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Abstract
Individuals with Down syndrome (DS) are at high risk for developing Alzheimer’s disease (AD) pathology and this has pro-
vided significant insights into our understanding of the genetic basis of AD. The present review summarizes recent clinical, 
neuropathologic, imaging, and fluid biomarker studies of AD in DS (DSAD), highlighting the striking similarities, as well as 
some notable differences, between DSAD and the more common late-onset form of AD (LOAD) in the general population, 
as well as the much rarer, autosomal-dominant form of AD (ADAD). There has been significant progress in our understand-
ing of the natural history of AD biomarkers in DS and their relationship to clinically meaningful changes. Additional work 
is needed to clearly define the continuum of AD that has been described in the general population, such as the preclinical, 
prodromal, and dementia stages of AD. Multiple therapeutic approaches, including those targeting not only β-amyloid but 
also tau and the amyloid precursor protein itself, require consideration. Recent developments in the field are presented within 
the context of such efforts to conduct clinical trials to treat and potentially prevent AD in DS.

Key Points 

There is a need for novel therapeutics for Alzheimer’s 
disease in Down syndrome (DSAD).

There is a lack of randomized controlled trials for DSAD 
therapeutics.

New biomarker strategies may enhance diagnostics and 
clinical trial designs, and new therapeutic targets may 
assist in the development of disease-modifying therapies 
for DSAD.

1 Introduction

In 1866, John Langdon Down described patients under his 
care at the Earlswood Asylum who exhibited intellectual dis-
ability along with abnormal physical growth and a distinct 
appearance [1]. Nearly a century later, in 1959, trisomy for 
chromosome 21 was identified as the molecular basis for 
Down syndrome (DS) [2]. In 1987, mapping of the gene 
that encodes the amyloid precursor protein to chromosome 
21 [3], along with further discovery of mutations on chro-
mosome 21 that cause autosomal-dominant forms of AD 
(ADAD) [4, 5], suggested that overexpression of amyloid 
precursor protein is causative for AD pathology in both AD 
in DS (DSAD) and ADAD.

Over the past 4 decades, tremendous strides have been 
made in addressing treatable medical comorbidities in DS, 
which has led to a doubling in life-expectancy [6]. A child 
with DS born today can expect to live into his or her 60s 
and often beyond. However, with this increased lifespan, the 
prevalence of AD dementia in this population has surged. A 
number of studies have shown that the risk of AD demen-
tia in DS is approximately 23% at 50 years of age, 45% at 
55 years of age, and 88% or more at 65 years of age [7–10]. 
Dementia, cardiovascular disease, and pneumonia make up 
the most common causes of death in people with DS over 
the age of 36 years [11].
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As mentioned, DS is caused by trisomy of chromosome 
21. There are in fact three cytogenetic forms of DS: (1) free 
trisomy 21, which consists of a supplementary chromosome 
21 in all cells [12]; (2) mosaic trisomy 21, where there are 
two cell lineages, one with the normal number of chromo-
somes and another with an extra chromosome 21 [13]; and 
(3) robertsonian translocation trisomy 21, which occurs in 
only 2–4% of cases [14]. All of these result in an increased 
copy of the APP gene and overexpression of the APP pro-
tein. Some individuals in the general population develop 
an early-onset form of AD as a result of duplication of a 
small region of chromosome 21 that includes the APP gene 
(dup-APP). These individuals develop an early-onset form 
AD and the pathogenic mechanisms in these individuals are 
thought to be analogous to those in individuals with DS [15, 
16], since an additional copy of APP is present in both dup-
APP and DS forms of AD. This is in contrast to the autoso-
mal-dominant forms of AD (ADAD) in which other genes 
(i.e. PSEN1, which encodes presenilin 1, or PSEN2, which 
encodes presenilin 2) are mutated and where the process-
ing of APP is altered independently of gene copy number. 
Both of these mutations also lead to overproduction of the 
neurotoxic APP cleavage product Aβ (β-amyloid) [17]. As 
expected, individuals with dup-APP share many traits with 
people with DS, including early age of dementia onset (mean 
age 52 years for dup-APP), ubiquitous AD neuropathology 
[18, 19], and an increased prevalence of cerebral amyloid 
angiopathy (CAA) [20]. Although almost all people with 
DS have AD neuropathology by age 40 years, the variability 
in the prevalence of dementia is more marked in DS than in 
dup-APP. In addition, although Alzheimer’s disease pathol-
ogy is virtually inevitable in DS, the age of onset of clinical 
dementia varies tremendously. Indeed, not all individuals 
with DS will develop clinical dementia in their lifetime. Fur-
thermore, the manifestation of CAA is less prevalent in DS 
than in dup-APP [21], but is more prevalent than in sporadic 
AD (22).

