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Abstract
Bipolar disorder (BD) is a mood disorder with genetic and neurobiological underpinnings, characterized primarily by recurrent 
episodes of mania and depression, with notable disruptions in rhythmic behaviors such as sleep, energy, appetite and attention. 
The chronobiological links to BD are further supported by the effectiveness of various treatment modalities such as bright light, 
circadian phase advance, and mood-stabilizing drugs such as lithium that have effects on the circadian clock. Over the past 
30 years, the neurobiology of the circadian clock has been exquisitely described and there now exists a detailed knowledge of key 
signaling pathways, neurotransmitters and signaling mechanisms that regulate various dimensions of circadian clock function. 
With this new wealth of information, it is becoming increasingly plausible that new drugs for BD could be made by targeting 
molecular elements of the circadian clock. However, circadian rhythms are multidimensional and complex, involving unique, 
time-dependent factors that are not typically considered in drug development. We review the organization of the circadian clock 
in the central nervous system and briefly summarize data implicating the circadian clock in BD. We then consider some of the 
unique aspects of the circadian clock as a drug target in BD, discuss key methodological considerations and evaluate some of 
the candidate clock pathways and systems that could serve as potential targets for novel mood stabilizers. We expect this work 
will serve as a roadmap to facilitate the development of compounds acting on the circadian clock for the treatment of BD.
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Key Points 

Circadian rhythms are commonly disrupted in bipolar 
disorder.

The molecular mechanisms underlying the circadian 
clock are now described in detail, and new drugs that 
target neurotransmitter receptors, protein kinases, tran-
scription factors, nuclear receptors and protein degrada-
tion pathways have been developed that alter circadian 
rhythms.

These clock-modifying drugs may be helpful in treating 
bipolar disorder.

1 Introduction

Bipolar disorder (BD) is a common psychiatric disorder 
that affects 1–2% of the world’s population, causing severe 
and debilitating episodes of depression and mania, psycho-
sis and persistently increased risk for suicide [1]. Among 
the defining features of BD are alterations in daily pat-
terns of activity and sleep, reactivity to light and rhythmic 
physiological oscillations in melatonin and corticosteroids 
[2, 3]. Seasonal mood disturbances and changes in suicide 
risk are also common [4]. BD is clinically heterogeneous 
and likely arises from the complex interactions of numer-
ous genetic and neurobiological factors [5, 6]. The rhythm 
disturbances observed in BD have led to the hypothesis 
that disturbances in the biological systems underlying 
circadian rhythms play an important role in the etiology 
of the disorder, particularly in patients with BD with ill-
ness phenotypes characterized by pronounced circadian 
rhythm disruption [7]. Multiple models have been pro-
posed to explain the rhythm disruptions in BD, including 
genetic variation in biological timing systems affecting 
“clock genes”, desynchrony of internal clocks, differences 
in photosensitivity/light exposure, social rhythms and 
aberrant signaling inputs into the clock system [2, 8–11]. 
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While important progress has been made in these areas, 
these circadian rhythm abnormalities in BD are not univer-
sal, and their underlying causes and relationship to other 
aspects of the illness remain unclear. For instance, it is not 
presently known how circadian disruption relates to other 
common schemes used to describe BD subphenotypes such 
as BD I versus BD II, rapid cycling and the presence of 
mixed or psychotic features. Nonetheless, the conceptual 
understanding of the circadian clock has now advanced to 
the point of understanding key mechanisms and may lend 
itself well to the development of novel drugs with effects 
on pathways and symptoms that could be therapeutically 
beneficial in BD.

1.1  Overview of the Circadian Clock

Most mammals show endogenous 24  h physiological 
rhythms (circadian rhythms) that direct recurring, daily 
physiological processes and behaviors to proceed in an 
organized manner that optimizes the efficient use of bio-
logical resources [12]. Central to this temporal coordina-
tion are biological timekeeping systems that synchronize 
daily physiological and behavioral processes with each 
other and environmental signals, i.e. the circadian clock. 
The biological basis of circadian rhythms is now well-
understood. The master timekeeper in mammals is located 
in the suprachiasmatic nucleus (SCN) of the hypothalamus 
and responds primarily to blue/green light inputs from spe-
cialized, non-vision forming, retinal photoreceptors termed 
intrinsically photosensitive retinal ganglion cells (iPRGCs) 
[13, 14]. Loss of SCN function from anatomical lesions or 
genetic manipulation causes a complete loss of rhythms of 
sleep/wake activity in animals maintained under constant 
light (LL) or constant dark (DD) [13] and disrupts the 
normal timing of circadian behaviors [15]. Disruption of 
the SCN rhythms in mice also causes important changes 
in mood-related behaviors, leading to increases in helpless 
behaviors [16]. In addition to the SCN, virtually every cell 
in the body has an autonomous circadian clock, and most 
brain regions have circadian rhythms [17]. Inputs from 
ipRGCs project directly to the SCN and entrain rhythms 
[14] but also extend beyond the SCN and provide photic 
inputs to other brain regions in the peri-habenula and other 
subcortical structures, including the medial amygdala, 
ventrolateral preoptic area, lateral hypothalamus and oth-
ers [18, 19]. Some of these inputs have effects on mood 
that may be independent of the SCN and circadian clock 
[19, 20]. With respect to mood regulation, the ventral teg-
mental (VTA) dopamine system is another important site 
regulated by the circadian clock, with indirect light input 
transmitted through the peri-habenula/lateral habenula 

[18], and endogenous rhythms present in dopamine syn-
thesis, release [21, 22], and receptor availability [23]. 
Accordingly, genetic disruption of the circadian clock in 
the VTA leads to disruption of dopamine signaling and 
has been used to model bipolar mania [24, 25]. In the 
central nervous system (CNS), gene expression rhythms 
with distinct signatures have been detected in more than 
60 distinct regions, indicating the widespread importance 
of timekeeping in the primate brain [26]. Rhythms in the 
mouse frontal cortex, hippocampus, dopamine projection 
neurons of the ventral tegmentum (VTA) and substan-
tia nigra (SN), and subcortical limbic regions have been 
examined in detail and found to regulate reward-seeking 
behaviors, cognitive functions, escape/avoidance behav-
iors and memory [2, 3, 19, 27]. However, while some of 
these clocks may be able to function more autonomously 
under some circumstances, most of them are under direct 
control of the SCN master clock. Also of note, metabolic 
disorders are common in BD, either as primary comorbidi-
ties or induced by mood-stabilizer treatments. Therefore, 
rhythms in the pituitary, liver, pancreas and other periph-
eral organ systems may play important roles in endocrine 
function, metabolism and other critical processes that 
affect cardiometabolic health and weight gain over the 
course of psychiatric treatment [28, 29].

