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Abstract Severe HIV-associated neurocognitive disorders
(HAND), such as HIV-associated dementia, and opportu-
nistic CNS infections are now rare complications of HIV
infection due to comprehensive highly active antiretroviral
therapy (HAART). By contrast, mild to moderate neuro-
cognitive disorders remain prevalent, despite good viral
control in peripheral compartments. HIV infection seems to
provoke chronic CNS injury that may evade systemic HA-
ART. Penetration of antiretroviral drugs across the blood—
brain barrier might be crucial for the treatment of HAND.
This review identifies and evaluates the available clinical
evidence on CSF penetration properties of antiretroviral
drugs, addressing methodological issues and discussing the
clinical relevance of drug concentration assessment.
Although a substantial number of studies examined CSF
concentrations of antiretroviral drugs, there is a need for
adequate, well designed trials to provide more valid drug
distribution profiles. Neuropsychological benefits and
neurotoxicity of potentially CNS-active drugs require fur-
ther investigation before penetration characteristics will
regularly influence therapeutic strategies and outcome.

1 Introduction

HIV-associated neurocognitive disorders (HAND) remain
a challenge for the treatment of HIV infection. After the
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virus has penetrated the CNS in early stages of infection,
both infected lymphocytes crossing the blood-brain barrier
(BBB) and resident macrophages and microglia sustain
HIV replication in the CNS [1], leading to neuronal dam-
age and HAND [2]. As a result of highly active antiretro-
viral therapy (HAART), the incidence of HIV-associated
dementia (HAD) and HIV-associated CNS opportunistic
infections has declined, but mild to moderate neurocogni-
tive impairment remains prevalent [3-6]. HAART can
improve and often reverse neurocognitive dysfunction and
suppress the viral burden in the CSF, a suggested surrogate
marker for CNS infection [7, 8]. Benefits of therapy,
however, vary from individual to individual. Even with
suppression of HIV-RNA in the CSF to undetectable lev-
els, milder forms of neurocognitive dysfunction may per-
sist [9, 10] and markers of intrathecal immunoactivation
regularly remain elevated [11-13]. While the viral load in
the systemic compartment rapidly falls below the detection
limit after the initiation of HAART, the antiviral response
is often delayed in the CSF relative to the blood [14]. All
these observations suggest that HAART is not as effective
in the CNS as it is in peripheral compartments, raising the
concern of insufficient penetration of antiretroviral drugs
(ARVs) across the BBB. The ability of ARVs to reach
therapeutic concentrations within the CNS is crucial in the
face of the high-replication rates of CNS infection, as
occurs in HAD [1], and might also reduce ongoing low-
grade viral replication [15-17], possibly preventing the
genetic compartmentalization of HIV infection, the devel-
opment of a drug-resistant virus and irreversible damage
within the CNS.

The CHARTER (CNS HIV Antiretroviral Therapy
Effects Research) study group has devised a ranking
scheme in order to quantify and compare the effectiveness
of ARVs in the CNS. A revised version of this system was

A\ Adis



32

C. Eisfeld et al.

proposed in 2010 (see Table 1) [18]. On the basis of
information from the literature on measured CSF concen-
trations, physiochemical drug characteristics and effec-
tiveness in the CNS (reflected by suppression of CSF viral
load and improved neurocognitive performance), the
ranking system divides drugs into four categories according
to penetration estimates. Individual ranking scores of the
drugs included in a therapeutic regimen are summed up in
the CNS penetration-effectiveness (CPE) rank [15, 18].
Altogether, the application of this ranking system has been
successful. Higher CPE scores, consistent with higher
penetration estimates, are associated with lower HIV-RNA
levels in the CSF [15, 17, 19]. There has also been an
association between higher CPE scores and neurocognitive
improvement in HAND-affected patients [16, 19-21] and
perinatally HIV-infected children [22], though results have
not always been consistent [17].

Although at present the role of CNS penetration by
ARVs for the treatment of various forms of HAND is
controversial, the extent to which components of HAART
can be detected in the CNS is of strong interest for two
reasons. First, to provide extensive information for pro-
spective trials to further investigate this question. Secondly,
the fact that HIV is a neurotropic virus that penetrates the
CNS early in the course of disease implies that the CNS
must be one of the target sites for therapy. Healthcare
providers who treat neurological manifestations of HIV
infection should be aware of basic pharmacological prop-
erties of HAART components. The aim of this systematic
review is to synthesize and evaluate the available clinical
data on the penetration of ARVs into the CSF. The findings
are discussed in the context of their clinical implications.