Case reports of individuals with DS who have partial tri-
somy 21 have provided deep insights into the critical role 
that APP overexpression plays in AD pathogenesis [23, 24]. 
These rare and unusual cases point to the crucial impor-
tance of APP overexpression as the key driver of AD in 
DS. Moreover, the discovery of a mutation in the APP gene 
that results in diminished production of Aβ and is protec-
tive against the development of AD pathology and dementia, 
further supports the notion that AD can be solely driven by 
APP dysmetabolism, resulting in increased production of 
Aβ [25]. Subsequent to accumulation of Aβ, the second key 
neuropathological hallmark of AD, neurofibrillary tangles, 
begin to develop. The abnormal hyperphosphorylation of 
tau protein leading to neurofibrillary tangles is seen later in 
the course of AD, both in the general population as well as 
in ADAD and DSAD, and correlates with the constellation 

of symptoms based on its regional location in the brain 
[26]. Tau pathology also appears to correlate temporally 
more closely with symptom onset in addition to spatially 
with symptom type, whereas Aβ accumulation into fibrillar 
plaques occurs decades earlier [27, 28].

To sum up, the discovery of the genetic causes for DSAD 
and ADAD catalyzed research into the relationship of chro-
mosome 21, the gene for amyloid precursor protein, and the 
pivotal role of Aβ in AD pathogenesis. In the past decade, 
the clinical, imaging, pathologic, and biochemical relation-
ships of AD in DSAD and ADAD have been individually 
described by groups from around the world. Nonetheless, 
although DSAD and ADAD have fundamentally different 
initial pathways compared with the late-onset form of AD 
(LOAD), they share a remarkably similar pathophysiology, 
resulting in overproduction and subsequent accumulation of 
Aβ, which sets off a cascade of pathogenic events leading to 
neurodegeneration and the syndrome of dementia [29–32].

2  Clinical Presentation of Alzheimer’s 
Disease (AD) in Down Syndrome (DS)

In general, the clinical presentation of DSAD is similar to 
both ADAD and LOAD. DSAD cases present with an insidi-
ous onset of episodic memory difficulties followed by inevi-
table progression of cognitive deficits resulting in loss of 
function in activities of daily living, which is the cornerstone 
of dementia. Variability in baseline intellectual function in 
DS makes the diagnosis of dementia challenging. The most 
obvious difference between DSAD and ADAD with LOAD 
is the younger age at onset in individuals with DSAD and 
ADAD. Symptoms typically appear between the ages of 30 
and 50 years, average age 52 years, and approximately 80% 
have dementia by the age of 65 years [33]. Behavioral symp-
toms seem to be more prevalent in DSAD compared with 
all other forms of AD [34, 35] and seem to present more 
frequently in those with DS who experience an earlier onset 
of dementia [36–39].