1.2  The Circadian Clock is Genetically Encoded

A transcriptional/translational feedback loop made up 
of ~ 20 “clock genes” exists to maintain essential func-
tions underlying circadian rhythms [30]. At the center of 
this loop, CLOCK binds to the protein brain and muscle 
ARNT-like 1 (BMAL1) to form a heterodimeric transcrip-
tional activator. The CLOCK/BMAL protein complex 
binds to E-box promoter elements, driving the expression 
of the period (PER) genes PER1/2/3, and cryptochrome 
(CRY) genes CRY1/2, transcriptional repressor proteins 
that—upon translocating from the cytosol to nucleus—
inhibit their own expression to sustain a circadian oscilla-
tor with a period of ~ 24 h. Additional feedback loops have 
also been described that modulate amplitude, including 
the proteins REV-ERBα/β and retinoic acid-related orphan 
receptors (RORA/B/C). Many circadian network proteins 
are regulated through post-translational modification and/
or protein–protein interactions. These modifications typi-
cally alter protein stability or function. For instance, the 
protein kinase glycogen synthase kinase 3 (GSK3) phos-
phorylates BMAL1, CLOCK, CRY2, REV-ERBα and 
PER2 to alter their stability [31–34]. Select clock proteins 
are also targets of a number of widely expressed signaling 
molecules such as the mitogen-activated protein kinases 
(MAPK) and protein kinase B (AKT) [35, 36]. As knowl-
edge of the regulatory pathways and protein structures 
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continues to improve, clock proteins are increasingly 
accessible as potential drug targets. Additional details cov-
ering specific clock gene functions and drug target features 
are covered in later sections, but an overview of the net-
work and known sites for drug action is shown in Fig. 1.

1.3  Lithium as a Clock‑Modifying Drug

Among the key findings that support a link between cir-
cadian rhythms and BD is the observation that the mood 
stabilizer lithium affects circadian rhythms. Lithium has 
a complex mechanism that involves the inhibition of both 
GSK3 and inositol mono-phosphatase (IMP) [37, 38]. 
Both mechanisms affect rhythms, with the GSK3 effect 

primarily altering amplitude, and the IMP inhibition 
affecting period, at least in part by actions on  IP3 recep-
tors [39]. This action of lithium on IMP distinguishes it 
in important ways from more selective GSK3 inhibitors: 
lithium typically lengthens period, whereas GSK3 inhibi-
tors typically shorten it [40]. Pioneering studies in rats 
revealed that lithium extended the period of wheel-running 
behaviors and facilitated entrainment to longer (27–28 h) 
photoperiods [41, 42]. These effects were replicated in 
healthy human volunteers living in standard environmental 
conditions, with lithium delaying the sleep/wake rhythm 
by an average of 14 minutes [43]. Studies in nonhuman 
primates maintained under controlled LL conditions also 
revealed dose-dependent, period-lengthening effects of 

Fig. 1  Transcriptional, translational and post-translational compo-
nents of the circadian clock as potential drug targets. The circadian 
clock is organized in dual negative feedback loops that maintain 
oscillations in gene expression over ~ 24  h periods. This activity 
establishes 24-h cycles in numerous cellular functions and coordi-
nates their activities. Through binding at E-box elements in gene pro-
moters, BMAL/CLOCK proteins (positive regulators, purple) drive 
the expression of CRY1/2 and PER1/2/3 (negative regulators, yel-
low) and the NR1D1/2 genes that encode REV-ERB nuclear receptors 
(green). REV-ERBs and RORs negatively and positively modulate 
rhythm amplitude through actions on RRE genomic elements. Vari-
ous drugs have been developed that affect post-translational modifica-
tion of clock proteins, modify protein–protein interactions, or serve 
as ligands for clock proteins with nuclear receptor functions. Kinases 

(orange) phosphorylate clock proteins. Ubiquitin ligases (blue) regu-
late the degradation of clock proteins. Light-sensitive inputs to the 
circadian clock and rhythmic output pathways may also amenable to 
drug modification. Specific drug classes mentioned in the review are 
indicated by red boxes. Additional details on each drug target are pro-
vided in the text. ARNT aryl hydrocarbon receptor nuclear transloca-
tor, BMAL1 brain and muscle ARNT-like 1, Ca2+ calcium, CK casein 
kinase, CK1D casein kinase 1 delta, CRY  cryptochrome, FBXL F-box 
and leucine rich repeat proteins, GSK3 glycogen synthase kinase 3, 
ipRGC  intrinsically photosensitive retinal ganglion cell, NR1D1 
nuclear receptor subfamily 1 group D member 1, PACAP pituitary 
adenylate cyclase-activating polypeptide, PER period, ROR retinoic 
acid-related orphan receptor, RRE REV-ERB responsive element
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lithium [44]. More recent studies employing molecular 
reporter genes have examined the effects of lithium on 
SCN neurons and BD patient skin fibroblasts and found 
consistent period-lengthening effects but at concentra-
tions five to ten times higher than those used clinically 
in humans (0.5–1.0 mM) [45, 46]. The effects of lithium 
on amplitude have also been reported but are more vari-
able. In mouse SCN neurons, lithium had no effect on 
amplitude [46]. In fibroblast cultures from healthy con-
trols, lithium increased amplitude at concentrations closer 
to the therapeutic range (1.0 mM) that are too low to affect 
period [45]. Interestingly, the amplitude effect was absent 
in fibroblast cultures from patients with BD, possibly due 
to differences in calcium channel and extracellular signal-
regulated kinase (ERK) signaling [45, 47, 48]. A study of 
fibroblast cultures from patients with BD determined to be 
lithium responders or nonresponders found that the period-
lengthening effects of lithium were generally associated 
with nonresponsiveness. Lithium responders typically 
had shorter periods and/or were phase advanced at base-
line and typically showed a weaker period-lengthening 
response to lithium, whereas nonresponders had longer 
period/phase delays at baseline and were more likely to 
show period-lengthening effects. It is not yet clear from 
human studies whether an action on the circadian clock is 
essential for lithium’s therapeutic effects. However, in the 
forced swim test model of depression, genetic disruption 
of clock genes (especially Cry1) is essential to confer a 
benefit from lithium treatment, indicating the circadian 
clock may be a key element of the therapeutic mechanism 
[49].

2  Behavioral Rhythm Disturbances 
in Bipolar Disorder

The most easily observed rhythmic behaviors in humans 
are the 24 h sleep/wake cycle. Disturbances in these sleep 
and activity rhythms are central diagnostic features of BD. 
Additional differences in chronotype, social patterns and 
seasonality are also present in patients with BD versus 
healthy subjects.

2.1  Sleep and Insomnia

Sleep disturbance is a hallmark of BD during symptomatic 
states (i.e., mania and depression) and relatively symptom-
free euthymic periods [50, 51]. It has been proposed that 
sleep disturbances may be a heritable endophenotype that 
genetically co-segregates with BD. For instance, higher 
rates of sleep disturbance have been reported in the high-
risk offspring of patients with BD compared with controls 

[52]. In children and adolescents not yet diagnosed with 
BD, sleep disturbances, including lack of sleep, decreased 
sleep, insomnia and poor sleep efficiency may be an initial 
prodrome for both mania and depression; in adults with BD, 
insomnia predicts the onset of mood relapse [50, 53–55].

Some sleep disturbances may be specifically associ-
ated with mood states. Variability in sleep latency has 
been associated with depressive symptoms, and lower 
sleep efficiency has been associated with more lifetime 
depressive episodes [56]. Inducing sleep loss in a con-
trolled setting induces manic symptoms at rates similar 
to antidepressants, suggesting sleep loss may be causally 
involved in the emergence of mania [57]. Manic symp-
toms have been associated with decreased sleep effi-
ciency and the duration of rapid eye movement (REM) 
and slow-wave sleep [56, 58]. Somnographic findings 
in both manic and depressed patients with BD included 
disruption in sleep continuity, increased time spent in 
stage 1 sleep, shortened REM latency and increased REM 
sleep density [59].

