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Abstract

There is escalating interest in cell-based therapies to restore lost dopamine inputs in Parkinson’s disease. This is based upon
the rationale that implanting dopamine progenitors into the striatum can potentially improve dopamine-responsive motor
symptoms. A rich body of data describing clinical trials of previous cell transplantation exists. These have included multiple
cell sources for transplantation including allogeneic (human embryonic mesencephalic tissue, retinal pigment epithelial cells)
and autologous (carotid body, adrenal medullary tissue) cells, as well as xenotransplantation. However, there are multiple
limitations related to these cell sources, including availability of adequate numbers of cells for transplant, heterogeneity
within cells transplanted, imprecisely defined mechanisms of action, and poor cell survival after transplantation in some
cases. Nonetheless, evidence has accrued from a subset of trials to support the rationale for such a regenerative approach.
Recent rapid advances in stem cell technology may now overcome these prior limitations. For example, dopamine neuron
precursor cells for transplant can be generated from induced pluripotent cells and human embryonic stem cells. The benefits
of these innovative approaches include: the possibility of scalability; a high degree of quality control; and improved under-
standing of mechanisms of action with rigorous preclinical testing. In this review, we focus on the potential for cell-based
therapies in Parkinson’s disease to restore the function of dopaminergic neurons, we critically review previous attempts to
harness such strategies, we discuss potential benefits and predicted limitations, and we address how previous roadblocks
may be overcome to bring a cell-based approach to the clinic.

1 Introduction

There is a vigorous resurgence of interest in cell-based
therapies and the potential of regenerative medicine to treat
Parkinson’s disease (PD) as a result of recent rapid strides
in stem cell technology [1, 2]. As these highly innovative
approaches are transitioning to clinical trials, we focus on
the potential of cell-based therapies in PD to restore func-
tion that is lost due to attrition of dopaminergic neurons, we
critically review previous attempts to harness such therapies,
and we address on-going and intensive efforts to bring a cell-
based approach to the clinic.
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1.1 Parkinson’s Disease and the Therapeutic Need

Parkinson’s disease is a common and incurable neurodegen-
erative disorder [3], leading to disabling motor signs and
symptoms including bradykinesia, muscle rigidity, tremor,
and imbalance [4]. The motor features are mostly due to
degeneration of dopamine neurons within the midbrain sub-
stantia nigra pars compacta [2], associated with cytoplas-
mic aggregation of a-synuclein and the formation of Lewy
bodies. This degeneration leads to the loss of projections
to striatal medium spiny neurons, occurring more aggres-
sively in the putamen than the caudate. In addition, multi-
ple non-motor symptoms such as mild cognitive impairment
and dementia, mood disorders, dysautonomia, and others
develop as a result of dysfunction of multiple other nervous
system pathways, involving several neurotransmitters [4].
Current pharmacologic treatments for motor symptoms
are almost exclusively based upon restoring striatal dopa-
minergic input to improve motor function, most commonly
using the “gold standard” levodopa, in addition to multiple
other medications [5]. Unfortunately, these drugs have off-
target effects and their temporal regulation is challenging.
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A regenerative medicine approach transplanting dopa-
mine neuron progenitors to the striatum in Parkinson’s
disease will potentially alleviate disabling dopa-depend-
ent motor symptoms.

The strongest evidence supporting cell transplant as a
therapy in Parkinson’s disease is based upon human
embryonic mesencephalic tissue as a cell source, but
multiple drawbacks make this unlikely to be a feasible
approach in the future.

Recent strides in stem cell technology now serve as

a platform for the development of scalable and high-
quality cell sources that are entering early clinical trials
in Parkinson’s disease.