Focal neurological signs and symptoms appear to be more 
common in ADAD than in DSAD and LOAD. CAA, myo-
clonus, and seizures are a key feature of the APP duplication 
pedigrees [19] and are observed less frequently in DSAD. 
When myoclonus is observed in DSAD, it is more closely 
correlated with the onset of dementia and also appears to be 
associated with a more rapid cognitive decline in demented 
individuals with DS [40]. Up to 84% of demented individu-
als with DS develop seizures [41], with myoclonic epilepsy 
appearing to be the most common form in DS [42].
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3  Neuropathology

For several decades, it has been known that fibrillar Aβ 
plaque accumulation is nearly universal in people with 
DS over age 40 years, as demonstrated by autopsy studies 
[43]. Autopsy studies have demonstrated that Aβ plaques 
begin to develop in very young people with DS [44, 45] 
and are found in all adults with DS by 40 years of age—
decades earlier than that observed in LOAD within the 
general population. Aβ initially appears in diffuse deposits 
that over time progress to form compact neuritic plaques 
with increasing age. After 40 years of age, the accumula-
tion of brain amyloid is not linear but rather exponential 
and spreads throughout the cortex [46]. Aβ also accumu-
lates within the cerebral vasculature in DS, as has been 
observed to occur in sporadic LOAD and, to a greater 
extent, in ADAD, resulting in CAA [21]. On a cellular 
level, increases in the endocytic recycling of Aβ have been 
observed, with consequent endosomal enlargement that 
has been reported in DS as early as 28 weeks of gestation 
[47].

Amyloid pathology begins in the late teens, with depos-
its of diffuse plaques initially within the temporal lobe, 
then spreading to the neocortical regions and hippocam-
pus, reaching the subcortical regions by the late 40s. After 
50 years of age, every region of the brain, including the 
cerebellum, is littered with amyloid plaques [48, 49]. CAA 
begins at approximately 40 years of age, approximately 
25 years after initial deposition of Aβ as plaques [49].

Tau is a microtubule-related protein that becomes 
hyperphosphorylated in AD, leading to a conformational 
change in its structure, and in turn leading to the estab-
lishment of neurofibrillary tangles, which disrupts the 
neuronal cytoskeleton [50, 51]. The earliest sites of tau 
pathology include the entorhinal and trans-entorhinal cor-
tex, spreading to the hippocampus, then the temporal cor-
tex, and eventually to other regions of the cerebral cortex, 
finally reaching the visual association cortex and primary 
visual cortex [51]. Tau pathology begins at approximately 
35 years of age within the hippocampus and spreads to the 
neocortical regions after 45 years of age [51].

Interestingly, critical inflammatory genes on chromo-
some 21 are triplicated in DS and are believed to influence 
the inflammatory state of the DS brain [52]. There are two 
macrophage types in the CNS immune system: M1 mac-
rophages, which are proinflammatory  and responsible 
for inflammatory signaling, and M2 macrophages, which 
are anti-inflammatory and participate in the resolution of 
the inflammatory process. Indeed, M2 macrophages pro-
duce anti-inflammatory cytokines, thereby contributing to 
tissue healing [53]. As many genes located on chromosome 
21 are primarily associated with M1, i.e. proinflammatory 

macrophages, it has been recently shown that the DS brain 
has a proinflammatory status [54]. It remains unclear to 
what extent this proinflammatory state affects the mani-
festation of AD neuropathology in DS.

4  Neuroimaging

4.1  Amyloid Positron Emission Tomography (PET)

Amyloid PET imaging has been performed, using various 
tracers, in adults with DS over the past decade [55–58]. 
Amyloid PET positivity increases dramatically over age 
40 years, reflecting the binding of these tracers to the fibril-
lar form of Aβ in plaques [59, 60]. The progression of 
amyloid accumulation in the brain appears to be unique in 
individuals with DS compared with LOAD. Recent stud-
ies have demonstrated that the first area of accumulation is 
the striatum [61, 62], which is similar to the striatal bind-
ing observed in ADAD [63–65]. Rates of accumulation of 
amyloid appear similar to rates in the sporadic population 
[62]. The decades-long period between the emergence of 
amyloid plaques in the brain until the development of symp-
toms defines the ‘preclinical stage of AD’ in the sporadic 
population. The next stage, when symptoms are restricted 
to memory loss, is referred to as the ‘prodromal stage of 
AD’, and the final stage, where memory and other cognitive 
domains are affected and contribute to functional decline, is 
referred to as the ‘dementia stage of AD’ [66]. It is believed 
that these same stages exist as a continuum DS. Although 
detection of elevated brain amyloid using PET has helped 
define the preclinical stage of AD in the general population, 
and thereby refined sample selection for AD clinical trials 
[66], its applicability to clinical practice (both in the general 
and DS population) will likely be limited. In the general 
population, amyloid PET imaging will likely be most useful 
for determining if AD is the underlying cause in sympto-
matic individuals. In people with DS, who are genetically 
predetermined to develop AD, the utility of amyloid PET 
imaging in the clinic may have a very limited role since 
almost everyone will exhibit elevated brain amyloid.

