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Abstract Most of the current therapies, as well as many of

the clinical trials, for multiple sclerosis (MS) target the

inflammatory autoimmune processes, but less than 20% of

all clinical trials investigate potential therapies for the

chronic progressive disease stage of MS. The latter is

responsible for the steadily increasing disability in many

patients, and there is an urgent need for novel therapies that

protect nervous system tissue and enhance axonal growth

and/or remyelination. As outlined in this review, solid pre-

clinical data suggest neutralization of the neurite outgrowth

inhibitor Nogo-A as a potential new way to achieve both

axonal and myelin repair. Several phase I clinical studies

with anti-Nogo-A antibodies have been conducted in dif-

ferent disease paradigms including MS and spinal cord

injury. Data from spinal cord injury and amyotrophic lat-

eral sclerosis (ALS) trials accredit a good safety profile of

high doses of anti-Nogo-A antibodies administered

intravenously or intrathecally. An antibody against a Nogo

receptor subunit, leucine rich repeat and immunoglobulin-

like domain-containing protein 1 (LINGO-1), was recently

shown to improve outcome in patients with acute optic

neuritis in a phase II study. Nogo-A-suppressing antibodies

could be novel drug candidates for the relapsing as well as

the progressive MS disease stage. In this review, we

summarize the available pre-clinical and clinical evidence

on Nogo-A and elucidate the potential of Nogo-A-anti-

bodies as a therapy for progressive MS.

Key Points

Solid pre-clinical data suggest Nogo-A

neutralization as a potential therapeutic approach for

neuro-inflammatory and demyelinating pathology.

Nogo-A antibodies are now in early clinical

development for multiple sclerosis.

Their potential to boost axonal regeneration and

compensatory fiber growth as well as myelin repair

makes them an attractive candidate to also treat

progressive multiple sclerosis, in which

neurodegeneration and chronic demyelination are

hallmarks.

1 Introduction

Multiple sclerosis (MS) is the leading cause of non-trau-

matic neurological disability in young adults in Europe and

America [1]. It is an inflammatory demyelinating disease of

the central nervous system (CNS) [2]. The causes of MS

are not yet fully understood, but a complex genetic trait and
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several environmental risk factors have been identified, and

the prevailing view suggests an autoimmune etiology [3].

In 85% of cases, the disease begins with a relapsing

remitting course (RRMS), during which bouts of inflam-

matory disease activity, with a transient blood–brain barrier

(BBB) opening, are observed. In most patients, RRMS is

followed by a progressive phase. This phase is defined by a

disappearance of relapses and a gradual increase in dis-

ability without remission; finally, many patients become

wheelchair bound. This form is referred to as secondary

progressive MS. In 10% of cases, patients experience a

primary progressive disease course with no superimposed

neuro-inflammatory bouts, referred to as primary progres-

sive MS [4]. Thus, approximately 95% of patients are

affected by extensive neurodegeneration at some point in

the disease course.

However, no therapies are currently available that

simultaneously dampen the inflammatory reactions and

also protect the axons from degeneration [5]. Over the last

20 years, several compounds have been well established in

the treatment regimen of MS patients: interferon-b, glati-
ramer acetate, teriflunomide, dimethyl fumarate, natal-

izumab, fingolimod, alemtuzumab, and mitoxantrone [6].

All of these have mainly immunomodulatory or immuno-

suppressive properties and are therefore more effective for

the treatment of early MS disease stages where acute

inflammation is predominant [7, 8]. Although interferon-b
and mitoxantrone were investigated in progressive MS,

final conclusions about their effectiveness in treating this

chronic disease stage are still unclear and the effect is at

best moderate [9, 10]. In 2016, another compound, dacli-

zumab was approved as a humanized immunoglobulin G

(IgG) against the interleukin-2 receptor-a chain on T cells

[11, 12]. Ocrelizumab, a humanized anti-CD20 IgG

[13, 14], is at the edge of clinical approval. Ocrelizumab

would be the first treatment option for primary progressive

MS (reviewed in [15]).

This is a breakthrough, in particular with regard to the

disappointing trials during the last 25 years assessing the

effectiveness of drug candidates in progressive MS stages

[16]. Important reasons for the failure of these trials

include that they only targeted the adaptive immune

mechanisms. Besides that, the design of these studies was

not suited to identify effects in patients with progressive

MS [17]. The difficulties in testing potential therapies for

progressive MS are reflected by the fact that only a small

number of current clinical MS trials investigate interven-

tions for the progressive stage. This is shown by a sys-

tematic search on clinicaltrials.gov detecting as few as

17.3% of all studies investigating such interventions (126

of 727 studies, search string: ‘‘Multiple Sclerosis OR MS’’,

last search date: 1 March, 2016). A further complication at

the preclinical level is that no proper animal model is

available for progressive MS [18]. However, many lessons

were learned from preclinical [18] and clinical trials [16].

Additionally, promising new drug candidates are currently

in development (reviewed in [19]).