Therefore, they lead to side effects such as nausea, orthos-
tasis, excessive daytime drowsiness, hallucinations, and
others. Moreover, complications of therapy emerge over
years, including motor fluctuations and levodopa-induced
dyskinesia [5]. When medications prove insufficient, deep
brain stimulation (DBS) provides significant relief in well-
selected patients [6]. Non-incisional precisely targeted
lesioning using magnetic resonance-guided focused ultra-
sound is approved in the USA for treating tremor-predomi-
nant PD and is being tested in randomized sham procedure-
controlled clinical trials to examine more extensive motor
benefits [7]. Other experimental surgical approaches include
neurotrophic factor infusion, gene therapy [8], cell therapy
based upon infusion of mesenchymal stem cells [9], and, as
described in the following sections, cell-based therapies to
directly restore striatal dopamine inputs that are lost in PD.

2 Potential Utility of Restoring Striatal
Dopamine Inputs with Cell-Based Therapy

Using a regenerative medicine approach to replace dopa-
minergic inputs locally at their physiological site of action
has a compelling rationale as a potentially superior treat-
ment of levodopa responsive signs and symptoms, by pro-
viding the possibility of a single intervention that would
deliver dopamine to its “normal” targets (Fig. 1). Although
one potential mechanism of action is that transplanted cells
would act as a constitutive local dopamine “pump”, evi-
dence has accrued that transplanted cells are able in at least
some cases to functionally integrate into the host neuronal
networks [10, 12—14]. For example, in an animal model
of PD, using a modified rabies virus for retrotracing has
allowed precise mapping of synaptic connections formed to

A\ Adis

and from engrafted cells [15]. Once transplanted, an ideal
cell source would thereby pseudo-normalize downstream
circuits to improve dopamine-responsive symptoms such
as bradykinesia and rigidity. Therefore, one can expect that
graft recipients will experience greater “on” time, reduced
“off” time, reduced severity of “off” symptoms, alleviation
of diphasic dyskinesia (dyskinesia occurring as medica-
tion is either taking effect or wearing off), and potentially
benefit from reduced medications and hence a reduction in
their related side effects. In some cases, it is possible that
there could be indirect benefits for non-motor symptoms,
for example providing continuous relief of motor symp-
toms might help sleep. However, for certain motor and the
vast majority of non-motor symptoms that arise outside of
these dopaminergic pathways, dopaminergic cell replace-
ment therapy is unlikely to suffice. This includes impair-
ments such as dementia, falls, and incontinence, which have
a dramatic impact and affect critically important facets of
patients’ lives. For example, falls and dementia have been
linked to cholinergic deficits [16, 17] and would not be
expected to respond to a cell-based therapy focused upon
replacing striatal dopamine inputs. Finally, whether and to
what degree other potential benefits of cell transplants, such
as neurotrophic effects, will be significant enough to provide
benefit to patients remains conjectural at this stage.

3 Efficacy and Safety of Cell Transplantation
in Clinical Trials in Parkinson’s Disease

Groundbreaking preclinical work in the 1970s—-1980s
[18-22] was first translated into clinical trials with alloge-
neic grafts using donor cells derived from human embry-
onic ventral mesencephalic (hEM) tissue [23, 24]. During
a similar time period, the first studies of autologous trans-
plant of adrenal medullary cells occurred [25-29]. Multiple
cell sources have now been tested, mostly in advanced PD
(Table 1), resulting in a rich literature that, critically evalu-
ated, should serve to enhance current and future develop-
ment of cell-based therapeutics for PD (Tables 2, 3 and 4).

3.1 Human Embryonic Ventral Mesencephalic
Tissue

The most extensive clinical experience has involved use of
hEM tissue as a source of donor cells [1, 23, 24, 30-37].
Initial open-label studies in a small number of patients dem-
onstrated that hEM tissue, when grafted into the striatum,
had the capability to survive and function based upon neu-
roimaging and clinical outcomes [32, 35, 38—40]. A series
of four patients with PD who received hEM transplants [23,
24, 30] led to cautious extension of this and other programs
[31, 32, 34, 35, 38-40] (Table 2). Variability in outcomes,
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Fig. 1 Positron emission tomography (PET) demonstrates loss of
dopaminergic neuron inputs from the substantia nigra pars compacta
to the putamen more than caudate in Parkinson’s disease (PD). White
arrows indicate the caudate and putamen in a healthy control (a) and
in an individual with PD (b), with dashed white arrows at the site of

including a lack of any reported benefit for some [10, 34],
may have occurred owing to differences in the donor tis-
sue (age, dose, preparation, individual variability), surgi-
cal delivery, immunosuppression, and individual transplant
recipient. Nonetheless, very long-term follow-ups have pro-
vided evidence not only of tissue survival, but of sustained
benefits (in some cases robust) as well as relative safety and
tolerability [41-43].