4.2  Tau PET

As mentioned earlier, tau pathology in the form of neurofi-
brillary tangles is a key hallmark of AD pathology and a 
more proximal marker of subsequent AD-related cognitive 
decline than amyloid pathology [67]. Indeed, the regional 
distribution of tau pathology in the brain mirrors clinical 
symptoms in the general population [68]. A similar relation-
ship has been seen regarding neurofibrillary tangles and cog-
nitive decline in DS [69]. The PET tracer 18F-AV-1451 has 
been shown to bind to neurofibrillary tangles [70, 71]. Tau 
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pathology in adults with DS has recently been studied using 
the PET tracer 18F‐AV‐1451, as well as its relationship 
to regional amyloid deposition, regional cerebral glucose 
metabolism, regional brain atrophy, and cognitive and func-
tional status [69]. The relationship between neurofibrillary 
tangles and amyloid load is consistent with that observed in 
LOAD. The presence of tau extending beyond the medial 
temporal lobes appears to correlate with subsequent cogni-
tive decline [70]. It has been noted that higher cognitive 
scores correlate with lower tau pathology in DS, just as has 
been observed in the general population [69]. Tau PET may 
therefore represent an appealing outcome measure for clini-
cal trials as it is more closely linked in time with AD-related 
cognitive decline compared with amyloid PET,

4.3  Fluorodeoxyglucose (FDG) PET

Fluorodeoxyglucose (FDG)-PET is useful in measuring 
regional neuronal activity based on local glucose metabo-
lism. Various patterns in regional FDG signal (both hypo-
metabolic and hypermetabolic) have been shown to be 
associated with cognitive function in people with DS [71]. 
Recently, it has been shown that individuals with DS dem-
onstrate the same regional hypometabolism observed in 
the posterior cingulate/precuneus as individuals with AD 
in the general population [72, 73]. There also appears to 
be an inverse relationship between amyloid accumulation 
and regional glucose metabolism [57], as well as an inverse 
relationship between tau pathology and FDG-PET signal 
[69]. More work is needed in studying longitudinal changes 
in FDG-PET in DSAD to better understand its potential role 
as an outcome measure for clinical trials.

4.4  Magnetic Resonance Imaging

Just as in the general population, neuropathological studies 
indicate that older adults with DS exhibit medial temporal 
lobe atrophy as part of the development of AD [74–76]. 
Magnetic resonance imaging (MRI) studies demonstrate 
hippocampal atrophy in DS, as has been reported in LOAD. 
Furthermore, hippocampal atrophy in DS correlates with 
changes in memory measures, but is a late finding of neu-
rodegeneration, as in the general population [77]. Regional 
grey matter changes can be detectable before signs of clini-
cal dementia [78]. Individuals with DSAD eventually show 
atrophy of the amygdala, caudate, posterior cingulate, pari-
etal, temporal, and frontal regions, as well as enlargement 
of cerebrospinal fluid (CSF) spaces [78]. Although MRI 
exquisitely depicts brain atrophy, the fact that it reflects neu-
rodegeneration, which defines the final stage of AD, severely 
limits its use as an AD biomarker; however, MRI will con-
tinue a critical role in safety assessments for adverse events 
in clinical trials.