In long-term studies, sleep disturbances in BD have 
demonstrated an association with clinical and course-of-
illness characteristics. Short sleep duration is associated 
with more severe symptoms, whereas sleep abnormalities 
in either direction (i.e., short or long) were associated with 
poor functioning and quality of life [60]. Sleep disrup-
tions have been associated with a worse course of illness, 
increased symptom severity and impairments in function-
ing and quality of life [50].

2.2  Psychomotor Activity

Low-amplitude activity rhythms, typified by higher 
variability of activity and fragmentation of psychomo-
tor activity patterns have been noted in patients with BD 
[61–63]. In a large study of euthymic patients with BD 
and unaffected relatives, the patients with BD demon-
strated later onset of activity, greater variability, less 
stable circadian patterns, and a greater fragmentation 
of activity patterns; increased movement during sleep; 
and a lower activity amplitude than controls [64]. Inter-
estingly, genetic linkage peaks associated with activity 
abnormalities were often co-transmitted with BD [64]. 
Similar conclusions were reached by an analysis of 
accelerometry data from > 90,000 subjects from the UK 
Biobank community sample. In this study, low rhythm 
amplitudes predicted BD, among other indicators of poor 
mental health [65].

Disturbances in the levels of locomotor activity may 
be informative biomarkers for both manic and depressive 
phases of BD [66]. Patients with BD showed less activ-
ity when depressed [66] and greater locomotor activity 
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with less coherent rhythms when manic [62, 66]. In one 
of these studies, the severity of manic symptoms directly 
correlated with the loss of locomotor activity rhythm [62]. 
Relationships were most pronounced between the rhythm 
disruption and decreased need for sleep, disturbances in 
thought content, pressured speech, and increased motor 
activity/energy.

2.3  Chronotype

Chronotype refers to the stable preferences of people over 
time to favor morning or evening activity. Morningness is 
genetically influenced and heritable and overlaps to some 
extent with traits underlying psychiatric disorders [8, 67, 
68]. Studies suggest that patients with BD have, on aver-
age, lower “morningness” and show a general preference 
for evening activities [69, 70], suggesting a circadian 
phase delay. Importantly, the delays in sleep offset/activ-
ity onset are commonly seen in patients with BD even dur-
ing euthymic periods when mood symptoms are relatively 
well controlled, indicating they are less likely state related 
and caused by symptoms of BD [64]. In patients with BD, 
greater eveningness has been associated with earlier age of 
illness onset, rapid cycling, greater recurrence rates of mood 
episodes [71], increased suicidality and poor response to 
lithium [39].

2.4  Social Rhythms

The social zeitgeber theory suggests that personal interac-
tions might be an environmental cue that coordinates rhyth-
mic behaviors among humans [11, 72]. Patients with BD 
demonstrate delays in social contact compared with healthy 
controls and were more likely to miss meals, be late for work 
and not exercise [61, 73]. Moreover, disruption of social 
rhythms could destabilize biological rhythms, thereby risk-
ing exacerbation of manic mood episodes [74].

2.5  Seasonality

Light is the most prominent entrainment signal for circadian 
rhythms but also serves as an annual marker that directs 
seasonal rhythms. The light-responsive systems involved 
in annual cycles include genetic and neurobiological path-
ways that overlap with the circadian clock [75]. It has been 
proposed that seasonality may also be a heritable trait that 
can be co-transmitted with BD [76]. Compared with con-
trols, subjects with BD report a greater degree of seasonal 
change in mood disturbances and sleep, and—in twins with 
BD—concordance for seasonal variability in these traits is 
higher than in healthy matched twin pairs [77]. Indeed, a 
subset of patients with BD demonstrate a seasonal pattern to 
their mood episodes, with the type of mood episode typically 

varying by season: depression peaked in autumn, mixed 
mania in late summer and mania in early spring [78–80], and 
this seasonality may be one factor that differentiates patients 
with BD from patients with unipolar depression [80]. Other 
phase shifts in photoperiod, such as those induced by long-
distance travel, may also provoke mood episodes in patients 
with BD [81]. Taken together, these studies suggest that 
patients with BD may demonstrate an altered sensitivity to 
light and photoperiod that can destabilize mood.

3  Biological and Physiological Markers 
of Rhythm Disruption

The rhythm disturbances commonly observed clinically in 
BD have led to a search for one or more pathophysiological 
markers of rhythm disturbances that can be used to track 
rhythm in the illness. In particular, research has explored the 
potential links between BD, rhythmic melatonin secretion 
and corticosteroid secretion as potential biomarkers, and/or 
as a means to phenotypically differentiate subcategories of 
patients with BD.

3.1  Melatonin Secretion

Melatonin released from the pineal gland is a key output 
of the circadian clock and one of several signals that syn-
chronizes rhythms throughout the body with the central 
circadian pacemaker and seasonal changes in photoperiod. 
Melatonin is a biological marker of darkness and is released 
overnight with an onset a few hours before the start of sleep. 
Melatonin is produced and secreted by the pineal gland in a 
diurnal fashion that is influenced by the endogenous circa-
dian rhythm and ocular light exposure [82]. Light inhibits 
the production of melatonin in a dose-dependent fashion, 
and so the hormone is sometimes considered a biological 
marker of darkness. It has been suggested that dysfunction 
in the rhythmic secretion of melatonin may be linked with 
BD [83]. Studies in BD commonly report lower levels of 
overnight melatonin [84] and delays in dim-light mela-
tonin onset (DLMO), both in BD versus unipolar depressed 
patients and compared with controls [85]. Patients with BD 
have also demonstrated significantly lower peak nocturnal 
melatonin levels [84–87]. The mechanisms underlying the 
melatonin differences observed in BD are not well-estab-
lished but may involve the transmission of light by melan-
opsin-containing iPRGCs in the retina. In healthy subjects, 
hypomanic traits were positively associated with the post-
illumination pupil response (PIPR) to light [88], whereas in 
patients with seasonal depression, the PIPR to blue light was 
diminished compared with controls [89]. Therefore, retinal 
light sensitivity may correlate with mood state. However, to 
the extent that they have been examined, the differences in 
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peak nocturnal melatonin levels are typically similar across 
mood states [87], indicating a stable trait phenotype. Stud-
ies in cells from healthy subjects have shown that individual 
variability in intracellular signaling pathways terminating 
on the cyclic adenosine monophosphate (cAMP) response 
element-binding protein (CREB) correlate with the physio-
logical effects of light on melatonin secretion [90]. The same 
study found elevated CREB activity in BD cells compared 
with controls [90], a finding supported by genome-wide 
association studies of BD that have revealed enrichment in 
light-sensitive signaling pathways [8]. These latter findings 
may be more relevant for BD-related trait abnormalities in 
melatonin secretion.