Two randomized, double-blind, sham surgery-controlled
clinical trials were launched in the USA in the 1990s
(Table 3) [44, 45]. First, an innovative, double-blind, rand-
omized, sham surgery-controlled, participant- and evaluator-
blinded phase II clinical trial of 40 individuals with severe
PD studied the effects of cultured hEM tissue transplanted
to the bilateral putamen [44] (Table 3). Participants were
randomized 1:1 to receive dissected tissue from four donor
embryos, delivered as strands of tissue rather than dissoci-
ated cells, or to a sham procedure in which the skull was
drilled but the dura was not broken. No immunosuppres-
sive agents were administered. At 1 year, the study did not
meet its primary endpoint measured on a 7-point Likert-
type scale (Table 3), despite 17/20 subjects having increased
B E_DOPA uptake measured by positron emission tomogra-
phy (PET) [that continued to increase to 4 years]. However,
a pre-specified sub-analysis of transplanted subjects was
encouraging: those aged <60 years had a statistically sig-
nificant improvement in the total Unified Parkinson Disease

Parkinson’s disease

Caudate
-=- Putamen

Therapeutic target

input loss (b). Red arrows in (b) indicate the putamen as the cell trans-
plantation target for the majority of cell-based therapy clinical trials in
PD. PET imaging used the dopamine transporter ligand: [C-11]-PE2i
(N-(3-iodoprop-2E-enyl)-2b-carbomethoxy-3b-(4-methyl-
phenyl)nortropane). Courtesy of Mozley and Henchcliffe

Rating Scale (UPDRS) score “off” medication of 28% com-
pared with the sham surgery group (p =0.01). Some, but
not all, other endpoints demonstrated improvement in this
“younger” group (Table 4), but tremor and PD diary scores
did not significantly improve, and PD medications did not
significantly differ between groups 1-year post-transplant.
Unfortunately, 15% of the transplant recipients developed
“off” state dyskinesia or dystonia, termed graft-induced
dyskinesia (GID) over a 3-year period despite medication
adjustment. Of nine serious adverse events, a subdural hema-
toma detected 6 weeks post-transplant was likely related to
the intervention. At 3 years post-transplant, those in the orig-
inal transplant arm maintained a 28% improvement in total
UPDRS scores “off” medication, but improvements declined
and differences based upon age were not maintained [46].
A widely acknowledged problem with this study was the
use of a patient-centered global measure, with scores that
changed when patients at the 1-year endpoint were shown a
video of themselves prior to the intervention, thus limiting
the scope of truly assessing what quality-of-life component
improved or not. Using a more vigorously tested patient
outcome measure such as the 36-item Short Form Health
Survey (eight domains assessing both mental and physical
symptoms) or the PD Quality of Life Score-39 (domains
providing a global assessment of health-related quality of
life) would now be preferable [47]. In addition, the fairly
advanced state of disease with a mean disease duration
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to attain more consistent outcomes. This includes, for exam-
ple, how the age of the cohort and severity of PD might
impact on the potential for benefit from transplant. Moreo-
ver, further efforts to understand the development of GID
have suggested that enrolling patients without significant
levodopa-induced dyskinesia may help avoid GID develop-
ment [49]. With this in mind, a recent multi-center clinical
trial of open-label hEM transplantation was designed with
optimization of clinical parameters, among others, based
upon thoughtful re-analysis of previous data. This open-
label study, TRANSEURO, enrolled individuals with early-
to-moderate PD, randomly assigned to transplant and non-
transplant arms, with a comparator “no intervention” arm
[50]. Immunosuppression was achieved with cyclosporine,
azathioprine, and prednisolone. Unfortunately, availability
of hEM tissue was a significant concern that slowed down
this study’s progress. Nonetheless, the investigators clearly
lay out considerations in clinical trial design that will help
support future studies with different cell sources. One fur-
ther study is now recruiting 15 patients with severe PD for
transplant with hEM tissue but as yet, with planned 5-year
endpoints, there are no published results (NCT: 01860794).

