), progressive supranuclear palsy 
syndrome (PSPS) and amyotrophic lateral sclerosis-fronto-
temporal spectrum disorder (ALS-FTD) (as reviewed by [1, 
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4]). The main FTD syndromes are bvFTD, semantic variant 
primary progressive aphasia (svPPA) and non-fluent variant 
PPA (nfvPPA) [1–3, 5].

The molecular subtypes of FTLD are typified by the 
dominant protein abnormality, which are most commonly 
tau, transactive response DNA binding protein of 43 kDa 
(TDP43), and fused in sarcoma (FUS), Ewing sarcoma pro-
tein and TATA-binding protein associated factor 15 (TAF15) 
(FET proteins) [6]. Recent estimates indicate that approxi-
mately 90% of FTLD are FTLD-tau or FTLD-TDP43 [6, 
7]. Importantly, most cases of FTLD are sporadic, however 
genetic FTD syndromes account for 20% of the disease spec-
trum [4]. Mutations in C9orf72, progranulin (GRN) and 
microtubule-associated protein tau (MAPT) genes account 
for nearly 50% of autosomal dominant inherited FTLD [4]. 
In patients with symptomatic FTD, these three genetic forms 
of FTD are all associated with high prevalence (> 50%) of 
each of the core neuropsychiatric symptoms of FTD [8].

Advances in imaging have revealed patterns of network 
degeneration that are considered important in the pathol-
ogy of bvFTD and contribute to the clinical phenotypes 
and overlapping symptomatology. Lesional and functional 
imaging studies have characterized the salience network 
(SN), which is important in mediating emotional and social 
behaviour [9], with two recent subnetworks proposed; a 
SN-frontotemporal network with impaired empathetic con-
cern and hyperorality, and a SN-frontal network associated 
with significant executive dysfunction [10]. Patients with 
involvement of the semantic appraisal network (SAN), which 
includes the temporal pole, ventral striatum, cingulate and 
basolateral amygdala, exhibit disinhibition, but preserved 
empathy and interpersonal warmth [10]. These overarch-
ing networks are important to consider when evaluating the 
clinical presentation of patients with FTD and will likely be 
informative in more precise targeting of neuropsychiatric 
symptoms.

2  Search Strategy

This article reviews the structural, functional and neuro-
chemical basis for the neuropsychiatric symptoms of FTDs, 
with a focus on bvFTD given the majority of treatment 
studies for neuropsychiatric symptoms in FTD to date have 
focussed on this subtype. While executive function is one 
of the main criteria for diagnosis, it is not discussed as it is 
not commonly considered a neuropsychiatric manifestation.

Medline (PubMed) and PsychINFO databases were used 
to search for studies of pharmacological management of 
neuropsychiatric symptoms of FTD. We used the following 
medical subject heading (MeSH) terms: FTD OR behav-
ioural variant frontal temporal dementia OR frontotempo-
ral lobar degeneration AND treatment OR pharmacological 

therapy. Each neuropsychiatric feature was added to the 
search query individually (i.e. behavioural disturbance OR 
disinhibition OR impulse control; obsessive-compulsive 
behaviours OR compulsions OR obsession; apathy; empa-
thy OR prosocial behaviour; loss of insight OR self aware-
ness; psychosis). All relevant studies between 1990 and 2021 
that were published in English language were reviewed. The 
studies included in this review are found in Table 1.

3  Disinhibition

Abnormal, disinhibited behaviour is often an early and 
prominent sign of bvFTD [1, 5, 11, 12]. Disinhibited behav-
iours can result from dysfunction in action initiation, motiva-
tion or impaired inhibition [13–17]. Impulsivity is a related 
predisposition towards unplanned reaction to stimuli without 
consideration of negative consequence [18]. Patients with 
FTD may exhibit behavioural disinhibition in the form of 
impulsivity, loss of etiquette, excessive or perseverative 
actions, sexual inappropriateness and other transgressive 
behaviours such as shoplifting [19]. Examples of disin-
hibition we have observed in patients with FTD include 
approaching strangers with unwanted comments on appear-
ance without regard for interpersonal boundaries, loss of tact 
in social interactions, inappropriate jocularity, and impulsive 
spending [20].