One such candidate, which is in early clinical develop-

ment for progressive (and relapsing) MS, is an antibody

against the protein Nogo-A. In this review, we give a brief

overview on this myelin-associated, nerve fiber growth

inhibitory protein and its receptors and we summarize its

relation to demyelinating, neuro-inflammatory, and neu-

rodegenerative pathology from clinical and preclinical

evidence.

2 Multiple Sclerosis Leads to Extensive
Neurodegeneration

2.1 Pathogenic Cascade Leading

to Neurodegeneration

Axonal and neuronal injuries are common phenomena in

acute relapsing MS lesions as shown by histological anal-

ysis of MS tissue [20, 21], magnetic resonance imaging

[22], and magnetic resonance spectroscopy [23]. The pre-

vailing view is that infiltration of immune cells and sub-

sequent demyelination are responsible for this axonal loss

[24].

The early pathological processes trigger a cascade of

events, leading to chronic demyelination and neurodegen-

eration [25], the hallmarks of the secondary progressive

disease stage. The chronic inflammation results in micro-

glia and macrophage activation-producing reactive oxygen

and nitrogen species (ROS and NOS), which can lead to

mitochondrial damage [26, 27] (reviewed in [28]), meta-

bolic stress, protein misfolding, and deceased axonal

transport [29, 30]. Accumulating evidence suggests gen-

uine hypoxia as another mechanism contributing to the

tissue injury in acute, as well as chronic, MS lesions

[31–33].

2.2 Chronic Demyelination Amplifies

Neurodegeneration

The demyelinated tissue often fails to successfully repair

the myelin, leading to chronically denuded axons [34, 35].

This is in part owing to the failure of oligodendrocyte

precursor differentiation and myelination [35]. This

chronic demyelination can lead to a lack of support func-

tion from the oligodendrocytes/myelin sheaths, which

ultimately results in axonal decline [36, 37]. Ion channel

redistribution is yet another sequel of chronic demyelina-

tion: different neuronal ion channels show redistribution

along axons to compensate ionic imbalance, e.g., voltage-
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gated sodium channels (Nav1.2 and Nav1.6) [38], acid-

sensing ion channel 1 (ASIC 1) [39, 40], and transient

receptor potential cation channel subfamily M member 4

[41] (reviewed in [42]). This channel redistribution results

in ionic imbalance, further perpetuating tissue damage

[42].

All these destructive processes can be amplified by pre-

existing brain injuries and factors associated with brain

aging [25]. Resulting lesions show slow expansion leading

to general CNS tissue atrophy [43]. This can result in

extensive axonal injury, which can be as high as 70% of

axons being destroyed in chronic white matter lesions of

severely disabled MS patients [44, 45]. In fact, the pro-

gressive neuronal degeneration closely correlates with the

progressive neurological decline [46].

2.3 Therapeutic Opportunities

This cascade of pathogenic events culminating in extensive

axonal decline offers therapeutic opportunities. One of

them is the enhancement of neuronal plasticity and

regeneration of neurons and axons. The promotion of

remyelination by recruitment of the oligodendrocyte pre-

cursor pool is yet another one. Important for therapeutic

approaches is that successful remyelination was shown to

stop the progressive axonal loss [47, 48].

3 Nogo-A Protein: Its Distribution and Receptors

One of the drug candidates in early clinical development

that would be able to induce axonal regeneration and

remyelination is an antibody against the neurite out-

growth inhibitory protein Nogo-A [49]. The Nogo-A

protein was first characterized as an inhibitory protein

for neurite outgrowth in brain and spinal cord myelin

in vitro in 1988 [50]; its complementary DNA was

cloned in 2000 [51, 52]. It downregulates neuronal

growth, stabilizes the CNS wiring, and restricts plasticity

in the adult CNS [53]. Nogo-A is a member of the

reticulon family and is highly conserved across species.

Three isoforms are generated by alternative splicing; A,

B, and C, but only Nogo-A has been shown to have

inhibitory effects in the CNS. Nogo-A is present in

various cell types of the CNS, including oligodendro-

cytes and neurons [54]. Nogo-A localizes at the cell

surface and in the endoplasmic reticulum and can have

different membrane topologies with regard to a cyto-

plasmic vs. extracellular position of the N terminus [55].

Two inhibitory regions have been identified in this

1200-amino acid protein, Nogo-A-D20 (amino acids

544–725 in rat Nogo-A) and Nogo-66 (amino acids

1055–1079 in rat Nogo-A, links the two long hydrophobic

stretches that span the cell membrane) [49]. The Nogo

receptor 1 (NgR1) has been described as a receptor for

Nogo-66 [56]. Upon Nogo-A binding, NgR1 associates

with the transmembrane proteins leucine rich repeat and Ig-

like domain-containing protein 1 (LINGO-1) and p75 or

tumor necrosis factor-a receptor superfamily member 19

(TROY) to form a multi-subunit receptor complex [49, 57].