1.1 Transport of Drugs Across the Blood—Brain Barrier

Passive transport across the BBB is influenced by the
chemical and physical properties of a drug. The main
contributing factors are ionization, molecular weight,
lipophilicity and protein binding. High molecular weight
can potentially impair passive drug transport across bio-
logical membranes. In this context, the molecular weight of
some components of HAART, for example of many pro-
tease inhibitors (PIs), might be critical [23]. In contrast,
lipophilic properties enhance passive drug diffusion, being
generally directly proportional to the transport rate of a
drug across lipid membranes. However, highly lipophilic
drugs may be ‘trapped’ inside the membrane, complicating
partition into the opposite extracellular compartment [23,
24]. Furthermore, the affinity to plasma proteins limits
penetration, as the passage of drugs across the BBB is
restricted to the unbound fraction [25].

In addition to passive drug diffusion and facilitated
transport, a variety of active transporters carry anti-HIV
drugs across the BBB and the blood—CSF barrier. Trans-
port occurs in both directions and is affected by interaction,
inhibition and induction by concomitant drugs [26].
Among a number of potential and more or less character-
ized transporters localized at the barriers to the CNS, the
efflux transporter P-glycoprotein (P-gp) from the family of
multidrug resistance-associated proteins (MRPs) was
investigated most extensively. Expressed on the luminal
surface of brain capillary endothelium and in the choroid
plexus’ epithelial cells [27], P-gp limits delivery of several
ARVs to the CNS by active efflux, representing an efficient
component of the BBB [23, 25].

Table 1 Revised CNS penetration-effectiveness (CPE) ranking (reprinted with permission from IAS-USA. Letendre et al. [18]. Updates

available at: http://www.iasusa.org)

Antiretroviral drug class® 4 3 2 1

NRTI Zidovudine Abacavir Didanosine Tenofovir
Emtricitabine Lamivudine Zalcitabine

Stavudine

NNRTI Nevirapine Delavirdine Etravirine
Efavirenz

PI Indinavir/ritonavir Darunavir/ritonavir Atazanavir Nelfinavir
Fosamprenavir/ritonavir Atazanavir/ritonavir Ritonavir
Indinavir Fosamprenavir Saquinavir

Lopinavir/ritonavir

Entry/fusion inhibitors
Integrase strand transfer inhibitors

Maraviroc

Saquinavir/ritonavir
Tipranavir/ritonavir

Enfuvirtide

Raltegravir

NNRTI non-nucleoside reverse transcriptase inhibitor, NRTI nucleoside reverse transcriptase inhibitor, P/ protease inhibitor

? Larger numbers reflect estimates of better penetration or effectiveness in the CNS
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1.2 Methods of Literature Review

We performed a systematic search for studies assessing
drug concentrations of commonly used anti-HIV drugs in
the CSF, which are zidovudine (AZT), stavudine (d4T),
lamivudine (3TC), abacavir sulfate (ABC), tenofovir
disoproxil fumarate (TDF), emtricitabine (FTC), nevira-
pine (NVP), efavirenz (EFV), etravirine (ETV), saquinavir
(SQV), ritonavir (RTV), indinavir (IDV), nelfinavir (NFV),
amprenavir (APV), lopinavir (LPV), atazanavir (ATV),
fosamprenavir (FPV), darunavir (DRV), enfuvirtide (T-20),
maraviroc (MVC) and raltegravir (RAL). PubMed was
searched from 1980 to June 2012 for relevant studies. The
following combinations of keywords were used: (‘highly
active antiretroviral therapy’ OR HAART OR cART) AND
(CSF OR ‘cerebrospinal fluid’); [drug name] AND (CSF
OR ‘cerebrospinal fluid’); [drug name] AND (CNS OR
‘central nervous system’ OR brain). Additionally, reference
lists of review articles were hand searched. Abstract data
from the Conferences on Retroviruses and Opportunistic
Infections (CROI) from 1997 to 2012 were searched.
Reports on clinical studies were included when they pro-
vided concentration values of one or more of the above-
mentioned ARVs in the CSF. Case reports and clinical
trials considering less than four CSF samples per dose were
excluded. Preliminary data from conference abstracts were
included only if one or less published studies were avail-
able for a drug. Reports in languages other than English,
French or German were excluded. From eligible reports,
relevant information was extracted, including study design,
study size, drug regimen, CSF post-dose sampling time,
CSF drug concentrations, CSF-to-plasma concentration
ratio, estimated antiviral activity in the CSF, neurological
status of study subjects and neurological outcome
measures.

2 Results

2405 records were identified through searching of PubMed.
Sixty-six published studies met the eligibility criteria.
Additionally, two unpublished conference abstracts were
included in the review. The characteristics of eligible
clinical studies are listed in Table 2, sorted by drug class
and date of publication.

By now, CSF drug concentrations are available for all of
the commonly used ARVs. Due to largely heterogeneous
study designs and subject characteristics, we did not per-
form a quantitative meta-analysis in this review. Clinical
data on CSF penetration of ARVs derive largely from
observational trials with small study sizes. Generally,
ARVs show limited penetration of the BBB, reflected by
CSF-to-plasma concentrations ratios below 100 % in all

studies included in this review. Still, drugs differ impor-
tantly in their ability to accumulate in the CSF.