3.1  Structural and Functional Correlations 
of Disinhibition in Patients with Frontotemporal 
Dementia (FTD)

Studies of disinhibition in FTD have identified involvement 
of networks involving inferior frontal, ventromedial prefron-
tal cortex (VMPFC), orbital frontal cortex (OFC), anterior 
cingulate cortex (ACC), ventral striatum, amygdala, insula 
and temporal areas [21–23], which parallel early lesional 
studies of behavioural disinhibition [24–26]. In a study of 
FTLD patients, clinical measures of apathy and disinhibi-
tion were positively correlated, suggesting an interaction 
between these two symptoms [13]. In a functional study of 
FTLD, patients with a disinhibited-predominant presentation 
demonstrated hypometabolism based on positron emission 
tomography with F-18 fluorodeoxyglucose (18F-FDG-PET) 
in the limbic structures including the cingulate, nucleus 
accumbens, amygdala and hippocampus, whereas apathetic-
predominant patients demonstrated more medial frontal and 
dorsolateral frontal hypometabolism [27]. Consideration of 
the cognitive roles of specific regions and networks most 
affected in patients with disinhibition further supports a 
more precise phenotypic approach when considering how 
to address these symptoms. The OFC has a critical role in 
reversal learning in which behaviour is modified by negative 
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feedback [28, 29]. The lateral prefrontal cortex (PFC) 
including the OFC and insula are implicated in punishment 
avoidance [30]. The nucleus accumbens evaluates risk and 
reward, and together with the amygdala, forms key struc-
tures of the mesolimbic-ventral prefrontal-striatal dopamin-
ergic system for motivation and goal-directed behaviour (as 
reviewed by [21, 31]). Specific motor response inhibition 
has been attributed to a network involving the right inferior 
gyrus, subthalamic nucleus and pre-supplementary motor 
area [32, 33].

3.2  Neurotransmitter Systems Associated 
with Disinhibition in FTD

Dysfunctional neurotransmission within the frontostriatal, 
mesocortical and mesolimbic circuits contribute to the dis-
inhibition and impulsivity in bvFTD [13, 34]. Reduction 
in serotonin and postsynaptic receptor densities have been 
associated with impulsivity and depression [35]. In post-
mortem studies of patients with bvFTD, serotonin 5HT1A 
and 5HT2A receptors were reduced in the hypothalamus, 
frontal and temporal cortices [36, 37]. PET studies have 
demonstrated reduced 5-HT2A receptor binding in bilateral 
ventromedial frontopolar, medial frontal, ACC and midbrain 
in bvFTD [27]. Dopamine dysfunction in FTD contributes 
to the extrapyramidal and neuropsychiatric features of FTD 
(as reviewed by [34]). Using single photon-emission com-
puted tomography (SPECT), Frisoni and colleagues dem-
onstrated reduced uptake in the frontal regions in patients 
with FTD as compared with Alzheimer disease (AD) [38]. 
The nigrostriatal dopamine deficit was demonstrated on 11 
C-2-carbomethoxy-3-(4-fluorophenyl) tropane (11C-CFT) 
PET and likely contributes to extrapyramidal motor dys-
function [39]. In post-mortem studies, decreased dopamine 
was identified in the striatum of patients with FTD [40], 
while higher dopamine levels were detected in frontal areas 
as compared with patients with AD [41].

Glutamate is predominantly regarded as an excitatory 
neurotransmitter with physiologic roles in learning and 
working memory via its actions in the hippocampus and 
dorsolateral prefrontal cortex (DLPFC) [42–44]; however, 
excess glutaminergic function may lead to excitotoxicity 
[45]. In a murine human tau model, N-methyl-d-aspartate 
(NMDA) receptor hypofunction was correlated with repeti-
tive and disinhibited behaviours that were ameliorated with 
an NMDA agonist [46]. Magnetic resonance spectroscopy 
(MRS) in patients with FTD demonstrated reduced gluta-
mate and glutamine levels in the frontal and temporal areas 
[47, 48]. Recently, anti-GluA3 antibodies were isolated in 
23% of patients with FTD [49]. The implications of the anti-
GluA3 antibody in the pathogenesis of FTD is a topic of 
current investigation.

Gamma-aminobutyric acid (GABA) is an inhibitory 
neurotransmitter [50], and lower GABA levels have been 
detected in CSF of participants with poor stop signal reac-
tion time [51]. Using 7 T H-MRS, Murley and colleagues 
demonstrated decreased GABA concentration in the right 
inferior frontal gyrus in patients with FTLD that was asso-
ciated with impaired response inhibition on the stop signal 
reaction time task as compared with healthy controls [52].