The sphingosine-1-phosphate receptor 2 (S1PR2) is a

receptor for Nogo-A-D20 [58] (Fig. 1a).

Although Nogo-66 and Nogo-A-D20 bind to distinct

receptors, it was demonstrated that they modulate the same

intracellular signaling pathway: ras homolog gene family

member A (RhoA) and rho-associated protein kinase

(ROCK) [57] (Fig. 1d). The intracellular changes induced

by the signaling cascade include reduced growth of actin

filaments, collapse of the growth cone, destabilization of

microtubules, and downregulation of growth genes in the

neuronal cell body [57, 59]. Paired Ig-like receptor B is an

alternative receptor for Nogo-66. This receptor is expressed

in many parts of the CNS at low levels but its relevance for

signaling might be restricted to neural development or after

ischemia [60].

LINGO-1 is a co-receptor forNgR1 uponNogo-Abinding

(Fig. 1a). It is expressed exclusively on oligodendrocytes

and neurons and it is upregulated upon CNS injury across

various animal models and human CNS diseases [61].

Antagonization of LINGO-1 has been shown to be beneficial

in various animalmodels in terms of axonal regeneration and

remyelination [61]. However, as LINGO-1 is distributed

more widely in the CNS thanNgR1 [62], other ligands might

exist besides Nogo-A and NgR1. Comparison of the effects

of LINGO-1 neutralization to those of Nogo-A neutraliza-

tion is therefore of great interest (Table 1).Moreover, Nogo-

A, like LINGO-1, is largely expressed in the CNS, repre-

senting a mostly CNS-specific drug target.

Besides Nogo-A, myelin-associated glycoprotein and

oligodendrocyte-myelin glycoprotein are also ligands for

NgR1 and reported to have neurite growth inhibitory

activity in vitro. Not much is known about their in vivo

functions in the context of neurite growth [63]. Nogo-A is

by far the best studied, and its extensive characterization

suggests an important role during different neurodegener-

ative disorders [64, 65].

4 Nogo-A is an Inhibitor of Nerve Fiber Growth
and Regeneration

In neuronal development, Nogo-A acts as a regulator of

axonal growth, branching, and fasciculation [66]. It also

regulates the internode length and Ranvier node formation

during myelin formation [67]. Nogo-A is involved in the

termination of the critical plastic period in several regions

Nogo-A Antibodies for Progressive MS 189



of the postnatal CNS [49, 53]. In the adult CNS, Nogo-A

takes part in the stabilization of the structure and wiring of

the CNS by restricting neurite growth to short distances.

However, this growth restricting function of Nogo-A also

inhibits regenerative and longer-range plastic events fol-

lowing injury or disease [53]. Suppressing the actions of

Nogo-A by different means enhances plasticity and axonal

regeneration, e.g., in rodent and monkey models of spinal

cord injury and stroke; genetic Nogo-deletion, Nogo-neu-

tralizing antibodies, auto-immunization with Nogo-A, and

a blocking Nogo receptor fusion protein or a Nogo receptor

blocking peptide have been used in these animal models

(reviewed in [53]).

Throughout these studies, Nogo-A neutralization

enhanced regrowth and compensatory sprouting of func-

tionally important fiber systems such as the corticospinal

tract as well as anatomical plasticity on different levels. At

the same time, animals consistently showed significant

functional recovery, e.g., in locomotion, skilled stepping

over irregular ladders, and balance or fine forepaw move-

ments during grasping [53]. These beneficial effects

appeared within 2–4 weeks after the treatment and, at least

in spinal cord injury, seemed to be more efficient in acute

settings [68]. However, blocking Nogo-A with the NgR1-

Fc fusion protein enhanced anatomical and functional

recovery also when administered several months after

a b

c

d

e

Fig. 1 Receptors and downstream signaling of Nogo-A and potential

mechanism(s) of Nogo-A antibody therapy in multiple sclerosis (MS).

a The myelin-associated protein Nogo-A has two inhibitory regions,

Nogo-66 and Nogo-A-D20. Nogo-66 binds to Nogo-receptor 1 (NgR1)
which forms a complex with leucine rich repeat and Ig-like domain-

containing protein 1 (LINGO-1), p75, and/or tumor necrosis factor-a
receptor superfamily member 19 (TROY). Sphingosine-1-phosphate

