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Abstract
Background and Objective  Physiologically based pharmacokinetic (PBPK) models are valuable for translating in vitro 
absorption, distribution, metabolism, and excretion (ADME) data to predict clinical pharmacokinetics, and can enable 
discovery and early clinical stages of pharmaceutical research. However, in predicting pharmacokinetics of organic anion 
transporting polypeptide (OATP) 1B substrates based on in vitro transport and metabolism data, PBPK models typically 
require additional empirical in vitro-to-in vivo scaling factors (ESFs) in order to accurately recapitulate observed clinical 
profiles. As model simulation is very sensitive to ESFs, a critical evaluation of ESF estimation is prudent. Previously stud-
ies have applied classic ‘two-stage’ and ‘naïve pooled data’ approaches in identifying a set of compound independent ESFs. 
However, the ‘two-stage’ approach has the parameter identification issue in separately fitting data for individual compounds, 
while the ‘naïve pooled data’ approach ignores interstudy variability, leading to potentially biased ESF estimates.
Methods  In this study, we have applied a nonlinear mixed-effect approach in estimating ESF of the PBPK model and incor-
porated additional data from 86 runs of in vitro uptake assay and 49 clinical studies of 12 training compounds in model 
development to further enhance the translation of in vitro data to predict the pharmacokinetics of OATP1B substrate drugs. 
To test predication accuracy of the model, a ‘leave-one-out’ analysis has been performed.
Results  The established model can reasonably describe the clinical observations, with both mean values and interstudy vari-
abilities quantified for ESF and volume of distribution parameters. The mean estimates are largely consistent with values 
in the previous reports. The interstudy variabilities of these parameters are estimated to be at least 50% (as coefficient of 
variation). Most compounds can be reasonably predicted in the ‘leave-one-out’ analysis.
Conclusion  This study improves the confidence in predicting the pharmacokinetics of OATP1B substrates in individual 
studies of small sample sizes, and quantifies the variability associated with the prediction.

uptake is commonly associated with their systemic clearance 
[1]. Albeit years of research for its critical role in drug dis-
covery and development, predicting hepatic active uptake and 
pharmacokinetics of OATP substrates remains a challenging 
task. A gap that cannot be physiologically interpreted is usu-
ally found between in vitro predicted and clinically observed 
hepatic uptake clearances [2]. A few previous studies have 
suggested that such a gap is likely a result of different protein 
expression levels between in vitro and in vivo systems, hence 
after accounting for a relative expression factor (REF), in vivo 
hepatic uptake can be predicted with in vitro data [3, 4]. How-
ever, these studies usually only include a very limited number 
of testing compounds, hence it is unclear if the conclusions 
made in these studies can be generalized and applied to most 
other OATP substrates. Furthermore, quantitative proteomic 
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1  Introduction

Acidic compounds of molecule weight above 400 g/mol rep-
resent a major class of small molecule therapies. According to 
the Extended Clearance Classification System (ECCS), organic 
anion transporting polypeptide (OATP) 1B-mediated hepatic 
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Key Points 

In predicting the pharmacokinetics of organic anion 
transporting polypeptide (OATP) 1B substrates based 
on in vitro data, physiologically based pharmacokinetic 
(PBPK) models typically require additional empirical 
scaling factors (ESFs) to accurately recapitulate observed 
clinical profiles.

To identify ESFs by fitting clinical data of training com-
pounds, ‘two-stage’ and ‘naïve pooled data’ approaches 
have been applied in previously published studies but 
may lead to biased estimates.

This study applies a nonlinear mixed-effect approach in 
estimating ESFs of the PBPK model after incorporating 
additional training data from 86 runs of in vitro uptake 
assay and 49 clinical studies of 12 compounds in model 
development to further enhance the reliability of predic-
tions and to quantify the variabilities associated with 
such predictions.

studies suggest that expression levels of OATPs in the in vitro 
systems (e.g., primary human hepatocytes) are close to that in 
liver samples; thus, the protein expression differences do not 
solely explain the large gap between in vitro-predicted and 
in vivo-observed hepatic uptake clearances [2, 5].