2.1 Nucleoside and Nucleotide Reverse Transcriptase
Inhibitors

Nucleoside and nucleotide reverse transcriptase inhibitors
(NRTTIs) such as zidovudine were the first drugs found to be
effective against HIV-associated CNS disease. In vitro,
NRTIs show remarkable activity against HIV replication in
macrophages, the principal target cells for HIV in the CNS
[96]. Clinical studies have demonstrated notable CSF
penetration for zidovudine, stavudine, lamivudine, abacavir
and emtricitabine (Table 2). In contrast, CSF concentra-
tions of tenofovir have been relatively low with a median
CSF-to-plasma concentration ratio of about 5 % [51, 52].

The degree of binding to plasma proteins is generally
low for NRTIs, ranging from 0.7 % for tenofovir to 50 %
for abacavir, and should not substantially affect the amount
of drug available to be distributed into the CNS. Abacavir
has the most marked lipophilic properties and the highest
affinity to plasma proteins among this class of ARVs.
About 50 % of systemic abacavir is bound to plasma
proteins and thus not available for transport into the CNS;
substantial lipophilicity, however, enhances its ability to
cross cell membranes and to penetrate into body tissues,
including the brain [97]. Indeed, measured CSF concen-
trations of abacavir suggest considerable penetration (see
Table 2).

CSF-to-plasma concentration ratios of zidovudine,
stavudine, lamivudine, abacavir and emtricitabine increase
over time after dosing [32-34, 43, 44, 48, 50, 98]. Accu-
mulation and elimination kinetics of these drugs are slower
in the central compartment than in plasma, reflected by
delayed peak concentrations and extended drug exposure in
the CSF. Therefore, most of the values presented in
Table 2 are influenced by the time span between drug
intake and CSF sampling.

CSF concentrations of zidovudine, stavudine, lamivu-
dine, abacavir and emtricitabine exceeded the 50 %
inhibitory concentration (ICs(), a measure of antiviral drug
potency, in all studies evaluating this relationship and
largely throughout the respective dosing interval. In con-
trast, tenofovir concentrations in the CSF exceeded ICsq in
only a minority of samples [52]. In view of the remarkable
efficacy of tenofovir in macrophages in vitro, it would be a
promising agent for CNS HIV infection [96], activity in the
CNS, however, seems to be limited by poor penetration
[51, 52].

The exact entry route of NRTIs into the CNS is not
clear. As CSF and plasma concentrations were not strongly
associated with one another, processes other than simple
passive diffusion are likely to play a role in the penetration
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of tenofovir into the CSF [52]. Several unspecific organic
anion and cation transporters may contribute to brain
uptake and efflux of NRTIs [26, 99].

2.2 Non-Nucleoside Reverse Transcriptase Inhibitors

Penetration of nevirapine into the CSF is generally good,
likely due to the lipophilic properties of that drug [37, 38,
54]. Concentration values, however, have not been related
to parameters of antiviral potency. In concordance with
clinical results, Gibbs et al. [100] found the degree of
accumulation in the brain to be greater for nevirapine than
for zidovudine, stavudine, abacavir, lamivudine, ritonavir,
amprenavir and tenofovir in a guinea pig brain perfusion
model. Unlike nevirapine, CSF penetration of efavirenz has
been reported to be less than 1 % of concomitant plasma
concentrations [55, 56], though this cannot be taken to
indicate pharmacological ineffectiveness or viral escape in
the central compartment. The estimated unbound concen-
trations of efavirenz in the CSF approximate the free
plasma fraction and exceed the 95 % inhibitory concen-
tration (ICos) [55]. In addition, there is indirect evidence
indicating that efavirenz does achieve relevant concentra-
tions within the CNS, as this drug has widely recognized
CNS adverse effects [101, 102]. Median CSF-to-plasma
concentration ratios of etravirine have also been relatively
low (14 %), but exceeded the IC5, [57, 58]. Extensive
binding of etravirine to proteins, as observed in the blood
(99.9 %), is not to be expected in the CSF, so that a con-
tribution to viral control in the CNS is quite possible.

2.3 Protease Inhibitors

PIs have several physical and chemical characteristics that
potentially impede passive diffusion into the central com-
partment [23]. A common property of this drug class is its
extensive binding affinity to plasma proteins. Protein-
bound fractions in the plasma range from 60 % for indi-
navir, 86 % for atazanavir and 90 % for fosamprenavir to
more than 98 % for saquinavir, lopinavir, ritonavir and
nelfinavir. Therefore, just a small fraction of the drug in the
plasma is free to cross membranes. Molecular weights of
PIs are high and might additionally limit penetration. PIs
are highly lipophilic, a property generally favourable for
passive transport, but penetration might be limited by
‘membrane trapping’ [23]. Lastly, P-gp-mediated efflux
from the brain back to blood was demonstrated for PIs
[103, 104].