receptor 2 (S1PR2) was recently identified as a Nogo-A-D20 receptor

[58]. b In acute MS lesions, the attack of the myelin sheath by immune

cells leads to demyelination. The myelin-associated protein Nogo-A is

then present in the myelin debris, potentially limiting axonal/myelin

repair in MS plaques. c In acute and chronic MS lesions, neuronal/

axonal degeneration can be very prominent. Nogo-A, present in the

myelin debris and surrounding myelin sheaths, limits regeneration and

compensatory sprouting of these damaged axons. Blocking Nogo-A

with antibodies potentially leads to regeneration of axons and

restoration of compensatory neuronal circuits. d Signaling cascade

upon binding of Nogo-A to its cognate receptors: neuronal S1PR2 as

well as the NgR1-LINGO-1-p75/TROY receptor complex activates

RhoA and RhoA-associated kinase (ROCK). Different downstream

targets including the phosphorylation of collapsin response mediator

protein 2 (CRMP-2) [83] lead to a disassembly of the actin and

microtubule systemwith subsequent detrimental collapse of the growth

cone. e After demyelination, oligodendrocyte precursor cells are

recruited and differentiate into oligodendrocytes to remyelinate the

naked axon. As suggested by recent evidence [67], Nogo-A seems to

limit themyelinogenic potential of oligodendrocytes: oligodendrocytes

from Nogo-A-deficient mice can form an increased amount of myelin

internodes. Nogo-A-mediated repulsive interactions would lead to

spatial segregation at Ranvier node formation. Remyelinated myelin

sheaths are characteristically thinner than original myelin sheaths.

MLCII myosin light chain 2
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spinal cord trauma [69]. In stroke, even treatment in

chronic stages after large ischemic cortical strokes led to

improved functional recovery and increased axonal

sprouting [70]. Furthermore, the antibody treatment also

had positive effects on stroke recovery in aged rats [71].

Of note, transient pharmacogenetic blockade of the

newly grown midline-crossing corticospinal fibers after

stroke abrogated the recovered grasping function [72]. This

shows that newly grown fibers are indeed responsible for

improved recovery after anti-Nogo-A antibody treatment.

Especially important regarding the future human use of

these antibodies are the observations that neurological

adverse effects such as enhanced pain, spasticity, or

epileptic attacks have never been observed in these studies

[73]. Several antibodies with different epitope specificities

for the rat and human Nogo-A have been used in preclin-

ical and clinical research. Table 2 summarizes these anti-

bodies, their epitopes, and types.

Another function of Nogo-A, potentially contributing to

its ability to enhance recovery from CNS injury, is its

involvement in synaptic plasticity. These processes are

mainly dependent on neuronal Nogo-A. Dendritic as well

as synaptic spine architecture was shown to be influenced

by Nogo-A and NgR1 signaling in the hippocampus [74].

Long-term potentiation of hippocampal and cortical

synapses was increased when Nogo-A or NgR1 was inac-

tivated [75–77]. Furthermore, genetic deletion of the Nogo

receptor family NgR1, NgR2, and NgR3 revealed an

important role of Nogo-A as a brake on synapse formation

in development [78].

Table 1 Differences between the Nogo-A antibody and the LINGO-1 antibody

Anti-Nogo-A antibodies Anti-LINGO-1 antibodies

Target Nogo-A LINGO-1

Expression Neurons and oligodendrocytes, oligodendrocyte precursor

cells

Neurons and oligodendrocytes,

oligodendrocyte precursor cells

Receptors for ligands Sphingosine-1-phosphate receptor 2 (Nogo-A-D20), NgR1-
LINGO-1-p75 receptor complex (Nogo-66), paired Ig-like

receptor B

Nogo-A, oligodendrocyte-myelin glycoprotein

(together with p75 and NgR1), other

unknown ligands

Downstream signaling Ras homolog gene family member A RhoA, protein kinase B (Akt), other

downstream signaling unknown

Beneficial effects in pre-clinical

animal models

Promoting axonal sprouting and regeneration

Enhancing remyelination

Modulating immune response in neuro-inflammation

Enhancing remyelination by improving

oligodendrocyte differentiation

Promoting axonal repair

Other animal models in which

the therapy showed beneficial

effects

Stroke, spinal cord injury, traumatic brain injury, optic

nerve injury, amyotrophic lateral sclerosis

Glaucoma, Parkinson’s disease, spinal cord

injury

Presumable indication spectrum

in MS

Relapsing and progressive MS Relapsing and progressive MS

Current clinical phase in MS Phase I Phase II completed (optic neuritis)

Ig immunoglobulin, LINGO-1 leucine-rich repeat and immunoglobulin domain-containing protein-1, MS multiple sclerosis, NgR1 Nogo

receptor-1 RhoA ras homolog gene family, member A

Table 2 Target regions and antibody types of monoclonal Nogo-A

antibodies in preclinical and clinical research. The protein Nogo-A

has two inhibitory domains, Nogo-A-D20 (amino acids 544–725 in rat

Nogo-A) and Nogo-66 (amino acids 1055–1079 in rat Nogo-A, links

the two long hydrophobic stretches that span the cell membrane)