3.3  Treatment Approaches to Date for Disinhibition 
in FTD

Following an early study demonstrating improvement in 
behaviour with fluoxetine, sertraline or paroxetine in 11 
FTD patients [53], subsequent studies of selective sero-
tonin reuptake inhibitors (SSRIs) in bvFTD have shown 
variable clinical efficacy for treating disinhibition. In a 
6-week open-label study, the effects of citalopram were 
assessed on broad behavioural disturbances in FTD. Cit-
alopram, titrated to 40 mg daily, reduced disinhibition as 
measured by the Neuropsychiatric Inventory (NPI) and 
Frontal Behavioural Inventory (FBI) [54]. In a single-dose, 
cross-over challenge study targeting impulsivity, citalo-
pram was associated with normalization of an event-related 
potential metric of response inhibition during a go-no-go 
task, though no behavioural effect was observed [55]. In a 
placebo-controlled crossover study of patients with bvFTD 
targeting behaviour and cognition broadly, paroxetine did 
not improve outcomes on the NPI or Cambridge Behavioural 
Inventory (CBI) at 6 weeks [56]. Furthermore, paroxetine-
treated patients had decreased accuracy on paired learn-
ing, reversal learning and delayed pattern recognition [56]. 
Trazodone is primarily a serotonin 5-HT2A antagonist and 
serotonin reuptake inhibitor that increases serotonin in the 
frontal cortex [57]. In a placebo-controlled trial evaluating 
neuropsychiatric behaviours in FTD, treatment with tra-
zodone improved NPI total score and agitation at 6 weeks 
[58]. Subscore analysis revealed significant improvement in 
eating abnormalities, irritability, agitation and depressive 
symptoms but not disinhibition specifically [58]. In a small, 
placebo-controlled cross-over study, a single dose of meth-
ylphenidate reduced risk-taking on the Cambridge Gamble 
Task (CGT) versus placebo in patients with bvFTD [59]. 
The benefit was attributed to improved dopamine transmis-
sion between the midbrain and ventral striatum, and activity 
within the OFC; however, these results must be reproduced 
before general clinical recommendation [59]. In a cross-
over study of eight patients with FTD comparing dextro-
amphetamine 20 mg and quetiapine 150 mg on a variety of 
behaviours in FTD, dextroamphetamine was associated with 
a reduction in the total NPI score in comparison to baseline, 
with a noted improvement in disinhibition. No treatment 
effect was observed with quetiapine [60]. Aripiprazole is an 
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atypical antipsychotic that acts as an antagonist of the sero-
tonin 5-HT2A receptor and agonist of the serotonin 5-HT1A 
and dopamine D2 receptors [61]. Several case reports have 
demonstrated some improvement in behavioural disinhibi-
tion in patients with FTD [61]. Treatment with typical and 
atypical antipsychotics is associated with an increased risk 
of cardiovascular adverse events and mortality in the elderly, 
as well as increased sensitivity to extrapyramidal side effects 
in some patients with FTD, which caution against use in 
patients with FTD [62, 63].

Cholinesterase inhibitors have not demonstrated con-
sistent benefit in bvFTD. An early open-label study com-
paring rivastigmine or standard treatment (antipsychotic, 
benzodiazepine and selegiline) reported that rivastigmine 
improved the NPI total score, with greatest improvement in 
NPI agitation, appetite and eating subscales [64]. However, 
subsequent studies of cholinesterase inhibitors have not rep-
licated this, with worsening observed in some behaviours. 
In an open trial of donepezil versus behavioural measures, 
patients treated with donepezil had worsening disinhibition 
and compulsive behaviour as measured by caregiver reports 
and FTD Inventory scores [65]. In a placebo-controlled 
extension trial of galantamine in patients with bvFTD and 
PPA, there was no overall difference in behaviour as indexed 
by FBI, Clinical Global Impression—Severity (CGI-S) or 
Clinical Global Impression—Improvement (CGI-I) scales; 
however, galantamine-treated patients in the PPA subgroup 
demonstrated stable language function [66].

Despite the purported role of glutamate transmission in 
FTD, a randomized controlled trial of memantine (NMDA 
receptor antagonist) assessing behaviour and cognition 
did not demonstrate benefit in patients with bvFTD [67]. 
A subsequent study of memantine demonstrated a trend 
of improvement on the NPI in patients with moderate to 
severe disease but no benefit in patients with mild disease 
as defined by the Mini Mental State Examination (MMSE) 
[68].

In a case series of three patients with FTD, improvements 
in agitation and behavioural symptoms were identified after 
treatment with lithium [69]. Importantly, a trial of lithium 
in PSPS and CBS was halted prematurely due to poor toler-
ance [70]. There is an ongoing trial of low-dose lithium for 
behavioural symptoms in FTD, including agitation, disinhi-
bition and repetitive behaviours (ClinicalTrials.gov Identi-
fier: NCT02862210).