Saquinavir, ritonavir, indinavir, nelfinavir, amprenavir,
lopinavir and atazanavir have been detected in the CSF in a
number of studies (see Table 2); for darunavir, two pub-
lished studies were available [64, 88]. CSF concentrations
of most PIs have been lower than expected from the

estimated free plasma fraction, suggesting the influence of
active transporters at the BBB and/or at the blood—CSF
barrier. Indinavir, lopinavir, amprenavir and darunavir
regularly exceeded inhibitory concentrations in the CSF,
whereas saquinavir and ritonavir are not expected to
achieve sufficient CSF concentrations.

A considerable number of studies investigated indinavir
delivery to the CSF and found CSF-to-plasma ratios to be
relatively high compared with other PIs. This high rate of
permeation into the CSF can mainly be attributed to the
only moderate affinity of indinavir to plasma proteins. Still,
active retrograde transport of indinavir across the BBB is
considered to limit accumulation in the CNS [66, 70]. In-
dinavir CSF-to-plasma ratios increase considerably within
the dosing interval, reflecting delayed drug delivery from
the plasma to the CSF. The CSF is supposed to act as a
slowly equilibrating compartment, leading to stable con-
centrations and a longer elimination half-life of indinavir in
the CSF relative to the systemic compartment [66, 69, 70,
72]. Lopinavir has demonstrated similar pharmacokinetic
characteristics [81]. Under co-administration of ritonavir,
CSF concentrations of indinavir increase more than 2-fold,
paralleling minimum indinavir concentrations in plasma
[72]. Ritonavir is a potent inhibitor of cytochrome P450
(CYP) 3A, thereby delaying systemic metabolism of indi-
navir and increasing the amount of drug available for
transfer to the CNS [23, 68, 72]. CSF concentrations of
other PIs might be similarly affected by co-administration
of ritonavir [84, 87]. Other types of interaction between PIs
have been detected, for example indinavir is suggested to
exert an added inhibitory effect on lopinavir metabolism
that might result in increased delivery of lopinavir to the
CSF [76].

Although indinavir is predicted to exhibit better CSF
penetration than other Pls, lower CSF-to-plasma ratios do
not automatically mean reduced efficacy in the CNS.
Limited penetration can be balanced by the potency of
some PIs [105]. Compared with indinavir, the fraction of
lopinavir penetrating into the CSF has been smaller, but
closer in agreement with the reported free fraction in
plasma [80]. Furthermore, CSF concentrations of lopinavir
have been stable and still in the range of ICs, at the end of
a 12-h dosing interval [81].

The interpretation of PI measurements in the CSF
should account for the binding of drugs to CSF proteins. As
a result of low protein levels in the CSF in unimpaired
individuals, the estimated protein-bound fraction of drugs
is generally lower in the CSF than in plasma, a fact that
complicates the interpretation of CSF-to-plasma ratios of
drugs with high affinity to proteins, such as PIs. The pro-
tein-bound fraction of indinavir in the CSF presumably
ranges from 0 to 3 % and might be negligible [72]. In
contrast, estimates for CSF protein binding of nelfinavir
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and lopinavir are relatively high (60-90 %), but still much
lower than in plasma [78, 79]. Consequently, the CSF-
adjusted ICys of nelfinavir might be several times lower
than in the plasma [78]. Under that condition, nelfinavir
might contribute to inhibiting viral replication in the CNS,
although absolute CSF concentrations have been low [78].

2.4 Other Antiretroviral Drugs

Enfuvirtide, an HIV fusion inhibitor, has not been
detected in the CSF and might not contribute to viral
suppression in the CNS [89]. A substantial fraction of the
entry inhibitor maraviroc, in contrast, appears to reach the
CSF, leading to concentrations beyond the mean 90 %
effective concentration to inhibit viral replication (ECy)
[90]. The low molecular weight of the drug and the rel-
atively low plasma protein binding of about 76 % prob-
ably facilitate penetration to HIV sanctuary sites [91,
106]. Like PIs, maraviroc is a substrate of P-gp, a fact
that might explain CSF concentrations being several-fold
lower than the estimated free plasma fraction [92, 93].
Co-administration of ritonavir has been associated with
higher CSF concentrations of maraviroc, presumably due
to inhibition of maraviroc metabolism, thereby increasing
systemic maraviroc exposure, leading to enhanced deliv-
ery to the CSF [90]. Very importantly, HIV strains
infecting macrophages and microglia in the brain are
predominantly C-C chemokine receptor type 5 (CCRS5)
tropic [107, 108], which is a precondition for virological
efficacy of maraviroc.

Raltegravir, an inhibitor of HIV integrase, is also a
suggested substrate for P-gp-mediated transport from the
brain back into the systemic circulation. In a study by
Yilmaz et al. [94] median CSF raltegravir concentrations
have been nearly 4-fold lower than unbound drug con-
centrations in the plasma, exceeding the upper limit of the
ICys range in about half of the patients. Croteau et al. [95]
found absolute CSF raltegravir concentrations comparable
to these previous results, but drew different conclusions.
Referencing 1Cs,, which is lower than ICys, CSF concen-
trations are reported to exceed the concentration required to
inhibit wild-type HIV in vitro in all individuals, suggesting
that raltegravir is likely to contribute to the suppression of
viral replication in the CNS.