5  Fluid Biomarkers

Blood-based assays have clear advantages as biomarkers 
because they are easily accessible and non-invasive. The 
role of plasma levels of Aβ as a biomarker for DSAD has 
been studied extensively. People with DS have consistently 
shown higher plasma Aβ concentrations compared with 
individuals without DS [79, 80]. There have only been 
a limited number of CSF studies in individuals with DS 
due to the challenges in collecting CSF from individuals 
with DS [81, 82]. These studies show elevated levels of 
Aβ42. However, as these individuals age, CSF Aβ42 levels 
decline (as expected with their deposition into plaques) 
and CSF tau levels increase [82].

Recent work on CSF and plasma levels of neurofilament 
light (NfL), a component of the axonal cytoskeleton and 
marker of neuronal damage and degeneration, has shown 
strong correlation with cognitive status in adults with DS 
[83, 84]. Specifically, plasma NfL levels appear to increase 
with age, and can distinguish between normal aging in 
DS and DSAD [84]. Indeed, there appears to be excellent 
diagnostic performance of plasma NfL for the asympto-
matic versus dementia group, with an AUC of 0.95 (95% 
confidence interval [CI] 0.92–0.98) and a sensitivity and 
specificity of 90% and 92%, respectively [82]. Plasma NfL 
levels have also been shown to correlate with standard 
biomarkers of AD pathology, as well as with markers of 
neurodegeneration (regional cerebral glucose metabolism 
as assessed with FDG-PET and hippocampal atrophy), and 
even cognitive and functional decline [83].

Beyond standard AD biomarkers such as Aβ species, 
total-tau and phospho-tau species, and Nfl, metabolomic 
analyses may represent another biomarker with which we 
can further characterize AD in the DS population. Spe-
cifically, recent work has shown metabolic perturbations 
characterize individuals with DS who were cognitively 
stable and have mild cognitive impairment or DSAD [85]. 
Whether these metabolomic changes will be more appli-
cable to screening purposes versus outcome measures for 
clinical trials will be based on longitudinal data on rates of 
change in metabolomic profiles in conjunction with clini-
cally meaningful cognitive and functional changes.

6  The Alzheimer’s Biomarker Consortium 
for Down Syndrome (ABC‑DS)

As the largest AD biomarker study in DS to date, Alzhei-
mer’s Biomarker Consortium for Down Syndrome (ABC-
DS) is setting the stage for powering secondary preven-
tion trials for DSAD. Similar to the two largest ongoing 
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longitudinal studies of AD biomarkers (the Alzheimer 
Disease Neuroimaging Initiative [ADNI] and the Domi-
nantly Inherited Alzheimer Network [DIAN], all data are 
being made available in an open-access format using a 
model similar to ADNI. This 5-year longitudinal study 
launched in 2015 is examining the progression of AD-
related biomarkers (Aβ-, tau- and FDG-PET, structural 
and functional MRI, CSF Aβ and tau, plasma Aβ and pro-
teomics, genetics, neuropathology), as well as cognitive 
and functional measures, in over 500 adults with DS [86]. 
The consortium stages participants based on clinical and 
neuropsychological assessments as being located on the 
continuum of AD in DS. Participants were classified as (1) 
cognitively stable (CS) if they were without cognitive or 
functional decline, beyond what would be expected with 
adult aging per se; (2) having mild cognitive impairment 
(MCI-DS) if they demonstrated some cognitive and/or 
functional decline over and above what would be expected 
with aging per se, but not severe enough to indicate the 
presence of dementia; and as having dementia (DS-AD) 
if there was evidence of substantial progressive declines 
in cognitive functioning and daily living skills. An ‘una-
ble to determine’ category was utilized to indicate that 
declines were observed but could be caused by signifi-
cant life circumstance (e.g. staff changes, family death) 
or conditions unrelated to AD (e.g. severe sensory loss, 
poorly resolved hip fracture, and psychiatric diagnosis, 
in particular depression) [86]. These data will allow for a 
deeper, richer understanding of the natural history of AD 
biomarkers in DS (Fig. 1).