Antibody Target amino acids of Nogo-A Target region Antibody type

11C7 [118] 623–640 (rat) Nogo-A-D20 Mouse IgG1

11A8 [118] *209–233 (rat) N-terminal extracellular part Mouse IgG1

3D11 [118] *910–920 (rat) N-terminal extracellular part Mouse IgG1

7B12 [118] *763–820 (rat) N-terminal extracellular part Mouse IgG1

IN1 [119] Not specified Mouse IgM

ATI-355 (NCT00406016) 345–354 (human) N-terminal extracellular part Human IgG4

Ozanezumab [102] 610–621 (human) Nogo-A-D20 Humanized IgG1

IgG immunoglobulin G, IgM immunoglobulin M
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5 Role of Nogo-A in Neuro-Inflammatory
and Demyelinating Conditions

In recent years, the idea has been presented that Nogo-A

may play a regulatory role in animal models of neuroin-

flammatory diseases and may thus be considered a poten-

tial therapeutic target for MS. Its abundant presence in

myelin and myelin debris around acute and chronic MS

lesions could restrict axonal regrowth as well as efficient

myelin repair (Fig. 1). This hypothesis is supported by a

considerable number of studies from different laboratories

using different animal models of MS and strategies for

Nogo-A neutralization. Moreover, there are supportive data

on Nogo-A in MS patients. For a comprehensive molecular

review on Nogo-A and MS, see Lee and Petratos [79].

Pioneering work by Karnezis and colleagues showed an

important role of Nogo-A in the mouse model of autoim-

mune inflammatory CNS disease, experimental autoimmune

encephalomyelitis (EAE) [80]. They suppressed Nogo-A

either by vaccination against Nogo-A or gene deletion. They

found lower clinical scores and slower disease progression as

well as reduced histological inflammation, demyelination,

and axonal damage. The reduced axonal pathology corre-

lated well with the reduction in the severity of clinical dis-

ability and EAE progression. At the immunological level,

vaccination with Nogo-A induced a shift in the production

from proinflammatory T helper-1 to anti-inflammatory T

helper-2 cells. However, the latter observation has not been

reproduced to date.

The immune response to vaccination of EAE-suscepti-

ble mice with Nogo-A peptides, representing different

epitopes of the extracellular Nogo-A domain Nogo-66,

revealed that some epitopes were encephalitogenic while

others ameliorated established EAE [81]. These effects

appeared to be mediated by Nogo-66-specific T cells.

Fontoura and colleagues [82] found that intravenous

(i.v.) application of anti-Nogo-A IgG after EAE induction

with myelin oligodendrocyte glycoprotein (MOG) led to

the prevention of disease onset for up to 12 days after the

treatment was stopped. Compared with phosphate-buffered

saline (PBS) or control IgG injections, the anti-Nogo-A

IgG treatment decreased the incidence and severity of EAE

and also blocked the progression of the disease.

Blocking Nogo-A by means of neutralizing antibodies

has also been shown to enhance recovery in established

neuro-inflammation [83]. An improved clinical as well as

anatomical outcome, i.e., reduced levels of axonal degen-

eration shown with the marker P-CRMP-2, was shown after

therapeutic administration of anti-Nogo-A antibodies dur-

ing the course of EAE in mice.

Better clinical outcome in EAE was also observed by

using a different method of Nogo-A suppression, namely

by genetic knock down with small interfering RNA [84].

In vitro and in vivo, Nogo-A knock down led to higher

levels of the growth-associated protein 43 in neurons [85].

This indicates that axonal repair was enhanced by sup-

pressing Nogo-A. Interestingly, using this gene-knock-out

approach, the proliferation and cytokine production of

myelin-specific T cells were unaltered, suggesting that

enhanced axonal regeneration could be the mechanism for

the improved clinical recovery. This could be in line with

observations in spinal cord injury and stroke models in

which Nogo-A-suppression led to enhanced fiber growth

and plasticity. Axonal regeneration could, at least in part,

be responsible for functional recovery at an early MS

disease stage, e.g., in the remission phases [86]. These

plastic compensatory strategies of the CNS, e.g., by

sprouting of surviving axons, formation of compensatory

circuits, or recruitment of reserve pathways, have been

shown in animal models of stroke [72], spinal cord injury

[87], as well as neuro-inflammatory pathology [88].

Interestingly, Nogo-A mRNA and protein levels were

observed to be inversely correlated with those of the axonal

growth marker, growth-associated protein 43 at different

stages of the course of EAE [89]. This work showed that

Nogo-AmRNA expression is reduced at preclinical and acute

phases, which is followed by upregulation of mRNA and

protein during the chronic EAE stage. In contrast, growth-

associated protein 43 was upregulated during acute EAE and

downregulated in chronic EAE, often in close spatial prox-

imity to Nogo-A mRNA/protein. The reduction in Nogo-A

expression within an active inflammatory lesion therefore

could facilitate axonal sprouting, whereas the higher levels of

Nogo-A in the chronic lesions could impede neurite growth.