4  Perseverative, Obsessive‑Compulsive 
and Hoarding Behaviours

Compulsive, repetitive behaviours and hoarding are variably 
observed in patients with FTD, with reported rates of 5–15% 
for compulsive behaviours and up to 95% for behavioural 

stereotypies [1, 71–73]. These behaviours are most common 
in the semantic dementia and bvFTD phenotypes [72, 74]. 
Repetitive behaviours such as repeating words, pacing, sim-
ple motor stereotypies, unnecessary trips to the bathroom, 
washing and hoarding are amongst the most common types 
of compulsive behaviours [72, 73, 75]. On average, patients 
with FTD may experience fewer obsessive thoughts or pre-
act anxiety than persons with obsessive compulsive disorder 
(OCD), suggesting these behaviours represent compulsive-
impulsive spectrum rather than the typical obsessive-com-
pulsive symptoms of OCD [73]. In our experience, patients 
with FTD who develop hoarding behaviours have mixed 
responses to removal of items, with some patients showing 
no concern, while others show distress typical of hoarding 
disorder [76].

The diagnostic criteria of bvFTD also includes eating 
abnormalities such as hyperphagia, changes or rigid dietary 
preferences, or mouthing of inedible objects [2]. These 
abnormal eating behaviours can resemble compulsions how-
ever may have distinct patterns and neuropathology [77]. 
These aberrant eating behaviours can pose significant risk 
to the patient and can be challenging for caregivers [78].

4.1  Structural and Functional Correlations 
of Obsessions and Compulsions in Patients 
with FTD

Significant insights into behavioural compulsions have been 
gained from research in OCD, which is characterized by 
obsessive thoughts and behavioural compulsions [76, 79, 
80]. Classically, patients with OCD have altered function 
in the cortical-striatal-pallidal-thalamic-cortical circuit [81, 
82], with involvement in the orbitofrontal, limbic, parietal, 
temporal, and less commonly the brainstem and cerebellum 
([82–88], as reviewed by [89]). In a study of 11 patients 
with bvFTD, severity of obsessive-compulsive behaviours 
was correlated to volume loss in the left putamen, bilateral 
globus pallidus and lateral temporal lobes [75]. The authors 
hypothesize that the repetitive behaviours in FTD originate 
from dysfunctional frontotemporal areas, which may be trig-
gered by internal or external stimuli and are not appropri-
ately inhibited by the frontal-striatal circuit [75]. A recent 
neuroanatomical study of patients with FTD and obsessive-
compulsive behaviours identified atrophy in bilateral amyg-
dala, hippocampi and anterior cingulate [72]. Hoarding was 
uniquely associated with atrophy in the left temporal, left 
insula and subcortical temporal areas suggestive of a distinct 
neuroanatomical localization [72].

A comparative study of altered feeding behaviour in 
patients with bvFTD, AD and healthy controls identified 
lower levels of ghrelin and cortisol, and higher levels of 
insulin in patients with bvFTD relative to healthy controls 
[90]. In patients who overate, higher levels of leptin were 
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also identified, which was hypothesized to be a compensa-
tory response in bvFTD [90]. In a separate study, patients 
with svPPA and eating abnormalities had preserved hypo-
thalamic volume but high levels of agouti-related peptide 
(AgRP), which is associated with hyperphagia and obesity 
[91, 92]. These findings suggest both shared and unique 
pathophysiology of compulsive and aberrant eating in FTD 
and point toward potential therapeutic targets for compulsive 
eating related to metabolic signalling pathways.

4.2  Neurotransmitter Systems Associated 
with the Obsessive and Compulsive Behaviours 
in FTD

In addition to serotonin and dopamine, as discussed above, 
glutamate and its role in the corticostriatal and thalamic cir-
cuit has been implicated in the pathophysiology of obsessive 
and compulsive behaviours [93].

4.3  Treatment Approaches To Date for Obsessive 
and Compulsive Behaviours in FTD

There is limited evidence for the treatment of compulsive 
behaviours in bvFTD. Based on their efficacy in patients 
with OCD, SSRIs and tricyclic antidepressants (TCAs) 
have been trialled with limited response. In an open-label, 
12-week trial of fluvoxamine evaluating behaviours broadly 
in patients with FTD and semantic dementia, patients dem-
onstrated improvement in NPI and the Stereotypy Rating 
Scale, with particular improvement in NPI motor behav-
iour, stereotypic eating and cooking behaviours, roaming, 
speaking and movements [94]. As mentioned above, patients 
treated with trazodone for 6 weeks exhibited improvement in 
hyperorality and eating behaviours [58]. While early studies 
suggested some improvement in social behaviour and eat-
ing problems with paroxetine, a subsequent controlled trial 
demonstrated no benefit of paroxetine in patients with FTD 
[56]. In an open-label trial of sertraline in 18 patients with 
FTD, there was noted improvement in stereotypical move-
ment on the Abnormal Involuntary Movement Scale (AIMS) 
at 6 months in those with stereotypical behaviours [95].