3.2  Hypothalamic Pituitary Adrenal Axis

The hypothalamic pituitary adrenal (HPA) axis is under tight 
regulation by the circadian clock, and systemic levels of cor-
tisol show a clear circadian rhythm. Dysregulation of the HPA 
axis, including hypercortisolemia, increased adrenocortico-
tropic hormone (ACTH) levels and impaired glucocorticoid 
receptor feedback mechanisms have all been suggested as pos-
sible mechanisms underlying BD [91] and confirmed in large 
meta-analyses [92]. Using 24-h blood sampling, overall higher 
mean and peak overnight cortisol levels were observed as well 
as an early nadir of cortisol secretion in patients with BD 
during both depressive and manic states [93, 94]. In longer 
sampling periods over 72 h, cortisol rhythms in patients with 
BD showed greater variability than those in controls [95]. In 
terms of impaired HPA axis feedback, dexamethasone sup-
pression impairments were also reported in a meta-analysis 
of four studies conducted at various timepoints across the day 
[92]. Notably, cortisol-release hormone (CRH) levels were not 
consistently altered in BD [92].

In spite of the theoretical implications for circadian 
rhythms, it has not been clearly demonstrated that the BD-
associated rhythm disturbances in the HPA axis result from 
primary dysfunction of the circadian timing system or 
caused instead by a more proximal cause, including genetic 
variation in the HPA axis itself.

4  Candidate Circadian Systems as Novel 
Drug Targets for Bipolar Disorder

4.1  Therapeutic Endpoints of Circadian Clock 
Targets

Given the evidence implicating circadian rhythm abnormali-
ties in BD and related mood disorders, it is reasonable to 
conclude that drugs targeted to block or stimulate circadian 
clock components may be beneficial to restoring rhythms. 
For instance, inducing sleep (e.g., with sedative hypnotics) 

or promoting activity (e.g., with stimulants) are well-estab-
lished examples of beneficial therapeutic outcomes that arise 
from augmenting rhythmic behaviors. However, while these 
endpoints clearly relate to behavioral output of the circadian 
clock, they are presented as examples of imprecise endpoints. 
Stimulants and sedatives do not target the underlying mecha-
nisms that directly control rhythms, and they generally cause 
similar effects at any time (i.e., a stimulant will increase activ-
ity day or night). In this section, we specifically consider drug 
actions that more precisely target circadian clock mechanisms 
underlying period, amplitude and entrainment mechanisms 
and address how these drugs might affect therapeutic out-
comes. A summary of the candidate systems is presented in 
Table 1. We then discuss the various methods that could be 
considered in assessing human subjects in a clinical trial.

4.1.1  Period

Among the circadian parameters, period is most accurately 
quantified and best studied as a drug target. Drugs that both 
shorten and lengthen circadian period have been developed, 
including some already in clinical use (e.g., lithium). Previ-
ous reports have indicated that period can be lengthened to 
a greater extent than it can be shortened. The small molecule 
longdaysin, identified in a high-throughput circadian screen, 
caused > 10 h lengthening in period [96]. More recently, we 
have shown that inhibition of the P38 kinase in immortalized 
mouse fibroblasts caused an even greater period lengthen-
ing of > 20 h [47]. In contrast, the largest period shortening 
effects from pharmacological manipulations are in the 2–3 h 
range [40], suggesting “speed limits” placed upon the circa-
dian oscillator may put biological constraints on the size of 
the period shortening effect that may be induced with a drug. 
Considerable heterogeneity of circadian phenotypes exists in 
BD, and there are perhaps situations where period lengthen-
ing may support a beneficial outcome [39, 97]. However, 
there is general consensus that delayed circadian activity 
is the bigger risk factor for most mental health outcomes, 
including depression, poor response to treatment, substance 
use disorders, social impairment and metabolic disorders 
[39, 97]. Therefore, drugs that shorten period might be pre-
dicted to have generally more therapeutic benefit in these 
conditions. For instance, chronic fluoxetine shortens cir-
cadian activity periods in mice [98]. By accelerating the 
turnover of the circadian cycle, they might offset some of 
the biological factors leading to circadian delay.

4.1.2  Amplitude

As described, BD has been associated with low amplitude in 
many studies. Amplitude-increasing drugs might therefore 
be useful, particularly in consolidating fragmented sleep and 
activity patterns into more regular cycles. Higher amplitude 
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rhythms may also be beneficial in situations where envi-
ronmental timekeepers are attenuated, and weak rhythms 
may become prone to incoherence (e.g., light inputs during 
seasonal mood episodes). By maintaining robust intrinsic 
rhythms, the circadian mechanisms underlying mood stability 
may be preserved, even in the absence of consistent external 
reinforcement. One potential risk of amplitude modulation is 
that by strengthening the rhythm, the clock may become less 
flexible and less likely to re-set in response to entrainment 
stimuli, perhaps making adjustments more difficult for shift 
workers or long-distance travelers adjusting to jet lag.

4.1.3  Entrainment

The mechanisms underlying circadian entrainment in the 
retino-hypothalamic pathway are well-described. In SCN 
synapses, light-induced glutamate is released from ipRGCs 
and triggers calcium signaling and MAPK activation of 
clock genes in the SCN neurons that either advance or delay 
the circadian cycle in a phase-dependent manner [99–101]. 
Mutant mice lacking the L-type calcium channel show 
impairments in phase advances [102], whereas mice lack-
ing the protein kinase G (PKG) show impairments in phase 
delays [103], suggesting that these known drug targets may 
be co-opted to modify circadian entrainment. Small mol-
ecules have been developed that target other mechanisms. 
Serotonin (5HT) receptors play an important role in this 
regard, especially 5HT1A, 5HT1B and 5HT7 receptors. 
In animals, acute administration of BMY7378, a mixed 
5-HT1A agonist/antagonist, causes dramatic facilitation 
of light-induced phase advances [104]. In humans, lurasi-
done—a 5HT7 antagonist with approved use for BD depres-
sion—has been shown to have effects on improving sleep 
when dosed at night in a phase advance model of insomnia 

[105]. These data are consistent with the effects of 5HT7 
antagonism in facilitating phase advance. When used in 
conjunction with sleep deprivation, phase advance has been 
shown to be an effective antidepressant treatment in BD. It is 
tempting to speculate that drugs that facilitate phase advanc-
ing might have a role in augmenting this process.