Overall then, using hEM has paved the way for further
trials of cell-based therapy in PD, but has certain major lim-
itations. Concerns with this approach include availability
and variability of the tissue, limitations in standardizing and
escalating cell dosing, potential infection, and heterogeneity
of cell types within the tissue. Moreover, GID development
remains incompletely understood. While there are likely
various factors involved, including graft effects in hosts with
pre-existing levodopa-induced dyskinesia [49], the develop-
ment of GID may also relate to the presence of serotoner-
gic neuron precursors in the transplanted tissue [51]. Such
limitations have prompted searches for other cell sources,
described in Sects. 3.2-3.7.

3.2 Autologous Adrenal Medullary Tissue

As the first clinical studies described above using alloge-
neic grafts of hEM were starting, a distinct approach had
already launched using autologous adrenal medullary tissue
as a source of dopamine. The first clinical results reported
in 1985 in two individuals with advanced PD demonstrated
feasibility of the approach and a signal of potential clinical
benefit [52]. Following this, remarkable results with dra-
matic improvement in two patients aged 35 and 39 years
with severe PD (Table 2) [29] prompted multiple small
open-label trials with variable outcomes. Unfortunately,
a rigorous multi-center study in 16 men and three women
with advanced PD found only modest improvements and
significant morbidity [28] (Table 2). Subsequently, 13 cent-
ers participated in a United Parkinson Foundation Neuro-
transplantation Registry, comprising 13 centers collecting

A\ Adis

harmonized outcome measures over 2 years [53]. Unfortu-
nately, deaths occurred in 18%, of which at least half were
reported as attributable to the surgical procedures required
to achieve these transplants. Moreover, psychiatric adverse
effects persisted in a subset of participants, and benefits
failed to attain the levels in the initial reports. In retrospect,
the underlying rationale for transplanting adrenal medullary
tissue has been questioned [54], and a post-mortem study at
30 months post-transplant, despite initial clinical improve-
ment, demonstrated poor cell survival with necrosis and
numerous macrophages [55].

3.3 Autologous Carotid Body Tissue

Carotid body tissue has been harvested as a source of
dopaminergic cells, and activity as a dopamine source was
originally postulated as its primary mechanism of action.
However, this tissue also releases glial-derived neurotrophic
factor (GDNF) and thus may have other effects than dopa-
mine production [56]. A single phase I/II open-label clini-
cal trial with a 1- to 3-year follow-up in 13 subjects with
advanced PD used a harvesting and surgical implantation
procedure carried out in a single surgical session targeting
the bilateral putamen (and caudate in two, although only
one of these received a full dose bilaterally) [56, 57]. The
primary outcome, UPDRS motor “off” score, demonstrated
variable changes of 5-74% improvement in 10/12 subjects
evaluated at 1 year, with a mean change of 15+21.5%
(»=0.034). One patient had a highly fibrous carotid body
and derived no benefit. Changes in '*F-DOPA uptake meas-
ured by PET in a subset of seven subjects were not statis-
tically significant. Further outcomes and adverse events
(including symptomatic lacunar infarct, and seizure result-
ing from hemorrhage next to a burr hole) are summarized in
Table 2. Patient selection was based upon testing emphasiz-
ing levodopa responsiveness, similar to DBS pre-surgical
testing, but with difficulty obtaining appropriate carotid
tissue because of vascular changes, the feasibility and reli-
ability of this approach are questionable.