A ‘middle-out’ approach has been previously proposed by 
estimating the empirical in vitro-to-in vivo scaling factors using 
clinical data of training compounds and applying the estimated 
scaling factors in predicting the pharmacokinetics of novel 
compounds [6, 7]. Briefly, Jones and colleagues estimated 
empirical scaling factors (ESFs) of seven OATP1B substrates 
by fitting each individual compound’s clinical data separately 
with a physiologically based pharmacokinetic (PBPK) model, 
and then taking the geometric mean of individual estimates as 
the scaling factor value for novel compounds [7]. However, 
with this classic ‘two-stage’ approach, the PBPK model can be 
overparameterized with limited data of individual compounds 
but many fitted parameters (i.e., scaling factors for hepatic 
active uptake, passive diffusion, metabolism, and biliary 
excretion). As such, the individual compound estimates and 
corresponding geometric mean of these estimates may not be 
reliable. Li and colleagues subsequently solved this issue with a 
‘naïve pooled data’ approach, which simultaneously fits clinical 
data of all seven compounds [6]. However, this approach pools 
data from different clinical studies of different compounds as 
though they came from a single subject in one study of a single 
compound. It ignores potential interindividual variability by 
lumping it into residual errors (i.e., intraindividual variability). 

Essentially, now it is well known that the ‘naïve pooled data’ 
approach may produce imprecise estimates by improperly 
treating intra- and interindividual variability [8]. On the other 
hand, as the nonlinear mixed-effect approach that better handles 
variabilities is more likely to produce both accurate and pre-
cise estimates, it has been serving as the standard approach in 
modeling clinical pharmacokinetic data today. Arguably, most 
published PBPK models thus far are trained by mean clinical 
data digitized from publications. Hence, such models may not 
explicitly involve intersubject variability. However, given that 
the pharmacokinetic data included in PBPK model training are 
most likely generated from first-in-human studies of very small 
sample sizes, large interstudy variability is expected and cannot 
be ignored due to small cohorts of different subjects included 
in these studies. In this study, to further improve the translation 
of in vitro data of OATP substrates to the clinical pharmacoki-
netic profiles, we aimed to extend the previous PBPK evalua-
tion to incorporate interstudy variability and apply the nonlin-
ear mixed-effect approach in estimating scalars. To enable the 
nonlinear mixed-effect modeling, in vitro and clinical data from 
multiple in vitro uptake and in vivo pharmacokinetic studies of 
the training compounds are included in model building.

2 � Methods

2.1 � Determine In Vitro Transport Rates 
by Mechanistic Modeling of Sandwich‑Cultured 
Human Hepatocyte Data with a Nonlinear 
Mixed‑Effect Approach

Historical in-house sandwich culture human hepatocyte 
(SCHH) data of 12 OATP substrates are included. Some 
SCHH data have been previously published [7]. Although 
pitavastatin and telmisartan have been tested in an SCHH 
assay, they are excluded from the PBPK modeling due 
to the challenge in modeling conversion between lactone 
form and parent compound for pitavastatin [9], and de-
glucuronidation of metabolite and associated enterohepatic 
recycling for pitavastatin and telmisartan [10]. Including 
pitavastatin and telmisartan but not including their specific 
disposition mechanisms involving enterohepatic recycling 
of metabolites will likely lead to model misspecification, 
while incorporating additional disposition mechanisms into 
the current model will likely result in overparameterization 
due to limited data. An experimental procedure has previ-
ously been introduced [7]. The structural model for ana-
lyzing data is a slightly modified version of the previously 
published model [7]. Briefly, the model (Eqs. 1–4) includes 
three compartments representing extracellular media (EC), 
intracellular space (IC), and bile canaliculi (BC). V, C, and t 
represents volume, concentration, and time. CL and fu repre-
sent clearance and free fraction. In the assay condition with 
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calcium (CA), compound is secreted into the bile canali-
culi through CLbile,SCHH. In the assay condition without cal-
cium, the compound is secreted into the extracellular media 
through CLbile,SCHH. CA is set to 1 in the presence of calcium 
and zero in the absence of calcium. In the assay condition 
with rifamycin SV, both active processes (i.e., CLuptake,SCHH 
and CLbile,SCHH) are assumed to be zero [11–13]. Metabolism 
and basolateral efflux are assumed to be zero to reduce the 
number of floating parameters, and can be justified due to 
the short incubation time in SCHH studies.