3 Discussion

3.1 Considerations for the Assessment of CSF
Penetration

Results from drug concentration assessment in the CSF are
characterized by substantial intra- and inter-individual
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variability. Various factors might contribute to the varia-
tion among individuals and across clinical studies. In this
context, baseline subject characteristics like dosing
schedules, stage of disease, drug adherence and back-
ground HAART regimens deserve consideration. Some of
these variables can be controlled by means of a compre-
hensive study design. Calculation and presentation of
CSF-to-plasma ratios in addition to absolute CSF drug
concentrations will address differential drug intake and
systemic drug metabolism. Even so, this parameter has its
limitations. On the one hand, CSF-to-plasma ratios are
usually based on total drug concentrations and do not take
protein-bound fractions into account. This is of particular
concern for drugs with high affinity to plasma proteins such
as most PIs. On the other hand, the ratios tend to change
over time within the dosing interval. The ratio between the
area under the concentration-time curve (AUC) in CSF and
plasma might be a more accurate indicator for drug pene-
tration than CSF-to-plasma ratios from samples obtained at
single time points [50, 69, 70]. Ideally, intensive CSF
sampling and simultaneous plasma sampling over the
entire dosing interval or population-based pharmacokinetic
modelling would provide information about the concen-
tration time profile and address host genetic variability in
CSF pharmacokinetics [109, 110]. For practical reasons,
however, most studies included in this survey have simply
assessed drug concentrations as a function of time. Of note,
study subjects mostly received chronic oral dosing. CSF
concentrations of ARVs can be significantly higher and are
usually much more stable after long-term oral therapy than
after a single dose [44], alleviating the problem of time
dependency in drug measurement. Multiple dosing should
therefore precede the assessment of CSF drug concentra-
tions, particularly when drugs are known to accumulate in
the CNS.

While absolute drug concentrations and CSF-to-plasma
ratios provide pharmacokinetic information, antiviral drug
potency parameters account for intracellular metabolism of
drugs and allow estimation of antiviral effectiveness. Most
of the reviewed studies compared the respective CSF drug
concentrations with ICsg or ICqs in vitro. Assessment of the
antiviral potency of a drug in vitro results in a concentra-
tion-effect curve that tends to be linear between 20 % and
80 % of maximum effect [111], therefore ICs, is generally
less variable than ICys. ICsq is usually referenced in clin-
ical resistance testing reports assessing the fold change in
susceptibility of test virus as compared with wild-type
virus. As long as the exact drug concentrations required to
inhibit HIV strains in the central compartment are not
defined, there are no recommendations on which of these
reference standards to use in the context of CSF drug
assessment. The majority of the studies included in our
survey have referenced 1Cs.
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Inhibitory concentrations have some limitations. First,
reference inhibitory concentrations show marked variabil-
ity depending on laboratory methods, viral strains and on
whether they are derived from lymphocyte cell lines or
from macrophages and monocytes. Compared with lym-
phocytes, in vitro inhibitory concentrations in macrophages
are lower for NRTIs, similar for non-nucleotide reverse
transcriptase inhibitors (NNRTIs) and higher for PIs [96].
Moreover, the ICsy is normally assessed in incubation
media approximating conditions in the blood and thus
containing more proteins than the CSF. Assessment of the
ICs in the presence of CSF would be desirable, but is not
routinely performed due to methodological problems.
Compared to standard in vitro conditions, the fraction of
unbound, active drug is expected to be higher in the CSF,
presumably leading to a lower ICs( in that compartment.

Importantly, in cells chronically infected by HIV, such
as persistently infected macrophages in the CNS, the pro-
viral DNA is firmly integrated within the host cell genome,
and virus replication occurs independently of reverse
transcriptase. Therefore, all reverse transcriptase inhibitors
seem to be ineffective in these cells [96]. The inclusion of
PIs in the therapeutic regimen allows for targeting of that
cellular reservoir of HIV, however, the activity of PIs in
chronically infected macrophages is several-fold lower
than in lymphocytes [112]. As a consequence, even with PI
concentrations in the CSF exceeding referenced in vitro
inhibitory concentrations, CNS-standing-infected macro-
phages might escape from therapy.