4.2  Melatonin

Melatonin onset is a marker of circadian phase, and exog-
enous melatonin given before onset of sleep can be used 
to phase advance circadian rhythms. At higher doses, 
melatonin has a sedative effect. MT1 and MT2 melatonin 
receptors are  Gi-protein coupled and located throughout 
the brain and periphery [106]. Melatonin may also bind 
other targets, including the circadian transcription factor 
RORA [107]. In the CNS, MT1 is highly expressed in the 
hypothalamus, cerebellum, hippocampus and midbrain 
dopamine neurons. MT2 is involved in phase setting of 
endogenous rhythms and is more limited in expression 
with enrichment in light-sensitive tissues such as the 
retina and SCN [106]. In the periphery, MT1 receptors 
are expressed in the cardiovascular system, immune cells, 
reproductive organs, endocrine organs, skin, liver, kidney 
and placenta, whereas MT2 is expressed in immune cells, 
skin, pituitary, blood vessels, testes, kidney, gastrointesti-
nal system and adipose [106]. MT1 receptors have a more 
conclusive role than MT2 in underlying depressive mood 
states, whereas both MT1 and MT2 receptors appear to 
be involved in sleep regulation [108–110]. Given the 
key roles that melatonin plays in the shifting of circa-
dian rhythms and seasonal behaviors, drugs targeting the 
melatonin system may be of clinical benefit. Accordingly, 
both exogenous melatonin and melatonin-acting small 

Table 1  Candidate drug targets in the circadian clock network

References for information in the table appear in the text
AVP vasopressin, CK1 casein kinase 1, CNS central nervous system, CRY  cryptochrome, GSK3 glycogen synthase kinase 3, ROR retinoic acid-
related orphan receptor, VIP vasoactive intestinal peptide

Target Circadian rhythm 
parameter(s) 
affected

Available ligands CNS effect in vitro Mood effect in vivo Clinical trials

Melatonin receptors Entrainment Agonists Widespread Anti-depressant Approved
VIP receptors Entrainment Antagonists Widespread Anxiolytic Phase II
AVP receptors Entrainment Agonists Widespread Social bonding Phase III
Neuromedin S receptors Entrainment Agonists Dopamine Unknown None
GSK3 Amplitude, period Kinase inhibitors Neuroprotective, neurogenesis Antimanic Phase II
CK1 Amplitude, period Kinase inhibitors Glutamate, inflammation Antidepressant, antimanic None
REV-ERBS Amplitude Agonists, antagonists Dopamine, inflammation Stimulant, anxiolytic None
RORs Amplitude Agonists, antagonists Unknown Unknown None
CRY Period Agonists, antagonists Unknown Unknown None
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molecules have been developed as therapeutic agents for 
mood symptoms in BD. Two small open-label adjunc-
tive-treatment studies examined the therapeutic effects 
of melatonin on mood and sleep symptoms in BD and 
reported mixed results [111, 112]. Agomelatine is a mixed 
melatonin receptor agonist and  5HT2C receptor antago-
nist. In healthy individuals, agomelatine increased REM 
sleep and caused a phase advance of circadian rhythms 
[113]. Agomelatine has also shown efficacy in the treat-
ment of unipolar depression, leading to improved sleep 
quality, sleep efficiency and normalization of non-REM 
sleep [113–116]. In BD depression, open-label studies 
showed early promise [117, 118], but randomized pla-
cebo-controlled trials have been less successful [119]. 
Ramelteon, another melatonin receptor agonist, showed 
promise in preventing relapses in BD maintenance [120, 
121]. In addition to mood symptoms, melatonin recep-
tor agonists may also be useful as adjunctive agents to 
mitigate metabolic disturbances caused by antipsychot-
ics [122], drugs commonly used to treat BD. While 
melatonin-acting drugs may be a productive line of drug 
development, additional questions remain. For instance, 
it remains unclear whether engagement with the circadian 
clock is a necessary component of the therapeutic mecha-
nism or whether/how the sleep-modulating properties of 
melatonin receptor agonists contribute to mood improve-
ments. Ligands selectively targeting both MT1 and MT2 
have been developed and studied in preclinical models, 
making this question resolvable with further study [108, 
109].

4.3  Hypothalamic Neuropeptides

The SCN is composed of a large number of neuronal sub-
populations that utilize distinct neuropeptides to integrate 
light information and regulate circadian rhythms [123, 124]. 
Three notable neuropeptide systems are vasoactive intesti-
nal polypeptide (VIP)/pituitary adenylate cyclase-activating 
polypeptide (PACAP), vasopressin (AVP), and neuromedin 
S (NMS). In the SCN, VIP neurons play a dominant role in 
synchronization and phase regulation, whereas AVP neurons 
are the principal determinant of circadian period generated 
by the SCN network [125]. The NMS is a more recently 
described neuropeptide system with a limited expression 
profile that may allow for specific targeting of the SCN 
clock. Each system is discussed in the following.

PACAP is released, together with glutamate, in response 
to light by ipRGC terminals in the retinorecipient region 
of the SCN and regulates circadian phase [126]. Neurons 
expressing VIP are located in the ventral region of the SCN 
and receive direct projections from ipRGCs. VIP plays a 
key role in photic phase shift of the SCN. In the absence 
of VIP, SCN neurons display desynchronized rhythms and 

a lower propensity for sustained cellular oscillations [127, 
128]. PACAP and VIP act via G-protein coupled receptors: 
PAC1, which is selective for PACAP, and VPAC2, which is 
responsive to both VIP and PACAP [129]. VPAC2 is highly 
expressed in the SCN. Transgenic mice overexpressing the 
human VPAC2 receptor have an altered circadian phenotype, 
whereas mice carrying a null mutation of the VPAC2 recep-
tor (Vipr2−/−) are incapable of sustaining circadian rhythms 
of sleep/wake behavior [129]. These null mutant mice also 
fail to exhibit rhythms in clock gene and AVP expression in 
the SCN [129]. No data directly implicate PACAP/VIP in 
BD, but human genetic studies have found that a duplication 
of chromosome 7q36.3 (encompassing VIPR2) is associated 
with schizophrenia and high levels of PACAP-PAC1 signal-
ing are associated with posttraumatic stress disorder [130, 
131]. In animal models, upregulation of PACAP has been 
implicated in stress-induced anxiety behaviors [132]. Small-
molecule ligands targeting PACAP/VIP receptors have been 
developed and used in vivo. For instance, administration of 
the VPAC2 agonist Ro25-1553 causes pronounced phase 
advances, which may be advantageous in BD, but chronic 
administration in mice causes deficits in pre-pulse inhibi-
tion, a physiological marker associated with a number of 
psychiatric disorders [133, 134].

One-third of SCN neurons rhythmically express AVP and 
show projection within the SCN, paraventricular nuclei and 
dorsomedial hypothalamus. There are three types of AVP 
receptors, V1A, V1B and V2, but only V1A and V1B are 
expressed in the brain [125]. The V1B receptor is located in 
the pituitary and in the amygdala, whereas V1A is expressed 
in the SCN and many other areas throughout the brain. Dele-
tion of the gene encoding V1A in mice lengthens the circa-
dian period in DD situations by approximately 100 minutes, 
and a portion of these mice are arrhythmic [135]. Double-
mutant mice lacking both V1A and V1B can immediately 
re-entrain to phase-shifted light–dark cycles [136]. This sug-
gests that AVP might contribute to making the SCN resistant 
to environmental perturbations, such as jet lag, by mediat-
ing neuronal communication within the SCN. Outside the 
SCN, AVP and the V1A receptor have important roles in 
affiliative social bonding [137]. Of note, reductions of both 
synthesis and release of AVP have been reported in the SCN 
of patients with depression [138]. Therefore, molecules that 
act as agonists for VIP or AVP receptors might be helpful in 
BD where circadian desynchronization is present.