3.4 Xenografts

Embryonic porcine ventral mesencephalic tissue (12 mil-
lion cells deposited in three tracks) was used as a donor cell
source in this series of xenografts to the unilateral puta-
men and caudate of 12 patients with advanced PD, of whom
six were administered cyclosporine and six received cells
pretreated with an anti-major histocompatibility complex
class 1 monoclonal antibody F(ab’) fragment [58, 59]. At
the 1-year endpoint, total UPDRS “off” scores decreased by
average 19%, and three subjects achieved a 30% decrease
(five improved 11% or less). BE_DOPA PET demonstrated
no increase in uptake in the engrafted striatum. Scant
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cell survival (estimated 638 cells) was seen at autopsy at
7 months in one subject who had been administered cyclo-
sporine (who died of pulmonary embolism) [60]. Although
there is interest in this approach, testing has been extremely
limited so far. The reasons for poor cell survival, and (likely
related) the risk of rejection and immunosuppression
requirements, need to be better understood, and management
of potential xenotic infections is a consideration.

3.5 Retinal Pigment Epithelial Cells

Retinal pigment epithelial (RPE) cells are a source of levo-
dopa and have been tested in clinical trials delivered on an
excipient of cross-linked porcine gelatin microcarriers as
Spheramine®. Such transplanted RPE cells were shown to
improve symptoms in rodent and non-human primate mod-
els of PD. An open-label single-center clinical trial was
undertaken [61-63] in six subjects with advanced PD with
surgical delivery to the post-commissural putamen contralat-
eral to the most affected side. There was an average 48%
improvement in the UPDRS motor “off” score, the primary
outcome, at 12 months, and no serious adverse events were
deemed related to the intervention (Table 2). Based upon
this encouraging open-label study, a subsequent phase II,
multi-center, randomized, double-blind controlled study was
undertaken in 35 individuals who received 325,000 RPE
cells per side, and 36 individuals who underwent a sham
procedure with a partial burr hole that did not penetrate
the dura (Table 3) [64]. No immunosuppressive regimen
was administered. The UPDRS motor score “off” medica-
tions, the primary endpoint, improved by — 10.5+10.26 and
—10.1+12.26 points in the transplant and sham procedure
arm, respectively (p =0.09). Other endpoints are detailed in
Table 4. Unfortunately, not only did the study fail to demon-
strate benefit, there were also more deaths in the transplant
vs sham procedure group (seven vs two, respectively), with
one of these deemed possibly related to the surgery or cells.
At this point, it seems possible that a lack of benefit may
have been due, at least in part, to suboptimal cell survival,
based upon autopsy of a single individual at 6 months [65].

3.6 Neural Stem Cells

A single-center, open-label, dose-escalating clinical
trial of human parthenogenetic neural stem cells (NSCs)
[66—69] has taken place in in Australia (NCT02452723)
(Table 2). Ascending doses of 30, 50, or 70 million cells
(ISC-hpNSC®) were surgically delivered using stereotactic
guidance to the bilateral caudate, putamen, and substan-
tia nigra [70], with enrolment and procedures completed
in early 2019. Interim results have been presented with a
published abstract containing an overview of data for ten
subjects transplanted, of whom eight had completed this

1-year study (with a planned 5-year follow-up). No serious
adverse events were reported as related to the cell product,
and specifically, no tumors and no infections were reported.
In this small open-label study, a dose-dependent improve-
ment was reported on the Hauser Motor Diary, PD Quality
of Life Score-39, and Clinical Global Impression scale at
6 months [71] but publication of the full results is awaited.
Although this study is included in our review, there have
been critical questions raised about incomplete understand-
ing of the mechanisms of action of these cells [72]. Although
these NSCs can differentiate to dopamine neurons in rodent
and non-human primate models of PD [67—69], recovery of
dopaminergic inputs post-transplant is host derived, rather
than from dopaminergic neuron replacement by engrafted
cells. It has therefore been suggested that any recovery is
more likely owing to neurotrophic support to the host from
the engrafted cells [67, 68]. Interpretation of clinical results
will be hampered until the mechanism of action of these
NSCs is better understood. Other studies may aid in improv-
ing our understanding of the potential for such cells, such as
a new clinical trial targeting 50 individuals with severe PD
in China (NCT03119636) [73].