Lastly, the effect of blood—CNS barrier disruption on
ARV CNS penetration deserves consideration. Viral pro-
teins and host inflammatory mediators affect the integrity
of the BBB in the course of CNS-HIV infection, reflected
by elevated CSF-to-plasma albumin ratios as a sign of
abnormal BBB permeability soon after initial exposure
[113]. and breakdown of tight junctions in patients with
HIV encephalitis [114]. BBB disruption has been corre-
lated with the severity of neurocognitive impairment
[115], whereas in the majority of neurologically asymp-
tomatic HIV-infected individuals, the BBB has been intact
[116, 117]. These findings suggest that the delivery of
ARVs to the CNS might be facilitated in patients with
advanced HAND. Indeed, CSF concentrations of maravi-
roc have been higher in patients with neurological
impairment than in neurologically asymptomatic individ-
uals [82, 90, 91]. The CSF-to-plasma-to-albumin ratio
mostly has not yet been associated with ARV concentra-
tions in the CSF [33, 34, 66, 70, 72, 90], although evi-
dence is not consistent [51, 94]. Penetration values
derived from studies with neurologically asymptomatic
subjects should not simply be extrapolated to patients with
severe HAND until the effects of HIV infection on the
BBB are better understood.

3.2 CSF as a Surrogate for CNS Drug Exposure

An important issue concerning CNS drug availability is
the relevant sampling site. Clinical studies are generally
bound to measure drug concentrations in the CSF as a
surrogate for CNS drug exposure. Conversely, animal
experiments can precisely quantify drug concentrations
within the CNS and occasionally also point to the mech-
anisms and routes of drug entry. Providing information
about drug concentrations in both the brain and the CSF,
studies in animals have investigated the extent to which
drug concentrations correlate in both compartments. Var-
ious experimental sampling and drug measurement tech-
niques have been developed and were discussed in detail
[118-120]. Table 3 presents reports on animal studies
providing CSF-to-plasma or brain-to-plasma ratios of
selected drugs with high penetration estimates, namely
zidovudine, stavudine, abacavir, nevirapine, indinavir and
maraviroc. Animal experiments have shown that drug
concentrations in the CSF regularly differ from those in
the brain. For example, brain-to-plasma ratios of saquin-
avir and nelfinavir have been found to be several-fold
higher than CSF-to-plasma ratios in rodents and in non-
human primates, respectively [140, 141]. Conversely,
studies on animals consistently reported zidovudine and
stavudine concentrations to be higher in the CSF than in
brain samples, suggesting efflux mechanisms localized at
the BBB [127, 131, 133, 142-144]. On one hand, brain
levels are of direct interest: they indicate whether the BBB
penetration is sufficient to inhibit the replication of virus
residing in the brain. On the other hand, drug accumula-
tion in the ventricular CSF itself could target infected
perivascular and meningeal macrophages [24, 145]. In a
comprehensive review, Shen et al. [25] assessed the
applicability of CSF sampling for the assessment of CNS
drug delivery in animals, concluding that CSF penetration
studies remain a practical option for the assessment of
drug availability in the CNS. Still, studies have to account
for inherent physiochemical properties of drugs, such as
lipophilicity, which determine the relationship between
CSF and CNS concentrations [25]. However, in clinical
studies CSF sampling is the most important way to get an
idea of drug concentrations in the CNS. Comparative
assessment of drug delivery in animal brain tissue and in
human CSF might elucidate distribution kinetics and
effective drug concentrations in the mammalian brain.

3.3 Widespread Neuropsychological Impairment
Despite Highly Active Antiretroviral Therapy

Inadequate antiviral activity of ARVs in the CNS as a

result of poor penetration is only one of several hypotheses
that might explain persisting low-grade HIV replication in
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Table 3 Animal studies assessing brain tissue and CSF penetration of antiretroviral drugs