NMS expression is restricted to the SCN, representing an 
appealing pharmacological target for selectively manipulat-
ing circadian rhythms in the SCN. Previous studies showed 
that intracerebroventricular administration of NMS in rats 
activated SCN neurons and induced phase-shift of circadian 
rhythms [139], suppressed feeding [140] and stimulated oxy-
tocin release [141]. Recently, NMS neurons were shown to 
act through synaptic transmission as SCN pacemakers that 
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control network synchrony and circadian rhythms [142]. 
NMS binds to two different type of G-protein coupled 
receptors, NMU1R and NMU2R. The NMU1R is widely 
distributed in peripheral tissues, whereas NMU2R is highly 
expressed in the hypothalamic paraventricular nucleus 
(PVN) and SCN [139, 143]. A subset of NMU2R-expressing 
PVN dopamine neurons receive NMS input from the SCN. 
Bath application of NMS stimulated these cells, suggesting 
that excitatory NMS neurons in the SCN might regulate the 
activity of the dopamine system in the PVN [144]. Dysfunc-
tion of dopaminergic neurons in the PVN is associated with 
depression and anxiety-like behavior in rodents and winter 
depression in humans [145, 146]. Taken together with its 
circadian effects, NMS neurons and NMU2R may provide 
a future target for therapies for mood disorders such as BD. 
Further investigation is needed to develop selective small 
molecules targeting NMS receptors and determine their 
effects in vivo.

4.4  Casein Kinases

The casein kinase I delta (CSNK1D) phosphorylates PER2 
and regulates protein turnover. Genetic studies of families 
with advanced sleep phase syndrome (ASPS) and mutant 
mice identified the gene encoding CSNK1D as a potent 
regulator of circadian period, and mice that overexpress 
CSNK1D show alterations in dopamine receptors and hyper-
active behaviors that may model some aspects of mania 
[147]. Other studies, large-scale screens of small-molecule 
libraries, have identified inhibitors of CSNK1D and, to a 
lesser extent, CSNK1E and casein kinase II (CSNK2) as 
potential regulators of the circadian clock [148, 149]. In 
mouse SCN slices, the CSNK1D inhibitor PF-670462 
showed period-lengthening effects in reporter gene rhythm 
assays. However, in arrhythmic, null mutant Vipr2 SCN-
slices, PF-670462 had a pronounced effect on amplitude 
and was able to restore 24 h rhythms. When studied in vivo, 
arrhythmic mice carrying the null Vipr2 mutation were 
tested under 12/12 LD conditions. Behavioral rhythms in 
these mice were restored by PF-670462 and maintained 
under both DD and LL conditions [150]. In other stud-
ies, PF-670462 regulated α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) glutamate receptor phos-
phorylation and reduced amphetamine-induced locomotor 
activity, suggesting a possible antimanic effect [151]. Using 
chronic administration of a drug similar to PF-670462 in 
mice, depressive and anxiety-like behaviors were attenuated 
in the CLOCKΔ19 mouse, an arrhythmic mutant used exten-
sively to model bipolar mania [152], whereas wild-type mice 
with an intact clock showed no behavioral or toxic effects 
from the drug. CSNKI inhibition serves as an interesting 
example of how there may be complex drug actions on the 
clock that affect multiple rhythm parameters. Cell-based and 

SCN slice rhythm assays highlight the effects of CSNKI 
inhibitors on period, but this feature of the drug may not be 
the one that restores rhythms in arrhythmic mouse models. 
Instead, by slowing PER turnover in the arrhythmic mutants, 
the main effect of this drug may be to restore rhythms by 
increasing the amplitude of PER expression. Therefore, it 
may be that a putative therapeutic effect of this drug class in 
BD would be most notable in subjects where rhythms were 
severely disturbed (from amplitude increase), but perhaps it 
would be less effective when rhythms are largely intact and 
phase delayed (from period lengthening).

4.5  Nuclear Receptors REV‑ERBs/RORs

The REV-ERB and ROR nuclear receptors act as transcrip-
tion factors that regulate the expression of BMAL1 and 
CLOCK and therefore act as critical regulators of circadian 
rhythms [153]. Considerable experimental data suggest the 
REV-ERB/ROR pathway intersects with a number of mood-
related behaviors and could be a viable target for future drug 
development. In mice, loss of the REV-ERBα gene causes 
time-dependent elevations in dopamine and alterations in 
mood-related behaviors that overlap with BD symptoms 
[154]. Interestingly, protein stability REV-ERBα is regu-
lated in cells by lithium through GSK3B inhibition [32], 
and genetic variation in REV-ERBα and GSK3B predicted 
lithium responsiveness in BD patients [155]. This suggests 
that modulation of REV-ERB may partly explain some of 
lithium’s therapeutic action in BD. Previously classified 
as “orphan receptors”, the ligands for the REV-ERB/ROR 
receptors are now increasingly well-characterized. REV-
ERBα/β both bind heme, RORA binds 24-hydroxycholes-
terol (24-OHC) as an inverse agonist and RORB binds all-
trans retinoic acid and other retinoids [156]. RORC (also 
called RORγ) is thought to bind the cholesterol precursor 
desmosterol but has isoforms with potentially distinct bind-
ing profiles [157]. In recent years, small-molecule modula-
tors of REV-ERBs/RORs have been developed and show 
promise as modulators of the immune system and metab-
olism [158]. In cells transfected with circadian reporter 
genes, the REV-ERB drugs primarily modulate amplitude, 
with agonists blunting the expression of Bmal-luc in both 
peripheral cell lines and SCN slices [158]. Small mole-
cules targeting the RORs are less well-characterized with 
respect to circadian rhythms but include examples of other 
amplitude-enhancing drugs such as nobiletin [159]. With 
respect to behavioral effects, the REV-ERB/ROR drugs 
remain incompletely characterized. However, early studies 
did show that REV-ERB agonists have CNS effects, caus-
ing increased wakefulness, reduced anxiety-like behaviors 
and reduced behavioral response to cocaine [160], indicat-
ing that the REV-ERB system could be targeted in BD to 
alter some aspects of the illness, perhaps with actions on 
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depression. However, REV-ERB/ROR proteins are highly 
tissue specific and may act differently in some brain regions 
than in peripheral cells, and there remains some question 
as to whether the effects of REV-ERB-acting drugs are 
nuclear receptor specific, mediated by the circadian clock 
or through pleiotropic effects on other target systems [161]. 
Accordingly, there remains a need to develop additional 
molecules that specifically target REV-ERB/ROR proteins. 
As yet, no clinical trials of REV-ERBs/ROR-acting drugs 
have been conducted in humans. However, the REV-ERB 
agonist SR9009 is sold without regulatory approval as an 
exercise supplement. It remains to be seen whether there are 
clinically important effects, either favorable or unfavorable, 
among users of the drug.

4.6  Glycogen Synthase Kinase 3

At least one of the mechanisms by which lithium affects cir-
cadian rhythms and stabilizes mood is inhibition of GSK3. 
GSK3 inhibition has been associated with a number of 
effects that could potentially be therapeutic in BD, including 
dendritic sprouting, neuroprotection, adult neurogenesis and 
modulation of circadian rhythms. Large-scale drug library 
screens have shown that GSK3 inhibitors have potent effects 
on the circadian clock, typically causing period shortening 
and increased amplitude [40], effects on rhythms that are 
similar to those of lithium on rhythms in fibroblast cultures 
from lithium-responsive patients with BD [39, 162]. The 
mood stabilizer valproic acid has also been identified as an 
inhibitor of GSK3B and has similar effects on period in both 
mouse models of mania and peripheral cells from patients 
with BD [163]. In the CLOCKΔ19 mutant model of mania, 
selective small-molecule GSK3 inhibitors normalized the 
novelty-induced hyperactivity phenotype in this arrhyth-
mic mutant [164]. The same drugs attenuated the effects of 
amphetamine on locomotor behaviors and pre-pulse inhibi-
tion on wild-type mice, with effects comparable to those of 
another mood stabilizer, valproic acid. Despite the consider-
able promise around GSK3 inhibition as a drug mechanism 
in BD and perhaps other neurological disorders such as Alz-
heimer’s dementia, the widespread nature of GSK3 expres-
sion makes development of drugs targeting this system dif-
ficult, largely because of the high propensity for off-target 
effects on bone, the gall bladder and blood glucose levels 
[165]. Nonetheless, GSK3 inhibitors remain an active area 
of research and are in active clinical trials.