3.7 Human-Induced Pluripotent Cells

Induced pluripotent cells (iPSCs) may be derived from an
individual’s cells, such as skin fibroblasts or blood cells
[74, 75] and their fate programmed to become “authentic”
midbrain dopamine neurons [76] that will not only survive
robustly in preclinical models of PD, but will also amelio-
rate motor deficits [14, 77-79]. Such source iPSCs may be
derived from patients themselves [80] or from allogeneic
donors. In the case of allogeneic donors, it is possible to
provide a degree of immunological matching, shown in ani-
mal models to confer a survival advantage on transplanted
cells. Using this approach, and based upon highly robust
preclinical data, in 2018, a clinical trial undertook the first
in a planned series of surgical transplantations of alloge-
neic dopamine neuron precursors derived from hiPSCs for
PD, performed in two stages implanting 2.4 million cells
per hemisphere into the putamen bilaterally [77, 81]. No
major adverse events were reported after the surgery [81],
and published results are keenly awaited. These iPSCs were
derived from skin fibroblasts of individuals homozygous for
the human leukocyte antigen, so-called “super-donors”, thus
facilitating a strategy based upon banking cells from mul-
tiple donors to potentially serve a majority of a population.
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4 Challenges and Future Considerations
in Cell Therapy for Parkinson'’s Disease

Based on clinical trials undertaken so far, there is evidence
that some individuals derived benefit, varying from mini-
mal to robust. This provides a strong basis from which to
examine what avenues are most promising. The optimal cell
type for transplant is by no means yet determined. Because
of the multiple limitations discussed earlier for hEM tis-
sue transplants, including a lack of donor tissue availability,
and heterogeneity between donors and within donor tissue,
hEM tissue is highly unlikely to become an important treat-
ment for PD despite its history. Use of other cell sources
has been hampered by cell function, survival, and in some
cases, incomplete understanding of their mechanism(s) of
action. Neural stem cells are now in clinical trials but may
have multiple mechanisms of action that remain to be better
defined as human studies progress. Induced pluripotent cells
(allogeneic or autologous) and hESCs are only just entering
or are planned to enter clinical trials [1, 11, 77-80, 82, 83].
These novel approaches offer the potential to expand cells
for banking and cryopreservation, and to rigorously assess
quality and cell characteristics. These characteristics include
markers of differentiation, cell function, and performance
in preclinical models that pertain not only to efficacy but
also to predicted safety. Such cells may also be engineered,
for example, to deliver neurotrophic or other factors. There
remain other core considerations to be addressed at preclini-
cal stages, in clinical trials, and then in translation to clinical
care.

4.1 Preclinical Models

Preclinical testing of the efficacy of transplanted cells has
depended upon rodent and non-human primate models of
PD that are based upon acute destruction of the nigrostri-
atal pathway by toxins, such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine or 6-hydroxydopamine. However, despite
dopamine neuron loss in these animal models, the host
environment is substantially different from that in a human
with PD, in which multiple cellular pathways are disrupted
[3]. Moreover, by the time of transplant in advanced PD,
multiple anatomic locations and networks are affected in
contrast to the animal models used. The complexity of PD
phenotypes, pathology, and genetics in humans, well known
to movement disorder clinicians, cannot be overstated and
presents a substantial hurdle in translating preclinical find-
ings from defined non-degenerative models into a heteroge-
neous clinical cohort. Positive results in animal models have
therefore sometimes failed to translate to positive outcomes
in clinical trials. New animal models, for example based
upon alpha-synuclein, are predicted to address some, but
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not all of these prior limitations [84]. In addition, improved
pathophysiological models of PD will support more com-
plex approaches to cell therapy both in and outside of the
dopaminergic system.