Reference  Species Method CSF : plasma ratio (%) Brain : plasma ratio (%)
Zidovudine
[99] Monkey CSF samples (AUC) 16-25 [n = 3] Not stated
[121] Rabbit  CSF samples (AUC) Without probenecid: 5.2 &+ 2.3 (mean + SD) Not stated
[n = 3]; with probenecid: 6.8 + 2.2
(mean £ SD) [n = 3]
[122] Rabbit  CSF samples (steady-state) Without probenecid: 19.2 £ 0.3 (mean + SD) Not stated
[n = 3]; with probenecid: 29.9 + 3.9
(mean £ SD) [n = 3]
[123] Mouse  Brain samples (AUC) Not stated 4.5 (n = 42)
[124] Rabbit  Microdialysis (AUC) 18 (15-19) [mean (range)] [n = 6] 9 (5-9) [mean (range)]
[n = 6]
[125] Dog CSF samples (steady-state) 15 &+ 5 (mean &£ SD) [n = 4] 21 + 5 (mean =+ SD) [n = 4]
[126] Rat Microdialysis (AUC) Not stated 18.6 [n = 5]
[127] Rabbit  Microdialysis (AUC) 16.7 £ 4.5-4.8 (mean £ SD) [n = 12] 8.0 £ 1.9-2.0 (mean + SD)
[n=12]
[128] Monkey CSF samples (steady-state) 224 + 9.4 (mean % SD) [n = 4] Not stated
[129] Rabbit ~ Microdialysis (steady-state) 27 £+ 9 (mean % SD) 18 £ 6 (mean £ SD)
[130] Monkey CSF samples (steady-state) 20 £ 8 (mean £ SD) [n = 14] Not stated
[131] Rat CSF samples (steady-state) 25 + 14 (mean & SD) [n = 5] Not stated
[132] Rabbit  Microdialysis (steady-state) 28.8 £ 5.9 (mean + SD) [n = 5] 19.4 £ 4.7 (mean + SD)
[n=75]
[133] Rat Microdialysis (steady-state) 25 £+ 8 (mean & SD) [n = 4] 15 + 4 (mean &+ SD) [n = 4]
[134] Dog CSF samples (AUC) 32 [n=5] Not stated
[135] Monkey Microdialysis (AUC and steady- CSF samples (steady-state): 17 £ 2 (mean & SD) Microdialysis (steady-state):
state) and CSF samples [n = 5]; microdialysis (AUC): 28 & 6 [n = 4] 13 + 6 (mean £ SD)
(steady-state) [n=15]
Stavudine
[133] Rat Microdialysis (steady-state) 50 £ 9 (mean & SD) [n = 7] 34 + 4 (mean &£ SD) [n = 7]
[136] Guinea In situ brain perfusion After 20 min: 1.13 + 0.14 (mean £ SD) After 20 min: 1.10 &+ 0.09
pig (mean + SD)
[137] Rat Microdialysis (AUC) 63 £ 7.7 (mean + SD) [n = 7] 62 + 11-17 (mean £+ SD)
[n=17]
Abacavir
[138] Guinea In situ brain perfusion After 2.5 min: 0.6 £ 0.3; after 30 min: 12.6 £ 2.3  After 2.5 min: 3.0 £ 1.3; after
pig (mean + SD) 30 min: 21.6 £ 5.1
(mean = SD)
Nevirapine
[100] Guinea In situ brain perfusion After 30 min: 31.7 £ 6.0 (mean £ SD) After 30 min:
pig 45.6-59.4 + 74-9.4
(mean £ SD)
Indinavir
[139] Rat Brain samples (steady-state) Not stated 18 (n=5)
Maraviroc
[106] Rat CSF samples (steady-state), Approximately 5 (n = 4) After lh: 25 (n=1)

brain samples after bolus
injection

AUC area under the concentration-time curve, SD standard deviation

the CNS and persisting high prevalence of mild to mod-
erate HAND under HAART. Other mutually non-exclusive
explanations have been reviewed recently [146]. For

A\ Adis

example, in times of prolonged survival of HIV-infected
individuals, age-associated disorders and complications of
substance abuse gain more importance and might mimic,
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aggravate and interact with HIV-related neurobehavioural
disorders, thereby posing challenges to diagnosis of
HAND [5]. Evidence, however, did not confirm neither a
significant interactive HIV and age effect on cognitive
function in an early 2000 cohort [147] nor an association
between substance abuse and neurocognitive disorders in
the CHARTER cohort [148]. Another focus of interest is
the role of sustained intrathecal immune activation in
HAND pathogenesis. HAART does not appreciably sup-
press CNS inflammatory markers despite systemically
effective treatment and undetectable CSF HIV-RNA,
suggesting continuous brain damage by host mediators of
inflammation and subsequent neurocognitive impairment
[11, 13, 149]. Lastly, there are increasing concerns of
whether ARVs may have CNS toxic effects that are
related to continuing high rates of HAND. In a cohort
study, discontinuation of HAART in patients under good
peripheral virological control unexpectedly resulted in
significant improvement in neurocognitive function over
96 weeks off therapy [150]. A potential explanation is
HAART-induced neurotoxicity, however, in the absence
of a control group, practice effects that might have
resulted in better neuropsychological test performance
cannot be ruled out, and there might have been patient
selection bias. Increasing the CNS penetration of ARVs
might increase the likelihood of drug-related toxicity in
the brain, but so far the mechanisms that might lead to
toxic neuronal damage by ARVs remain hypothetical.
More longitudinal studies will be necessary to answer
these questions [148].

A risk of poor CNS penetration might arise from the
selection of HIV strains with resistance patterns different
from those of plasma HIV strains, consistent with genetic
compartmentalization of virus within the CNS. Indeed, in a
substantial proportion of subjects, HIV strains in the CNS
have genotypically diverged from strains in the blood
[151]. Levels of compartmentalization have been highest in
patients with chronic infection or HAD [152] or after long-
time therapy [38]. At present, however, it is not absolutely
clear whether discordant HIV drug resistance between both
compartments is related to insufficient CNS exposure to
ARVs.

While targeting HAART to the CNS, therapeutic strat-
egies should ensure efficacy in the systemic compartment
at the same time. Low nadir CD4+ cell counts in the blood
have been a robust predictor of neurocognitive impairment
in both the pre-HAART and the HAART eras, suggesting
that CNS impairment that is at least partially irreversible
begins during early severe immune suppression [148].
Consequently, early treatment initiation aimed at prevent-
ing systemic immunosuppression might reduce the risk of
HAND irrespective of the regimen’s penetration
effectiveness.