7  Clinical Trials

Clinical trials require identifying the appropriate sample 
population and outcome measures that will best assess the 
safety and efficacy of any given intervention. The US Code 
of Federal Regulations outlines specific requirements to 
enhance protections for ‘vulnerable populations’, including 

individuals with DS, which also raises issues that need to 
be addressed as part of the informed consent process. In 
developing disease-modifying drugs for DSAD, there is a 
need to understand the ideal sample (e.g. age range), the 
interventions (e.g. pharmacologic mechanism of action, 
pharmacokinetic/pharmacodynamic) and outcome meas-
ures (e.g. clinically meaningful and sensitivity to change) 
for a successful study design. In addition, the level of 
intellectual disability, as well as language abilities, will 
need to be carefully considered when selecting cognitive 
and clinical outcome measures. Specifically, floor effects 
may limit the feasibility of many cognitive instruments 
used to assess longitudinal change in memory or the 
impact of a particular drug on this change. Few empiri-
cally evaluated, psychometrically sound outcome measures 
appropriate for use in clinical trials with individuals with 
DS have been identified. Moreover, for clinical trials that 
aim to prevent the dementia stage of AD in DS by inter-
vening during its earliest stages (i.e. preclinical stage), 
assessment tools will need to be created and validated to 
assess subtle changes in the asymptomatic or minimally 
symptomatic stage of  DSAD. The National Institutes of 
Health (NIH)-sponsored meeting on Outcomes Measures 
for Clinical Trials in Down Syndrome resulted in guide-
lines for the selection of outcome measures for clinical 
trials for DSAD, although most involve the dementia stage 
of AD in DS [87].

The DS population will undoubtedly require a unique set 
of considerations in terms of sensitive and valid assessments 
of early AD-related cognitive decline. Baseline assessments 
will be important, as will the need for carefully planned and 
consistent testing sessions. Some direct neuropsychological 
measures will likely only be sensitive and valid in verbal 
and/or higher functioning adults with DS. Such measures 
will allow researchers to track individuals with DS prospec-
tively (perhaps as part of a trial-ready cohort) and are most 
likely to be relevant in clinical trials for therapies aimed at 
delaying the onset of and/or preventing AD-related cognitive 
decline. Indeed, treatments are likely to be most effective 

Fig. 1  The natural history of 
AD biomarkers in DS. The 
continuum of AD in DS is 
thought to be similar to LOAD 
but beginning at a younger age, 
much as in ADAD [101]. AD 
Alzheimer’s disease, DS Down 
syndrome, LOAD late-onset 
Alzheimer’s disease, ADAD 
autosomal-dominant form of 
Alzheimer’s disease
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if introduced prior to irreversible losses of critical neural 
pathways in the later stages of the disease [88, 89].

8  The Horizon21 DS Consortium

In addition to the ABC-DS effort, the Horizon21 DS con-
sortium in Europe is leading a parallel project to assess the 
longitudinal change in aging adults with DS. This consor-
tium consists of various existing DS cohorts from the UK 
(the London Down Syndrome Consortium [LonDownS], the 
Cambridge Dementia in Down’s Syndrome [DiDS] cohort), 
The Netherlands (the Rotterdam Down Syndrome Study), 
Germany (AD21 study group, Munich), France (TriAL21 
for Lejeune Institute, Paris), and Spain (the Down Alzheimer 
Barcelona Neuroimaging Initiative [DABNI]). The consor-
tium is providing deep insights into cognitive and clinical 
outcome measures of AD in DS in over 1000 participants, 
setting the stage for clinical trials [90].