4.2 Clinical Trial Design

Previous clinical trials have highlighted challenges in terms
of design and implementation: patient selection (including
consideration of heterogeneity in PD that may be pheno-
typic, biomarker based, or genetic); variable tissue sources
and surgical approaches; the role of immunosuppression;
duration of follow-up; and, importantly, the relative lack of
diversity in many cohorts studied to date.

4.2.1 Optimizing Clinical Outcome Measures

Selection of clinical batteries and rating scales appropriate
to the needs of individual clinical trials is important, and
previous guidance has been provided by expert investigators
developing the “Core Assessment Program for Intracerebral
Transplantations” (CAPIT) [85] and the “Core Assessment
Program for Surgical Interventional Therapies in Parkinson’s
Disease” (CAPSIT) [86] programs. Complementing previ-
ous guidance, incorporation of the Parkinson’s Kinetigraph
and/or smart phone applications, which either actively or
passively collect various data points regarding a patient’s
symptomatology, may provide a more holistic picture of the
response to cell-based therapy going forward [87].

4.2.2 Selecting Cell Dose

There is much work needed to identify optimal dose ranges
for initial studies, given the limitations in extrapolating from
preclinical studies. Investigators use estimates of surviving
cells in previous studies, combined with knowledge of the
numbers of cells lost in PD combined with cell survival
after transplant in preclinical studies. Cautious dose rang-
ing therefore seems to be advisable in early studies.

4.2.3 ldentifying the Transplant Target

Although previous surgical approaches have overwhelm-
ingly targeted the putamen, it remains to be determined
whether adjusting delivery to a smaller area (for example
defined by neuroimaging as having a higher level of dopa-
mine depletion) or whether other targets (possibly in com-
bination) would provide better results.

4.3 Translation to Clinical Care

Any discussion of potential benefits needs to be balanced
by the risks to the patient. In the case of the cell-based
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approaches discussed above, there are risks associated with
the surgical delivery of cells, such as hemorrhage, stroke, or
infection; risks associated with immunosuppressive medica-
tions, such as an increased risk of infection, renal dysfunc-
tion, or an increased risk of certain cancers; and risks asso-
ciated with the cells transplanted, such as cell overgrowth
or tumorigenesis, or occurrence of GID. Previous clinical
trials, with the exception of TRANSEURO [50], have there-
fore focused upon patients with later stages of PD. How-
ever, an important consideration is whether patients should
be offered cell transplantation earlier should this approach
prove successful. Previous studies of cell transplantation
have suggested benefit for younger patients or for those
with milder PD. The “EARLYSTIM” clinical trial provided
some support for the use of earlier DBS when levodopa-
induced motor fluctuations first develop [88] and might sug-
gest earlier implementation of other “definitive” surgical
interventions, such as cell therapies in the future. However,
important criticisms of targeting earlier PD included the
possibility that some patients would have slower progres-
sion and could be managed with pharmacotherapy alone
thus avoiding unnecessary exposure to surgical risks. In
earlier patients, there is also the risk of misdiagnosis, plac-
ing those with atypical parkinsonism at the risk of a surgical
procedure unlikely to provide benefit [89]. In cell transplant
surgeries, there are also additional risks associated with the
cells themselves. Tumorigenesis or overgrowth of unwanted
tissue remains a fear, and understanding how to minimize
the potential for tumorigenesis is a current focus of research.