Several medications have been described in case reports 
for compulsive behaviours in FTD [96]. Clomipramine is an 
antidepressant that prevents serotonin and norepinephrine 
reuptake and has been investigated in use in OCD [96, 97]. 
Furlan and colleagues [97] reported improvement in compul-
sive behaviour in a case study of three patients with bvFTD 
treated with clomipramine. Ciproterone, a progesterone-
based anti-androgen, improved compulsive masturbation in 
a patient with bvFTD [98]. The combination of topiramate 
and fluvoxamine was associated with reduction in impul-
sive smoking, overeating and skin picking in a patient with 
FTD [99]. In a small case series, two out of three patients 

with FTD and abnormal eating behaviours demonstrated 
improvement with topiramate [100].

5  Apathy

Apathy is generally defined as a loss of motivation, result-
ing in diminished goal-directed behaviour (GDB), cogni-
tive activity and affective reactivity from one’s baseline 
[101–104]. Apathy can be divided into cognitive, emotional 
and behavioural subdomains [105]. Apathy is often an early, 
debilitating feature of bvFTD that causes significant car-
egiver burden [106]. Patients with FTD may disengage from 
social interactions, hobbies, physical activity, and basic per-
sonal care due to apathy.

5.1  Structural and Functional Correlations 
of Apathy in Patients with FTD

Lesional studies have classically implicated the medial fron-
tal, ACC and striatal regions in apathy and abulia; however, 
there has been expanding recognition of related subcortical 
structures and the underlying network failure for amotivated 
behaviour [107–109]. A review of apathy across neurode-
generative disorders identified that the frontostriatal network 
is most consistently affected, including the dorsal ACC, 
ventral striatum and nucleus accumbens [109]. In addition, 
degeneration of the reticular activating system may impair 
alertness and attention, leading to vegetative function [13].

Across patients with FTD, apathy is most consistently 
correlated with atrophy or hypometabolism in the OFC, 
ACC, ventral medial superior frontal gyrus, anterior insula, 
caudate and DLPFC, suggesting broad network dysfunction 
([13, 21, 27, 110–112], see review by [104]). Apathy has 
been associated with cognitive and behavioural impairments 
in executive function, motivation, arousal, reward processing 
and inhibition in FTD [13, 102]. Similar to disinhibition, 
we propose that consideration of the different roles of these 
regions and associated networks may be necessary to target 
an individual patient’s apathy more precisely and effectively. 
The OFC is a main component of the limbic network, which 
integrates stimulus and reward via its connections to the 
ventral striatum, ACC, insula and uncinate fasciculus [102, 
113–115]. Dysfunction in the ventral PFC, ACC and amyg-
dala likely impairs the ability to evaluate social stimuli and 
to modify social behaviours based on affective cues [23, 114, 
116, 117]. The anterior insula may contribute to motivation 
due to its role in perception of emotional stimuli, integration 
of interoceptive inputs and connection with prefrontal struc-
tures [118, 119]. In this way, the interaction of emotional 
function and goal-directed behaviour can be simultaneously 
affected in bvFTD [112]. The involvement of the DLPFC 
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and lateral temporal areas support overlap between cognitive 
apathy and executive functions more broadly.

The subdomains or subtypes of apathy have been investi-
gated in FTD and may help to explain the variability across 
studies using apathy as an umbrella symptom term. Specifi-
cally, poor motivation, emotional apathy, initiation apathy 
and cognitive apathy have been described and associated 
with both distinct and overlapping brain regions [104, 109, 
110, 112].

5.2  Neurotransmitter Systems Associated 
with Apathy in FTD

The structural networks implicated in apathy are largely 
sub-served by the mesolimbic-mesocortical pathway, which 
relies primarily on dopamine afferents from the substantia 
nigra pars compacta, ventral tegmental area (VTA) and 
nigrostriatal pathways [120–124]. There is a nigrostriatal 
deficit with loss of pre-synaptic dopaminergic neurons and 
reduced dopamine binding in bvFTD, which may contrib-
ute to the extrapyramidal and cognitive deficits [39, 125]. 
Further, there are reduced D2 receptors in frontal area of 
patients with FTD [38]. Apathy may also arise from dys-
function of serotoninergic, cholinergic, noradrenergic neuro-
transmitter systems supplying the amygdala, ventral striatum 
and PFC [114]. While higher levels of norepinephrine were 
identified in neuropathological samples from patients with 
FTD compared with those from AD patients [41], and nor-
mal levels of noradrenergic metabolite 4-hydroxy-3-meth-
oxy-phenylglycol (HMPG) were demonstrated in the CSF 
of patients with FTD [126], it is posited that norepinephrine 
may be modulated by irregular serotonin tone on the locus 
ceruleus from the raphe nuclei [127].