3.4 CNS-Active Drugs and Clinical Outcome

The pool of randomized controlled trials assessing the
neuropsychological outcome under therapy with CNS-
penetrating drugs is growing. In the pre-HAART era, study
designs included single drug regimens based on NRTISs,
providing evidence for CNS efficacy of single drugs. Since
the introduction of PIs, NRTI monotherapy is expected to
be inferior to combination therapy, so that patients in
clinical studies are now predominantly being treated with
multiple drugs. That might allow for the evaluation of the
respective multidrug regimen, but the applicability for
single drugs remains vague. As an alternative to standard
HAART, i.e. combination triple therapy, ritonavir-boosted
PI monotherapy has recently been considered for patients
with intolerance to NRTIs or for treatment simplification.
According to current recommendations, only patients under
stable virological control and without any history of failure
on prior Pl-based therapy are eligible for PI monotherapy
[153]. The poor availability of PIs in the CSF, however,
gives rise to concerns over residual HIV replication in the
CNS under nucleoside-sparing therapy. Large randomized
cohort studies comparing standard triple HAART with
lopinavir or darunavir monotherapy did not find nervous
system adverse events to be more frequent in the mono-
therapy group after up to 96 weeks [154, 155]. Another
study established neurological adverse events in only a
small proportion of patients (2 %) under darunavir mono-
therapy, consistent with an elevated CSF viral load in these
subjects [156]. Neuropsychological functioning, as asses-
sed using a questionnaire, did not differ between patients
randomized to darunavir monotherapy or to combination
triple therapy [157]. Contrary to these findings, another
study reported more patients experiencing therapeutic
failure in the systemic compartment under lopinavir
monotherapy (n = 29) than under triple HAART, consis-
tent with both CSF HIV-RNA levels in the detectable range
and neurological symptoms in most failing patients [158].
Moreover, 32 % of non-failing monotherapy patients had
detectable HIV-RNA in the CSF at follow-up. Reintro-
duction of triple therapy in patients with therapeutic failure
has been followed by improvement of neurological symp-
toms [156] and by decrease of the CSF viral load [105,
158]. The impact of PI monotherapy on virus levels in the
CSF deserves further investigation.

Several studies addressed the question as to whether
HAART including drugs that are more efficient in the CNS
(neuroHAART) may be associated with better neurocog-
nitive functioning. Evidence on this topic has recently been
reviewed, providing qualitative and quantitative analysis
[159]. Four longitudinal studies met the minimum quality
criteria for inclusion in the meta-analysis, and all of them
found a positive effect of neuroHAART (defined according
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to the CPE ranking in most studies) on neurocognitive
functioning [159]. Despite the overall success of the CPE
score as a tool for clinical practice, further validation will
be necessary and some questions remain open. A large
retrospective study confirmed survival benefit in patients
with neurological AIDS-defining conditions to be associ-
ated with a CPE score of > 1.5 in the early HAART era;
however, the association was not maintained in the later
HAART era, perhaps as a result of more powerful HAART
regimens [160]. Critics see limitations of the CPE score in
the insufficient reflection of pharmacodynamic aspects,
genotypic resistance and drug-drug interactions [110, 161].
Furthermore, the question of whether the early initiation of
HAART with targeted neuroactive drugs in neurologically
asymptomatic patients can prevent HAND has not yet been
resolved.

As the level of evidence on CNS effectiveness is
increasing, estimates on CSF penetration are beginning to
impact decisions about the therapy of HAND. According to
the 2011 treatment guidelines by the European AIDS
Clinical Society (EACS), inclusion of potentially CNS-
active drugs should be considered in all patients with
diagnosed HAND and is explicitly recommended in
HAND-affected patients with a CSF viral load of >50
cells/mL in the absence of viremia [153]

4 Conclusion

Treatment of HAND requires viral load control both in the
systemic and in the CNS compartments. While suppression
of viral load is frequently obtained in the blood plasma as a
result of potent HAART, drug penetration into the CNS is
the focus of interest. The ability of ARVs to penetrate the
BBB is believed to influence the extent of neurocognitive
improvement and the decay of viral load in the CSF. Drug
concentrations in the CSF are indicative for concentrations
in the CNS and they can be assessed in the clinical context.
Still, evidence on CSF distribution is sparse for several
antiretroviral substances, including drugs introduced more
recently, and is based on observational studies rather than
on controlled clinical trials.

In the light of ongoing HAND and of the potential
benefit of CNS-active drugs, clinical CSF penetration
studies that respect relevant study design issues will be
required. Early preclinical drug development should
include assessment of CNS drug delivery in animals. CSF
penetration studies and validated neuropsychological test-
ing in a subgroup of patients in the course of new drug
applications will lead to a better understanding of drug
potency in the brain. Ultimately, large clinical cohort
studies will be critical to provide guidelines for a well
directed selection of HAART for patients with HAND.
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