The pre-clinical assessment of potential therapies for

progressive MS is hampered by the fact that no animal

models are available for mimicking the progressive MS

disease course [18]. Most models fail to reproduce the

complexity of the processes defining progressive MS, e.g.,

widespread microglia activation, chronic oxidative injury,

subpial demyelination, and cortical pathology at the same

time [18]. Moreover, some models that claim to present a

progressive phenotype, e.g., immunizing Biozzi antibody

high (ABH) mice with spinal cord homogenate and com-

plete Freund’s adjuvant [90], reflect stable disease on a

high level of disability rather than true progression.

Chronic demyelination is an important hallmark of

progressive MS. Therefore, toxin-induced demyelination

models are increasingly used to define therapies aiming at

enhancing remyelination, e.g., lysolecithin, ethidium bro-

mide, or cuprizone [91]. Results from such studies suggest

that Nogo-A may also be involved in myelin repair in

addition to possible immune-modulatory and regeneration-

enhancing effects. Studies on myelin development in vitro
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and in vivo [67] showed that, by acting as a repulsive cue,

Nogo-A influences and regulates the periodic non-over-

lapping arrangement of myelin internodes along axons as

well as their number and inter-nodal distances [67]. By

genetically deleting Nogo-A in oligodendrocytes, the rel-

evance of this hypothesis was tested in vivo in spinal

lysolecithin-induced demyelinating lesions. Interestingly,

Nogo-A-deficient mice showed enhanced myelin repair

compared with control mice. The amount of myelinating

oligodendrocytes was unchanged within the demyelinated

lesion. This strongly supports the hypothesis of an

increased myelinogenic potential of the Nogo-A-deficient

oligodendrocytes, i.e., Nogo-A-deficient oligodendrocytes

can form more myelin internodes around axons. Therefore,

the neutralization of Nogo-A by antibodies can potentially

be exploited to enhance remyelination. The involvement of

Nogo-A and its receptors during myelin formation is sup-

ported by several other developmental in vitro and in vivo

studies [92–94].

In a clinically relevant approach using antibody-medi-

ated Nogo-A-neutralization, subsequent to lysolecithin

lesions in adult rat spinal cords, our laboratory obtained

evidence for enhanced myelin repair as a consequence of

this treatment (unpublished observations). Of note, the

antibody-mediated neutralization of LINGO-1, a compo-

nent of the NgR1-Nogo-A receptor complex, also led to

enhanced oligodendrocyte precursor cell differentiation

during primary myelination as well as during myelin repair

in different in vivo MS animal models [95–97]. In contrast,

over-expression of LINGO-1 impeded this precursor dif-

ferentiation and abolished myelin repair [98]. These (re-

)myelination promoting effects are potentially also medi-

ated by RhoA downstream signaling [95], but other sig-

naling cascades were also shown to be involved [98]

(Table 1).

The potential of antibodies directed against myelin

antigens to promote remyelination has already been shown

(reviewed in [99]). Murine as well as human anti-myelin

antibodies were able to boost remyelination in rodent MS

models. The proposed mechanisms involved either removal

of myelin debris after injury or direct effects on oligo-

dendrocyte precursor cells.

6 Role of Nogo-A in Multiple Sclerosis

In addition to these preclinical studies, Nogo-A has also

been examined in MS. Nogo-A was found to be upregu-

lated in surviving oligodendrocytes in chronic active

demyelinating lesions of MS patients [100]. This is con-

sistent with findings in EAE mice [89]. Elevated serum and

cerebrospinal fluid autoantibody levels against the large

N-terminal domain of Nogo-A have been found in blood

samples from MS patients [101], but anti-Nogo-A anti-

bodies exist also in healthy controls. The levels of these

antibodies were increased in RRMS patients compared

with chronic-progressive MS patients. Additionally, these

anti-Nogo antibodies were more frequent in younger MS

patients compared with older MS patients [101]. The

role(s) of these Nogo-A antibodies is currently unclear;

they could reflect the ongoing auto-inflammatory processes

against myelin including Nogo-A. Whether some of these

antibodies could participate in reparative functions myelin

or axons remains to be determined.

7 Nogo-A Antibodies in Clinical Trials

The experimental data from studies using different MS

animal models and the exploratory data from MS patients

summarized above suggest Nogo-A antibodies as a

potential therapeutic agent for the treatment of RRMS and/

or progressive forms of MS. Two phase I studies for

Nogo-A antibodies were recently conducted in patients

with RRMS (ClinicalTrials.gov, NCT01424423 and

NCT01435993). Both studies, with a very limited number

of patients, have been terminated, but their results are not

fully published yet. In its online clinical study register,

GlaxoSmithKline states that the reasons for termination

were unrelated to safety issues of the antibody treatment.

Two phase I studies to assess the acute safety, tolera-

bility, and pharmacokinetics of anti-Nogo A antibodies

were successfully completed in two other CNS diseases:

one after intrathecal administration of anti-Nogo-A anti-

bodies over 30 days in patients with acute spinal cord

injury (NCT00406016; Kucher et al., in preparation), and

another using very high doses of intravenously infused

antibodies in patients with amyotrophic lateral sclerosis

(NCT00875446) [102]. Both of these trials showed excel-

lent safety and tolerance of the Nogo-A antibody treatment.