4.4 Limitations of a Dopamine-Replacement
Strategy

The cell therapies discussed in this review are primarily
focused on dopamine-responsive symptoms and therefore
have predicted limitations. First, this approach is not pre-
dicted to ameliorate many of the disabling features of PD,
particularly in later stages, such as dementia, psychosis, or
postural instability and falls and their associated morbidi-
ties. Second, it does not mitigate the role of alpha-synuclein
or other processes in the development of non-dopamine
responsive symptoms (nor does it address the development
of pathology seen in a few cases within the graft itself [90]).
Thus, combining dopamine cell replacement therapy with
alpha-synuclein-targeted therapy, such as monoclonal anti-
body treatments, of which several are in various stages of
clinical trials, might be a more comprehensive approach to
treat PD [91]. Combining cell-based therapy with gene or
gene product-targeted therapy may also pave the way for
“precision” treatments, and increasing interest in targeting
individuals with genetic forms of PD is now demonstrated by
recent and planned clinical trials, for example, in PD associ-
ated with a pathogenic mutation in the glucocerebrosidase

gene [92]. Advanced targeting and non-invasive technolo-
gies such as the magnetic resonance-guided focused ultra-
sound can aid in the delivery of treatments by opening the
blood-brain barrier and allowing not only chemotherapies
and antibiotics, but potentially gene therapies and perhaps
in the future cell-based therapies [93].

4.5 Cell-Based Therapies on Other
Neurodegenerative Disorders

What have we learned from cell-based therapies in other
neurodegenerative disorders? Cell replacement strategies
have been tested in Huntington’s disease (HD) [94-96] and
amyotrophic lateral sclerosis [97, 98]. Huntington’s disease
is particularly relevant to PD as a progressive neurodegen-
erative movement disorder although with more prominent
cognitive and psychiatric symptoms than PD. The initial
loss of striatal GABAergic medium spiny neurons with
later degeneration of other brain regions has made HD, like
PD, a promising target for cell-based therapy. Open-label
and randomized clinical trials focused on embryonic striatal
tissue as a cell source demonstrated marked variability in
graft survival and clinical effect [99, 100], owing at least
in part to limitations already discussed for embryonic tis-
sue used for transplant in PD. As in PD, host pathology has
also been observed in human embryonic cell grafts in HD
[101], although its clinical significance remains unclear.
However, there have been some differences over and above
those related to the disorders themselves and the mechanism
of action of cells transplanted. The occurrence of subdural
hematomas (likely related to surgery in individuals with
marked brain atrophy) has prompted modification of the
surgical procedure in HD, and rare graft rejection and for-
mation of anti-human leukocyte antigen antibodies against
the transplant have been observed in HD [94].

5 Conclusions and Future Prospects

We are in an exciting era in which intensive efforts are under-
way to develop an effective and competitive regenerative
medicine approach to restore nigrostriatal inputs that are lost
in PD, and to relieve associated disabling symptoms. Previ-
ous attempts to achieve a cell therapy that would replace
dopaminergic inputs have been hampered by limitations of
the cell sources, including limited donor tissue availability,
poor survival post-transplant, and a lack of understanding of
their mechanism of action. Nonetheless, transplantation of
hEM cells has resulted in robust cell survival in most cases,
and clinical benefit in some recipients. Stem cells now pro-
vide the potential to overcome limitations associated with
previously available cell sources, as they provide high num-
bers of uniform cells that may be banked and subjected to
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rigorous testing prior to transplant. As multiple investiga-
tive teams begin cell therapy programs, a network called
GForce-PD has launched to support communication and
shared efforts between teams (http://www.gforce-pd.com)
aiming to support more rapid advancement. Cell therapies
that enter further development will face a broad competitive
landscape, including oral drugs, infusions and injectables,
DBS, magnetic resonance-guided focused ultrasound, and
potentially gene therapies. Cell-based therapies will need to
prove competitive in their efficacy and, importantly, more
experience is needed to ascertain safety and tolerability of
the various interventions being pursued. That being said,
the potential benefits are enormous, with possibilities for
one-time interventions that may alleviate (or avoid) patient
burden from current drugs and surgical interventions. In the
future, cell therapy if successful will likely be combined
with other strategies to provide the best treatments possible
for individual patients. It is early days, with much to learn,
but the coming years will likely see a dramatic increase in
clinical trials using cell-based approaches to treating PD.
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