4.7  Cryptochromes

The CRY proteins participate directly in circadian clock 
mechanism, serving as negative feedback inhibitors of 
CLOCK/BMAL transcriptional activators. Small-molecule 
CRY activators have been developed that stabilize the CRY 

protein by inhibiting FBXL3-dependent degradation of 
the protein and extend the duration of CRY repression of 
CLOCK/BMAL [166, 167]. These compounds also reduce 
the expression of Per messenger RNAs (mRNAs) through a 
mechanism that is not well-described. The net effect on clock 
function is to lengthen the period of the circadian cycle, both 
in peripheral cells and SCN slices. In hepatocytes, a CRY 
activator (KL001) reduced gluconeogenesis, indicating that 
the effects on the molecular clock translate into physiologi-
cal outcomes [168]. Working through a distinct mechanism, 
CRY inhibitors (e.g., KS15) have also been developed that 
block the inhibitory CRY-BMAL protein interaction and 
subsequently increase the activity of CLOCK/BMAL tran-
scriptional activation on E-box elements, modulating rhythm 
amplitude and minimally affecting period [169]. CRY1 pro-
teins have also been shown to modulate G-protein coupled 
receptor activity in the cytosol, inhibiting the ability of the 
Gαs subunit to stimulate adenylyl cyclase [168]. This inhibi-
tion leads to downstream reductions in cAMP and inactiva-
tion of the transcription factor CREB. Work on CRY proteins 
lags behind the other mechanisms covered previously. To 
date, no data investigating whether treatment with a KL001-
like drug could affect the ability of CRY to negatively regu-
late Gs-protein and its downstream pathways have been pub-
lished. Additionally, no published studies have demonstrated 
in vivo activity of these drugs, either in humans or animals, 
nor studied their potential for toxic effects, and the mecha-
nism of CRY modulation remains unstudied in the brain. 
Nonetheless, small-molecule modulators of CRY warrant 
further investigation as drugs targeting CRY proteins directly 
may have greater specificity than drugs that target clock 
inputs (e.g., protein kinases) that typically have off-target 
effects. Drugs targeting the FBXL E3-ubiquitin ligase pro-
teins may be another promising mechanism by which to tar-
get CRY proteins to obtain additional control over circadian 
period. Loss of the  Fbxl3 gene lengthens period, whereas 
loss of Fbxl21 shortens period [170]. One can imagine situ-
ations where directing the circadian period is advantageous, 
and FBXL proteins could offer a potential “switch” whereby 
this could be accomplished. Efforts are underway to develop 
modulators of E3-ubiquitin ligase for cancer [171]. Interest-
ingly, these early efforts have identified the antidepressant 
clomipramine as an E3-ubiquitin ligase inhibitor, showing 
the plausibility of CNS uses for these drugs [171].

4.8  Pharmacological Modulation of Retinal 
Photoreceptors

Finally, it is worth considering how pharmacological 
approaches to BD could make use of light-dependent, 
mood-regulatory mechanisms that include both circadian 
and noncircadian mechanisms. These pathways contribute 
to light-induced antidepressant (or manic) actions and/or 
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dark-induced antimanic (or depressive) actions. Recent work 
in mice indicates that photic pathways into the brain from 
ipRGCs target additional brain regions beyond the SCN and 
have effects on mood independent of the circadian clock [19]. 
The retinal photoreceptors responsible for sending light infor-
mation to the SCN are relatively accessible compared with 
other CNS tissues and may be amenable to direct application 
of drugs that would otherwise be difficult to administer sys-
temically (e.g., antagonists of the melanopsin-mediated sign-
aling pathway [172]) and/or that make use of targeted newly 
developed molecular approaches that precisely target circuits 
in an anatomically restricted manner that targets only relevant 
cells. Preliminary work using chemogenetic approaches and 
optogenetic stimulation have shown some potential for trans-
lation [173, 174]. It may also be possible to use light-based 
somatic therapies such as bright light stimulation to augment 
the action of systemic drugs preferentially in brain regions 
that receive strong light inputs.

4.9  Other Targets

A variety of other signaling pathways have shown links to the 
circadian clock but are not as well-studied or have complex 
mechanisms of action (e.g., longdaysin [96]) or toxic drug 
effects (e.g. chemotherapeutic agents [40]) that may not be 
practical in clinical use for BD. For instance, we have inhib-
ited DUSP6, a gene encoding the MAPK phosphatase (MKP) 
1 to enhance rhythm amplitude in human cell lines [47]. MKP 
inhibitors are in development as chemotherapeutic agents in 
cancer [175]. However, given the ubiquitous expression of 
MAPKs, it remains unclear whether the tolerability profile of 
these drugs, even if they were successful at rhythm modula-
tion, would make them suitable for use in BD. Among the 
more promising candidates in this group is the AMP-depend-
ent kinase (AMPK), which is expressed in the brain, regu-
lates CRY stability and may be involved in regulation of the 
response of calcium channels to photic inputs. Both activators 
and inhibitors of AMPK have been developed that may have 
effects on the circadian clock. Inositol pyrophosphates are 
brain molecules synthesized by the actions of inositol hexaki-
sphosphate (IP6) kinases (IP6Ks). IP6Ks stimulate GSK3B 
signaling and regulate motor and social behaviors as well 
as the response to psychostimulants [176]. In peripherally 
derived cell lines, IP6K inhibitors increase circadian rhythm 
amplitude, similar to the effects of GSK3B inhibition [162].