A phase II study including more than 300 patients with

amyotrophic lateral sclerosis who were randomized to anti-

Nogo-A antibodies or placebo further showed that there

was no apparent imbalance between treatment groups in

adverse events (NCT01753076). Placebo-controlled, multi-

centered, phase II proof-of-principle studies are currently

in preparation for spinal cord injury.

An antibody against a Nogo-66 receptor-associated

component, LINGO-1 (opicinumab), has been tested in

phase I and II studies in patients with RRMS/progressive

MS or with optic neuritis. High doses of i.v. antibodies

were well tolerated [103]. In a phase II study in patients

with acute optic neuritis treated with anti-LINGO-1, vision

did not improve after 8 months, but the velocity of nerve

conduction, as measured by visually evoked potentials, was

up to 41% less reduced compared with placebo treatment
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[104]. As the latency of the visually evoked potentials

primarily reflects intact myelin sheaths, these data are

interpreted as a sign of preserved myelin sheaths or

remyelination. The failure to meet the secondary outcome

of attenuation of the loss of retinal nerve fibers by optical

coherence tomography indicates that retinal neurons and/or

axons were lost despite the anti-LINGO-1 treatment.

However, these interpretations are preliminary and await

further confirmation.

A very recent press release from a phase II study using

monthly i.v. anti-LINGO-1 for relapsing and progressive

MS did not meet its primary endpoint, a multicomponent

analysis evaluating motor and cognitive function as well

as disability (http://media.biogen.com/press-release/

investor-relations/biogen-reports-top-line-results-phase-2-

study-opicinumab-anti-lingo). The opicinumab infusions

were combined with a concurrent interferon-b add-on

therapy. A potential reason for this failure despite

promising pre-clinical results could be the ambitious and

complex trial design. It used a complex multicomponent

readout as a primary endpoint including the Timed

25-Foot Walk, the 9-Hole Peg Test, and the Expanded

Disability Status Scale. The latter two tests have received

criticism for being insensitive outcome measures for

progressive MS trials [16]. The Expanded Disability

Status Scale is an ordinal scale; therefore, the statistical

comparison between contiguous scores is insensitive.

Moreover, scores can show high differences between

different raters [105]. The 9-Hole Peg Test has floor and

ceiling effects, limiting its use for progressive MS trials.

The patient collective was also very heterogeneous con-

sisting of RRMS and secondary progressive MS patients,

further complicating final interpretations of the prelimi-

nary published study results. Full study results including

subgroup analysis of RRMS vs. secondary progressive

MS patients will be available in the next few months and

will bring further clarification.

8 Clinical Aspects of Nogo-A Antibody Therapy

8.1 Requirements for Novel Multiple Sclerosis

Therapies

As summarized above, a number of trials to achieve a

therapeutic effect in progressive MS are currently

ongoing. Experience from previous trials points to dif-

ferent requirements to be fulfilled by new therapies

[25]: first, on-going or new inflammatory activity needs

to be blocked and, if possible, the compartmentalized

intra-CNS chronic activation of microglia should be

inhibited as well. Second, neuro- and/or myelin pro-

tection should be achieved to inhibit the above-

mentioned mechanisms that contribute to neuronal

decline in the progressive disease stage. Third, given

the presumable intrathecal compartmentalization of

inflammation in the progressive stage, a potential drug

needs to reach the CNS tissue despite a mostly intact

BBB [25, 106], e.g., by intrathecal application [107], or

delivery into the CSF space via a shuttle system.

Intrathecal application leads to locally maximized drug

concentrations with low systemic exposure and can

therefore be expected to have minimal systemic side

effects [107]. Fourth, besides immunomodulation and

neuro-/myelin protection, the regenerative effects of

treatments such as anti-Nogo-A should foster repair as

much as possible in this phase of disease. Fifth, the

different pathogenic mechanisms in the progressive

disease may require combinatorial therapies tackling the

different targets of the degenerative process as well as

various repair processes such as axonal sprouting and

myelin repair [16]. Sixth, and critical for testing the

effects of such single or combination therapies, the

most informative patient subgroups should be identified,

and suitable trial designs including imaging readouts

and biomarkers for degeneration and repair need to be

applied.