9  Current Treatment Trials

The conduct of clinical trials in the DS population raises 
many methodological challenges. Given the wide variations 
in baseline intellectual capabilities and cognitive function-
ing, these differences must be taken into account for accu-
rate assessment in testing situations. The main defining 
feature of dementia in the general population is a decline 
from the baseline level of function and the performance of 
daily skills. Consensus guidelines for the evaluation and 
management of dementia in DS have been proposed that 
focus on the dementia stage and do not include prodromal 
AD or preclinical criteria [91]. These criteria are currently 
lacking in the DS field. The consensus guidelines are meant 
to serve as recommendations for clinicians evaluating indi-
viduals with DS who are experiencing cognitive decline. 
The guidelines provide a step-by-step and comprehensive 
approach to clinical evaluation. The key hallmark defining 
dementia is functional decline compared with previously 
attained levels, and, beyond that which would be explained 
by age-related changes. However, the earliest signs of AD-
related cognitive decline, distinct of a normal age-related 
change in adults with DS, may be subtle and will often 
require an astute observer. In addition, concomitant medica-
tions, recent medical illnesses (including laboratory testing 
such as thyroid-stimulating hormone and vitamin B12), or 
recent life events that can impact psychosocial functioning 
must also be considered when interpreting results. Although 
some validated measures exist [92, 93], there is currently 
no single, standard clinical instrument for the assessment 
of mild cognitive impairment or dementia in adults with 
DS. In this regard, the consensus guidelines are meant to 

aid clinicians attempting to diagnosis dementia in people 
with DS, and have limited utility for defining earlier stages 
of AD in DS such as preclinical and prodromal AD. The 
development of research guidelines for the definition of the 
preclinical, prodromal, and dementia stages of AD in DS 
are critical for designing clinical trials to treat or prevent 
AD in DS. Nonetheless, a few small multicenter clinical tri-
als have been successfully conducted in the DS population 
and have provided important insights into trial design and 
implementation in this group.

9.1  Scyllo‑Inositol

ELND005 (scyllo-inositol) is hypothesized to reduce amy-
loid toxicity to improve cognitive function in patients with 
DS. ELND005 (scyllo-inositol; cyclohexane-1,2,3,4,5,6-
hexol) has also been studied as a potential disease-modifying 
treatment of LOAD [94]. In preclinical studies, ELND005 
showed amyloid anti-aggregation effects in vitro, reduced 
oligomer-induced neuronal toxicity, and improved learn-
ing in animal models of AD [94–96]. ELND005 showed 
amyloid-lowering effects in CSF and brain, in patients with 
AD in the general population [97]. In addition, ELND005 
showed beneficial trends on cognition in mild AD [97]. A 
phase II, randomized, double-blind, placebo-controlled 
study of oral ELND005 in 26 adults with DS without demen-
tia demonstrated the safety and tolerability of the anti-amy-
loid compound in DS, as well as the feasibility of conducting 
a pharmacokinetic/pharmacodynamic study in adults with 
DS [98].

9.2  ACI‑24

ACI-24 is a liposomal vaccine that elicits an antibody 
response against aggregated Aβ peptides without concomi-
tant proinflammatory T cell activation [99]. ACI-24 is based 
on the truncated Aβ1-15 sequence, which is devoid of T-cell 
epitopes located closer to the peptide’s C-terminus. The 
peptide sequence is anchored into the surface of liposomes 
such that that the peptides adopt an aggregated β-sheet struc-
ture as a conformational epitope. Previous active vaccines 
(e.g. AN-1792) elicited a T-cell response, which led to an 
increased risk of meningoencephalitis [100]. A phase I/II 
trial of ACI-24 is ongoing in Europe and aims to address 
safety, immunogenicity, and efficacy in mild to moderate 
Alzheimer’s dementia in the general population. A phase 
Ib, placebo-controlled, multicenter study with ACI-24 for 
the treatment of AD in individuals with DS was launched in 
2016 (NCT02738450). The study enrolled 16 adults with DS 
aged 25–45 years and treated them with ACI-24 for 1 year 
with an additional year of follow-up. Primary endpoints 
included measures of safety, tolerability and immunogenic-
ity, while secondary endpoints of this clinical trial included 
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the effects on biomarkers of AD pathology as well as cog-
nitive and clinical function and neuroinflammatory mark-
ers. The study was completed in 2020, with topline results 
expected in the near future.