5.3  Treatment Approaches to Date for Apathy 
in FTD

While dopamine agonists have some demonstrated benefit 
in apathy in patients with Parkinson’s disease [128], there 
is considerable variability in the effect of dopamine modu-
lation in FTD. In a cross-over trial of dextroamphetamine 
20 mg and quetiapine 150 mg in eight patients with bvFTD, 
patients treated with dextroamphetamine had improvements 
from baseline in their NPI total and apathy subscale scores 
at 9 weeks. No significant effect was observed after treat-
ment with quetiapine [60]. In a randomized cross-over study, 
24 patients with bvFTD were randomized to agomelatine, 
a melatonergic agonist and antagonist of 5-HT2C recep-
tors, at a dose of 50 mg/day or melatonin 10 mg/day for 20 
weeks [129]. Patients treated with agomelatine demonstrated 
a reduction in apathy as measured by the Apathy Evaluation 
Scale (clinician version) (AES-C) and NPI-Apathy, but not 
the Frontal Assessment Battery (FAB) [129]. Agomelatine 

is posited to increase prefrontal dopaminergic and noradr-
energic tone [130].

Despite case reports of improvement in apathy, agita-
tion and anxiety with memantine [131], randomized control 
studies of memantine in bvFTD produced negative results 
[67]. Case reports have demonstrated improvement in apathy 
with bupropion [132] and aripiprazole [133], however these 
results have not been replicated. Yokukansan and Souvenaid 
are two nutraceutical agents that have described improve-
ment in apathy in bvFTD, however both agents are not 
widely available [134, 135]. There is an ongoing randomized 
controlled trial of intranasal oxytocin (OT) for social apathy 
and empathy deficits in FTD (ClinicalTrials.gov Identifier: 
NCT03260920).

6  Loss of Empathy and Prosocial Behaviour

bvFTD is often characterized by early and prominent impair-
ments in emotional processing with diminished empathy and 
loss of personal warmth [136, 137]. Empathy can be defined 
as an affective response that arises from understanding 
another’s emotional state [138]. Empathy is a multifaceted 
concept that includes affective and cognitive components 
[136, 139, 140], and contributes to prosocial motivation and 
behaviour [136, 141]. Loss of empathy is a central feature 
of bvFTD as patients may be unable to recognize emotional 
expression in others or express appropriate empathetic 
behaviour [136, 142, 143]. Patients may exhibit diminished 
responses to others’ feelings, emotional blunting, disregard 
for their spouse, callousness, and indifference to the harm 
of children.

6.1  Structural and Functional Correlations 
of Empathy Deficits in Patients with FTD

In neurodegenerative disorder and lesion studies, impaired 
empathy has been correlated most often with volume loss 
in the right anteromedial temporal, insula and inferior 
frontal structures [118, 144–147]. When compared with 
healthy controls, patients with bvFTD have demonstrated 
altered activity in response to facial expression. In particu-
lar, patients with bvFTD demonstrated decreased functional 
magnetic resonance imaging (fMRI) activation in the insula 
in response to disgusted and fearful faces; in the ventrolateral 
prefrontal cortex during angry stimuli; and in the amygdala 
when viewing happy faces [148]. Clinical trials for empathy 
deficits may need to consider the subcomponents of these 
complex behaviours, including emotion recognition, affect 
sharing and cognitive empathy [143, 145, 149–151]. Patients 
with bvFTD commonly have deficits in each of these facets 
of empathy, yet as they are subserved by both overlapping 
and distinct neural regions, effective treatments may need to 
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address several separate mechanisms. A more recent facet of 
empathy, relevant to both empathy and apathy and targeting 
of underlying behavioural mechanisms in FTD, is prosocial 
motivation. Prosocial motivation is generally recognized as 
the desire to participate in helpful behaviour [152, 153]. In 
addition to involvement of brain regions related to cogni-
tive empathy, it has been proposed that prosocial motivation 
involves a reward pathway, including the nucleus accum-
bens, caudate and the inferior frontal gyrus [141].

6.2  Neurotransmitter Systems Associated 
with Empathy Deficits in FTD

Oxytocin and vasopressin are related neuropeptides impli-
cated in social cognition and prosocial behaviour (as 
reviewed by [154–156]). Both are synthesized in the par-
aventricular and supraoptic nuclei of the hypothalamus, 
which project to the posterior pituitary for release into the 
peripheral circulation and centrally to influence subcortical 
networks [157]. Immunohistochemical studies have identi-
fied oxytocin receptors in the hypothalamus and basal fore-
brain including the anterior cingulate, amygdala, olfactory 
nucleus, limbic and basal ganglia [157]. In contrast, more 
diffuse distribution of vasopressin receptors has been iden-
tified throughout the brain [158]. Oxytocin may mediate 
prosocial and affective behaviour by increasing trust [159] 
and social emotional recognition [160], but it has also been 
shown to increase envy [161]. When given intranasal oxy-
tocin, healthy human participants exhibited greater fixation 
towards the eyes of various facial stimuli and demonstrated 
enhanced activation in the right posterior amygdala on 
fMRI. This supports a possible functional coupling of the 
amygdala and superior colliculus for social emotional recog-
nition that can be enhanced with oxytocin [162]. Oxytocin 
has anxiolytic properties and may attenuate activation of 
amygdala and anterior insula due to negative social stimuli 
[163].