5  Clinical Trial Methods to Assess Circadian 
Rhythms

To approve a new drug for use in humans, clinical trials 
demonstrating both safety and efficacy are essential. Circa-
dian rhythms can be assessed in a variety of ways, each of 

which has different strengths and weaknesses and is more 
or less suitable to assessing various dimensions of rhythms. 
Melatonin assays using biological fluids such as blood, 
urine and saliva are often considered the gold standard but 
often require biochemical analysis and repeated measure-
ments over time and specialized lighting conditions that can 
affect results obtained outside a laboratory environment. 
For this reason, there has been an ongoing search among 
chronobiologists to identify alternative means to measure 
rhythms in human subjects. Fundamental hurdles faced by 
many of these methods are masking (i.e., loss of circadian 
signal due to interference from light or other factors driving 
sleep) and distinguishing state versus trait aspects of activ-
ity patterns. For humans living in standard environmental 
conditions, the light–dark cycle imposes a ~ 24 h diur-
nal cycle on subjects that may make it difficult to resolve 
changes in the underlying biological rhythm. Mood symp-
toms of BD such as insomnia and hyperactivity may disrupt 
typical sleep/activity patterns and further mask underlying 
circadian rhythm traits. Masking can be overcome to some 
extent by using forced desynchrony or constant routine pro-
tocols, methods that require long periods of observation in 
special laboratories [177, 178]. However, in BD it may also 
be necessary to perform long-term observations that extend 
beyond the duration of a mood episode. Other factors that 
may affect the utility of circadian rhythm measures include 
cost, scalability (i.e., how many subjects can be conveni-
ently sampled), logistical factors and sensitivity to nonspe-
cific clinical variables (e.g., age). Fortunately, in the age 
of mobile technology, widespread connectivity, wearable 
sensors and high-throughput biology, there is good reason 
to expect many of these methods will be improved and/or 
made more cost effective in coming years. For instance, 
wrist actigraph measurements of sleep and activity in 
patients with BD reveal specific differences in circadian 
phase that correlate with mood state, cortisol rhythms and 
cellular clock gene expression. Depressive episodes were 
associated with phase delays, whereas manic episodes were 
associated with phase advances, and both normalized after 
recovery [179]. This study provides an important proof-of 
principle, indicating that circadian biomarkers have mood 
correlates that may be practically studied in clinical trials. 
Other work has shown that it may be possible to impute 
chronotype genetically, based on a polygenic score of trait 
morningness-associated variants [67, 68, 180] or from the 
gene expression profile of a biological sample taken at a 
single timepoint to estimate the circadian phase of a subject 
[181–183]. The latter method shows particular promise as a 
convenient point-of-care test that might allow for the reli-
able assessment of rhythms and circadian organization with 
a single test, potentially diminishing the need for continu-
ous measurement over an extended time period. Methods 
are summarized in Table 2.
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The US FDA has approved relatively few drugs target-
ing circadian rhythms and no drugs for a psychiatric dis-
order such as BD, in which the mechanism of action relies 
upon the circadian clock but the primary endpoint reflects 
changes in mood state or related symptoms. Tasimelteon, 
a melatonin receptor agonist, was approved in 2013 for 
non-24  h circadian rhythm disorder (non-24 CRD) in 
blind people. The primary endpoints of the clinical trials 
were related to synchronization, as determined by urinary 
6-hydroxymelatonin sulfate, a metabolite of endogenous 
melatonin and biomarker of circadian phase [184]. A 
standardized clinical inventory was also used to assess 
function in patients [184]. Press reports from the time 
made it clear that the FDA had not entirely determined 
which biomarkers, clinical endpoints and statistical meth-
ods were most appropriate in evaluating a circadian drug 
[185]. The issues have not been addressed in intervening 
years and remain mostly unresolved. Therefore, as clinical 
trials examining clock compounds are completed, it will be 
essential for industry and the FDA to standardize the units 
and accepted norms for potential endpoint markers and 
develop guidelines for which circadian biomarkers should 
be used. This issue may be particularly complicated when 
the clinical indication for a drug is a mood disorder such 
as BD, with clinical endpoints (e.g., depression, mania, 

suicidality) that may not necessarily directly relate to a cir-
cadian parameter (e.g., phase or amplitude). There may be 
debate as to whether the circadian effect of the drug should 
be considered in terms of efficacy, safety or even at all or 
whether to focus exclusively on mood-related outcomes.

6  Conclusions

Existing treatments for BD are often ineffective and/or 
poorly tolerated because of side effects and the burdens 
placed on patients to maintain compliance. Therefore, the 
demand is great for improved mood-stabilizing pharma-
cotherapies. A major challenge to treating BD and other 
psychiatric disorders remains our incomplete understand-
ing of the brain systems involved. However, the disruption 
of rhythmic behaviors and physiology commonly observed 
in BD perhaps holds important clues indicating that distur-
bances in the circadian clock may be an important patho-
physiological mechanism contributing to the disorder. 
The success of lithium in treating a substantial number 
of patients with BD, and the use of circadian biomark-
ers to more readily identify lithium-responsive patients, 
illustrates how drugs acting upon the clock may have 

Table 2  Potential research methods available for the assessment of circadian rhythm phenotypes in clinical trials

Scale estimates are based on current feasibility including cost and typical sample sizes in the literature
BALM basic language morningness scale, CNS central nervous system, DLMO dim light melatonin onset, MEQ morningness–eveningness ques-
tionnaire
a Area undergoing rapid advancement and/or improvement in methodology
b Further validation required in mood disorders

Method Type Cost Scale Advantages Limitations

Questionnaire (MEQ, 
Horne-Osberg, BALM)

Subjective trait + ++++ (n > 1 mil) Massively scalable, 
genetic basis, stable over 
time, automated

No amplitude, age depend-
ent, masking, recall bias

Actigraphy, accelerometry Objective state ++ +++ (n > 10,000) Longitudinal (weeks), 
several parameters, 
noninvasive

Masking, limited duration, 
hardware/battery, compli-
ance

Physiological (tempera-
ture)

Objective  stateb +++/++++ ++ (n = 10–100) Longitudinal (days), less 
masking, direct clock 
output

Invasivea, does not scale 
well,  expensivea, sleep 
laboratory  neededa

Biochemical (melatonin/
DLMO)

Objective  stateb +++/++++ ++ (n = 10–100) Validated, less masking, 
direct clock output

Does not scale well, expen-
sive, sleep laboratory, 
shorter duration

Cellular Objective trait +++ ++ (n = 10–100) No masking, patient 
samples, more scale vs. 
physiology/biochemistry, 
drug screening

Cell culture, unclear rela-
tionship to CNS in vivo

Transcriptomic Objective  stateb ++++ ++ (n = 10–100) Single time point, simple 
collection, multiple 
outputs

Complex  analysesa, limited 
to tissue-specific factors, 
not well-validateda

Genetic (polygenic risk) Objective trait ++ +++/++++ (n > 10,000) Comparable across phe-
notypes

Not well-validated, mini-
mum % variance
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an important place in therapy for BD. The more recent 
success of melatonin agonists and  5HT7 antagonists as 
therapeutic agents in BD further underscore the potential 
value of this approach. As the role of circadian rhythms 
in human health continues to be revealed, considerable 
effort has been made in developing small-molecule modu-
lators of the clock proteins. Many of these efforts are in 
disease areas other than BD, particularly immunology and 
metabolism (two areas increasingly recognized as adjacent 
and relevant to psychiatric disorders). Therefore, the CNS 
effects and clinical implications of targeting some clock 
proteins remain to be fully elucidated and certainly not all 
will be applicable or practical for clinical use. However, 
the lessons learned from using clock-acting drugs, either 
in BD or adjacent health fields, will provide important les-
sons, further elucidating new disease mechanisms and pro-
viding practical experience for clinicians, researchers and 
regulators on the various aspects of conducting therapeutic 
interventions affecting the clock. This review has taken a 
deliberately broad view of identifying potential drug tar-
gets for BD, recognizing that there will be many failures 
and false starts but in the hope that further research in 
these areas will stimulate further innovation and succeed 
in helping patients and families affected by BD. Additional 
effort in this rapidly emerging area is warranted.
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