10  Future Directions

Clearly, genetic support for the role of APP in AD in the 
pathogenesis of AD in DS is undeniably compelling. As 
described above, the presence of an extra copy of APP, 
whether as trisomy 21 or dup-APP, results in overproduc-
tion of Aβ and subsequent development of amyloid plaques 
and neurofibrillary tangles, as well as the manifestation 
of dementia. Furthermore, individuals with DS who have 
trisomy 21 but are disomic for APP develop no amyloid 
plaques or neurofibrillary tangles and have no symptoms of 
dementia. Finally, a mutation in the APP gene that prevents 
its cleavage to produce Aβ protects against the development 
of amyloid plaques and neurofibrillary tangles as well as 
dementia. Therefore, Aβ remains a prime target for thera-
peutics, including both active and passive immunization, 
just as it is being actively studied in the ADAD and LOAD 
populations.

Beyond anti-Aβ drugs, compounds that modulate APP 
expression in DS may have great potential for effective-
ness. In addition, the role of tau appears to be more closely 
related to subsequent cognitive decline and drugs that pre-
vent hyperphosphorylation of tau and/or drugs that remove 
hyperphosphorylated species of tau may represent another 
therapeutic avenue. Perhaps as importantly, understanding 
protective genetics and epigenetics in DS may help provide 
novel therapeutic avenues to consider for the prevention of 
dementia in DS.

11  The Alzheimer’s Clinical Trial Consortium 
for Down Syndrome

The tight link between genetic determinants of AD and the 
overproduction of Aβ provides compelling support for the 
amyloid cascade hypothesis and has been the focal point 
in the development of disease-modifying drugs for AD 
[89]. It is hypothesized that disease-modifying treatments 
for AD and DS should begin prior to the onset of cogni-
tive symptoms to prevent extensive neurodegeneration, and 
thus necessitates a clear understanding of biomarker changes 
throughout the course of the disease. The ABC-DS project is 
setting the stage for conducting secondary prevention trials 
for DSAD. The NIH-funded Alzheimer’s Clinical Trial Con-
sortium for Down Syndrome (ACTC-DS) recently launched 
the Trial Ready-Cohort for Down Syndrome (TRC-DS) 
[Fig. 2]. TRC-DS will enroll 120 non-demented participants 
with DS into a longitudinal run-in study with MRI, amyloid 
PET, cognitive testing, and biofluid biomarker analysis in 
advance of upcoming randomized, placebo-controlled clini-
cal trials for DSAD. Data from the ABC-DS project are pro-
viding key insights into study design, including sample size 
selection and duration of the treatment period.

12  Conclusions

Over the past decade, great progress has been made in under-
standing DSAD utilizing brain MRI, amyloid and tau PET, 
and biofluid biomarkers. Indeed, several research groups 
from around the world have shown that there exist remark-
able similarities (and some differences) between LOAD, 
ADAD, and DSAD. We are now poised to ask whether thera-
pies that are currently being tested for LOAD and ADAD 
can be evaluated in people with DS. Undoubtedly, many 

Fig. 2  The Trial-Ready 
Cohort—Down Syndrome. A 
clinical trial platform has been 
developed to utilize a collabora-
tive approach to design and con-
duct clinical trials for AD in DS 
across expert international sites 
using widely accepted tools and 
standards. AD Alzheimer’s dis-
ease, DS Down syndrome, NIH 
National Institutes of Health, 
ABC-DS Alzheimer’s Bio-
marker Consortium for Down 
Syndrome, RCT  randomized 
controlled trial
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Placebo
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questions about DSAD still remain unanswered. We will 
need to identify which neuropsychological tests (or com-
posite of tests) will provide a reasonable measure of clinical 
meaningfulness. We will need to understand how removal of 
amyloid will affect AD-related cognitive decline and to what 
extent. We will also need to consider how early in the course 
of DSAD we should intervene and for how long treatment 
should last to provide measurable benefit to patients. Data 
from the ABC-DS and Horizon21 natural history studies are 
setting the stage for conducting secondary prevention trials 
to prevent AD in DS while ACTC-DS will utilize a col-
laborative approach to design and conduct such trials across 
expert international sites using widely accepted tools and 
standards to bring the latest therapies to the DS population.
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