In a study of healthy males, intranasal vasopressin was 
shown to increase recognition of neutral facial expressions 
and elicited a corrugator electromyography (EMG) response 
similar to that induced by angry facial expressions [164]. 
This suggests that vasopressin may create a tendency to per-
ceive and respond to neutral or ambiguous stimuli as though 
they were aggressive or threatening [164]. Current studies 
are underway for vasopressin receptor antagonists for autism 
spectrum disorder [165].

With demonstration of co-activation of dopamine (D2) 
and oxytocin receptors in the nucleus accumbens during 
pair bonding formation in voles [166], it is postulated that 
oxytocin may enhance the release of dopamine in the mes-
olimbic cortical system and foster attention and appraisal 
of salient stimuli (as reviewed by [167]). This is supported 
by the network of dopaminergic neurons in the VTA that 

project to the medial PFC, amygdala and nucleus accumbens 
[167]. The interaction of oxytocin and serotonin has been 
investigated in social function. For instance, recent work 
in mice has suggested coordinated activity of oxytocin-
mediated serotonin release from the dorsal raphe nucleus to 
the nucleus accumbens that facilitates social reward [168]. 
Lower levels of oxytocin have been identified in children 
with autism spectrum disorder and impaired social function 
[169] and there is ongoing work investigating the recipro-
cal interaction of serotonin and oxytocin in social function 
[170].

6.3  Treatment Approaches to Date for Empathy 
Deficits in FTD

There have been recent investigations into the use of oxy-
tocin to improve the social behaviours, specifically empathy 
and social apathy, in FTD. In a phase II study, the safety 
and tolerability of oxytocin therapy was established at three 
doses (24, 48 and 72 units) given twice daily to patients with 
FTD over 1 week [171]. This was followed by a randomized 
placebo-controlled crossover trial in which patients with 
bvFTD were given oxytocin 72 units intranasally or placebo, 
and performed behaviour tests including the Behavioural 
View and Imitate Task, Multifaceted Empathy Test (MET) 
and Postural Knowledge Test (PKT) [172, 173]. These 
patients also took part in instructed behavioural mimicry of 
facial expressions during fMRI. After oxytocin treatment, 
there was a noted increased fMRI activation in the frontal, 
bilateral anterior insula, inferior frontal gyrus, caudate, right 
anterior cingulate and inferior parietal areas. Despite dem-
onstrated improvement in activation on imaging, there were 
inconsistent results on clinical testing. Patients treated with 
placebo provided high ratings of empathic concern on MET 
versus those on oxytocin. However, patients on oxytocin 
were more accurate on the PKT than those on placebo [173]. 
As noted above, an ongoing randomized control trial (RCT) 
will evaluate whether repeated administration of intranasal 
oxytocin is associated with reduction of empathy deficits in 
patients with FTD.

7  Loss of Insight

Early loss of insight is a common feature in patients with 
FTD [3, 174]. Despite drastic changes in personality and 
behaviour, patients with FTD are unable to appreciate their 
deficits and thus minimize related consequences. In clinic, 
patients may dismiss behavioural irregularities, contest 
accounts from concerned caregivers, and resist treatment and 
behavioural interventions. Patients with bvFTD more con-
sistently demonstrate impairments in insight compared with 
patients with svPPA, nfvPPA or logopenic PPA [175, 176].
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7.1  Structural and Functional Correlations of Lack 
of Insight in Patients with FTD

Classical lesional studies identified neglect and impaired 
awareness of motor deficits with non-dominant parietal 
injury [177]. In healthy participants, there is increased 
right DLPFC activation during self-appraisal tasks [178]. 
In patients with FTD, anosognosia or the lack of awareness 
about one’s illness has been generally associated with dys-
function in the right frontotemporal areas [179], with more 
recent evidence suggesting that insight and self awareness 
may be distributed across several brain regions (as reviewed 
by [176]). The SAN has recently been proposed to medi-
ate personal evaluation. This network includes the temporal 
pole, ventral striatum, subgenual cingulate, amygdala, cau-
date, OFC and nucleus accumbens [9, 10]. Studies of self-
appraisal, insight and self-awareness in FTD have identified 
correlations with atrophy mainly in the OFC, ACC, insula, 
ventromedial and frontopolar prefrontal cortex [175, 176, 
180, 181].