Under these assumptions, neutralization of Nogo-A

seems a feasible and promising therapeutic strategy for the

progressive disease stage of MS. As summarized above, a

number of pre-clinical studies, mainly in the rodent EAE

and lysolecithin model, and different ways of inhibiting

Nogo-A showed functional as well as anatomical recovery

in terms of axonal sparing, sprouting, and myelin repair

[67, 80, 83, 84]. One study also showed a beneficial

immunomodulatory function of Nogo-A inhibition shifting

the cytokine profile of T cells from a pro- to an anti-in-

flammatory one [80]. An anti-Nogo-A therapy could

therefore tackle two or even three of the major pathogenic

hallmarks of MS (Fig. 1b, c, e). NgR1/Lingo-1 inhibition

has also been proposed as an approach to abolish Nogo-A-

signaling in MS [79]. Disappointing results of clinical trials

investigating growth factors such as brain-derived neu-

rotrophic factor (BDNF), nerve growth factor (NGF), cil-

iary neurotrophic factor (CNTF), platelet-derived growth

factor (PDGF), or glial cell-derived neurotrophic factor

(GDNF) suggest that targets should be tissue and cell type

specific. None of the other MS drugs, either still in

development or already clinically approved, have CNS-

specific targets. Therefore, both Nogo-A antibodies and

LINGO-1 antibodies are promising agents owing to their

high CNS target specificity. In addition, it seems plausible

that Nogo-A is present in the myelin debris in MS plaques

prior to macrophage clearance, thereby limiting the

potential of these plaques for axonal repair. This myelin

debris-associated Nogo-A could in fact be an important
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target of the Nogo-A antibodies to achieve axonal repair in

MS. Moreover, the engulfment of myelin debris, poten-

tially ameliorated through opsonization by Nogo-A anti-

bodies, could enhance remyelination [79].

8.2 Pharmacological Aspects of Nogo-A Antibody

Therapy

Perhaps the greatest concern of theNogo-A antibody therapy

is its potential limited access to the CNS through the BBB,

especially in progressive MS in which the disease process is

compartmentalized behind a mainly intact BBB [25].

Preclinical data from a rat stroke model in our labora-

tory revealed that about 0.1% of a blood infused anti-Nogo-

A antibody reached the CSF 7 days after an i.v. bolus

infusion (unpublished observations). This is consistent with

trials in mouse EAE using IgG [108] and in naive rats using

an anti-LINGO-1 IgG [109].

Data from clinical trials support this notion. A study

investigating the CSF concentration of rituximab after i.v.

application in twoMS patients (one with progressive disease)

revealed 0.1–0.25% of this antibody being present in the CSF

24 weeks after application [110]. More evidence comes from

clinical trials with LINGO-1 IgG [111] and the rHIgM22

antibody [112]. Data from a pharmacokinetic study with

rHIgM22 show that it was found in the brain of 14/14 patients

after 2 days and in5/12patients after 29 days following an i.v.

infusion of a single dose. This IgM antibody is five times

larger than IgG such as the LINGO-1 or Nogo-A antibody. In

the phase I study with i.v. anti-LINGO-1 in 72 healthy vol-

unteers or in 47 patients with either relapsing or progressive

MS, doses of C10 mg/kg resulted in CSF concentrations of

this antibody that were associated with 90% of the maximum

remyelination effect in rat remyelination studies [103]. It

seems therefore plausible that sufficient amounts of antibodies

can cross theBBBwhen very high i.v. doses are administered.

8.3 Potential ‘Off-Target’ Effects of Nogo-A

Antibodies

Both animal models and human observations have linked

Nogo-A and NgR1 to schizophrenia (reviewed in [113]).

Genetic association studies have identifiedNogo-A andNgRas

risk polymorphisms for neuropsychiatric disorders such as

schizophrenia [114]. Besides this, mice lacking Nogo-A or

NgR1 demonstrate behavioral phenotypes reflecting aspects of

schizophrenia, e.g., deficits in prepulse inhibition [115, 116].

Neurodevelopmental mechanisms seem to be responsible for

this. In line with this, schizophrenic phenotypes have never

been observed in rodents [115, 117] or primates [73] during or

after therapeutic Nogo-A antibody application.

Nogo-A restricts neuronal plasticity and fiber growth in

the adult CNS. Inhibition of this protein by antibodies

could therefore potentially lead to aberrant fiber growth

and wiring causing, e.g., chronic pain or dyskinesia. These

pathologies were, however, not observed in the phase I

trials for amyotrophic lateral sclerosis [102] and spinal

cord injury (NCT00406016; Kucher et al., in preparation)

or in adult spinal cord-injured rats [68] or primates [73]

undergoing Nogo-A antibody therapy.

9 Conclusions

Axonal degeneration and chronic demyelination are hall-

marks of chronic slowly progressing MS. Preclinical

studies in rodent EAE models showed that suppression of

the growth inhibitory CNS protein Nogo-A, e.g., by neu-

tralizing anti-Nogo-A antibodies, enhances axonal sprout-

ing and regeneration as well as the formation of new

functional circuits. Additionally, myelin repair was

enhanced after genetic deletion of Nogo-A in the lysole-

cithin myelin lesion model. Based on these data, anti-

Nogo-A antibodies could be a promising new therapy for

relapsing as well as progressive MS. Phase I and II studies

with anti-Nogo-A antibodies are currently underway for

other neurological indications. The time seems ripe to test

these antagonists of the Nogo-A–Nogo receptor pathway as

novel therapeutic agents for relapsing and in particular

progressive MS.
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