The ACC is involved in self-regulation, error monitoring 
and facilitates self-reference [182, 183]. The medial OFC is 
implicated in valuating present stimulus reward while the 
lateral OFC is required in updating outcome and reward 
associations [115, 184], thus errors in behaviour monitor-
ing or outcome valuation may lead to overall impairment of 
self awareness. Poor self-appraisal has been associated with 
loss of grey matter density in the VMPFC and cingulate cor-
tices [183, 185]. The medial PFC may have a crucial role in 
self reflection and evaluation, and likely mediates semantic 
knowledge about self [180]. This is consistent with previous 
work on self-referential behaviour that implicates the corti-
cal midline structures [186].

7.2  Treatment Approaches to Date for Lack 
of Insight in FTD

Treatment approaches for impaired insight are lacking in 
FTD. Non-pharmacological interventions such as cognitive 
behavioural therapy, motivational interviewing and social 
skills training have been used with some benefit on insight 
in patients with schizophrenia [187]. There have been no 
such trials to date in FTD.

8  Psychosis

Psychosis can occur in FTD and contributes to diagnos-
tic and treatment challenges [188]. In a cohort study of 22 
patients with bvFTD, positive psychotic features including 
delusions and hallucinations occurred in 22% of patients, 
while the majority of these patients had at least one negative 
feature of psychosis such as blunted affect and withdrawal 

(95%) or formal thought disorder (81%) [189]. Within 
genetic FTD, patients with mutations in MAPT, GRN and 
especially those with C9orf72 repeat expansions appear to 
be at higher risk of psychosis [190–193]. A recent neuro-
pathological analysis revealed patients with FTLD-TDP43 
were more likely to have early delusions of misidentifica-
tion, grandiosity or erotomania than FTLD-tau [192]. In 
patients with GRN mutations, psychotic features correlated 
with grey matter atrophy in the anterior insula, left thalamus, 
cerebellum, frontal, parietal and occipital areas [194]. In 
C9orf72 repeat expansion carriers, delusions appeared to 
correlate with left frontal cortical atrophy [194]. An older 
clinicopathological study demonstrated that patients with 
C9orf72 repeat expansions and delusions had greater left 
parietal precuneus atrophy and FTD-TDP pathology [195]. 
The cognitive mechanisms underlying these varied psychotic 
phenomenon in FTD have not yet been delineated.

8.1  Treatment Approaches to Date for Psychosis 
in FTD

Treatment with typical antipsychotic medications may 
exacerbate extrapyramidal symptoms in FTD given the pre-
existing dopamine deficit [196]. Typical antipsychotics may 
also pose an increased risk of cerebrovascular events and 
overall mortality in patients with dementia. Thus, atypical 
antipsychotics such as quetiapine, olanzapine and clozapine 
are preferred [34, 62, 191]. In a large RCT of aripiprazole in 
AD, improvement on the NPI-NH psychosis subscale was 
observed; however, significant adverse events including agi-
tation, asthenia and cerebrovascular events were identified in 
the treatment arm [197]. Recently, pimavanserin, an inverse 
agonist and antagonist of serotonin 5-HT2A receptors, dem-
onstrated benefit in a randomized, placebo-controlled study 
in dementia-related psychosis including patients with FTD 
[198]. Given the higher prevalence of psychotic features in 
genetic FTD, there are opportunities for exploring genetic 
therapies in the remedy of psychosis in FTD.

9  Conclusion

The neuropsychiatric symptoms of FTD are myriad. Thus 
far, despite numerous promising case reports and open-label 
trials, effective symptomatic treatments have largely been 
elusive. We propose the heterogeneity of cognitive mecha-
nisms giving rise to each of the current core neuropsychi-
atric symptoms needs to be modeled in future clinical trial 
designs. For example, a patient with FTD may demonstrate 
disinhibition due to poor response inhibition, reduced sen-
sitivity to negative feedback, heighted valuation of a reward, 
or some combination thereof. Each of these mechanisms 
may be mediated by distinct circuits and neurotransmitters. 
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Information on the functional and structural integrity of the 
neural regions supporting each of the core cognitive func-
tions, and possibly genotyping related to neurotransmitter 
system function, may further improve predictions regarding 
patient’s response to a specific treatment. Further research is 
required to delineate these cognitive models and their spe-
cific associations with neuropsychiatric symptoms in FTD. 
Additionally, the vast majority of clinical trials to date in 
FTD have not specifically considered the interaction between 
the target symptom and other neuropsychiatric symptoms. 
Consideration and evaluation of such potential symptom 
interactions may provide additional clues as to the common 
cognitive deficits underlying the symptoms, and therefore 
key targets, as well as more precise modelling of individual 
treatment responses.
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