When fitting data from the SCHH assay, we note that 
the intracellular accumulation at time zero is typically 
greater than zero. We assume that this phenomenon is 
due to a non-specific binding to the cell surface, which 
is proportional to the concentration of hepatocytes in the 
media. In fitting SCHH data, the intracellular accumula-
tion includes both intracellular amount due to transport 
and intracellular binding, as well as the amount on the 
cell surface, which is calculated as the product of the 
amount in media and extracellular bound fraction. Extra-
cellular unbound fraction was modeled with Eq. (4) (see 
the derivation in the electronic supplementary material 
[ESM]), where ASCHH presents the amount of protein per 
well determined in the experiment, while two empiri-
cal binding association constants, Ka,EC,1 and Ka,EC,2, are 
included for binding in the absence and presence of rifa-
mycin SV.

(1)
VEC,SCHH ⋅

dCEC,SCHH

dt
= CLpassive,SCHH ⋅

(

CIC,SCHH ⋅ fu,IC,SCHH − CEC,SCHH ⋅ fu,EC,SCHH
)

− CLuptake,SCHH ⋅ CEC,SCHH ⋅ fu,EC,SCHH

+ CLbile,SCHH ⋅ CIC,SCHH ⋅ fu,IC,SCHH ⋅ (1 − CA)

(2)
VIC,SCHH ⋅

dCIC,SCHH

dt
= CLpassive,SCHH ⋅

(

CEC,SCHH ⋅ fu,EC,SCHH − CIC,SCHH ⋅ fu,IC,SCHH
)

+ CLuptake,SCHH ⋅ CEC,SCHH ⋅ fu,EC,SCHH

− CLbile,SCHH ⋅ CIC,SCHH ⋅ fu,IC,SCHH

(3)
VBC,SCHH ⋅

dCBC,SCHH

dt
= CLbile,SCHH ⋅ CIC,SCHH ⋅ fu,IC,SCHH ⋅ CA

(4)fu,EC,SCHH =
1

1 + Ka,EC,1 ⋅ ASCHH

/

VEC,SCHH ⋅ (1 − RSV) + Ka,EC,2 ⋅ ASCHH

/

VEC,SCHH ⋅ RSV

RSV is set to 1 in the presence of rifamycin SV and zero 
in the absence of rifamycin SV. VEC,SCHH is determined 
experimentally. VIC,SCHH is calculated as the product of 
ASCHH, the number of cells per milligram of protein in the 
well (2.5 million per milligram incubation protein), and 
the intracellular volume of a million cells (0.0026 mL). 
CLuptake,SCHH, CLpassive,SCHH, CLbile,SCHH, fu,IC,SCHH, Ka,EC,1, 
and Ka,EC,2 are estimated by fitting experimental data. For 
a single compound, each run of the SCHH experiment is 
considered as an individual. Interrun variabilities associ-

ated with all fitted parameters (except for fu,IC,SCHH) are 
estimated together with their corresponding population 
means, assuming distributions of individual values follow 
log normal distributions. fu,IC,SCHH is assumed to be the same 
across different runs. The first-order conditional estimation 
(FOCE) approach is applied in parameter estimation, while 
the log-likelihood profiling (PsN-Toolkit 5.2.6) is performed 
to approximate 95% confidence intervals [14]. As CLbile,SCHH 
cannot be estimated with confidence for a few compounds, 
three models are tested, including the full model, the model 
with CLbile,SCHH but without variability associated with 
CLbile,SCHH, and the model without CLbile,SCHH. The model 
with minimal Akaike information criterion (AIC) is chosen 
as the final model. All the mathematical models presented in 
this article are implemented in NONMEM® 7.5 (ICON plc, 
Dublin, Ireland) with proportional error model.

2.2 � Determine In Vitro Intrinsic Metabolic Rate 
Based on Human Hepatocyte Stability Assay

In vitro apparent metabolic rates (CLapp,HHEP) and the cor-
responding hepatocyte to buffer partitioning coefficient 



1180	 R. Li et al.

(KP,HHEP) have been determined by the human hepato-
cyte (HHEP) stability assay in a previous study [15]. The 
CLapp,HHEP generated from this assay is likely confounded 
by the residual transporter activity in the suspended hepato-
cytes, which requires KP,HHEP determined in the same assay 
to correct for. The intrinsic metabolic clearance (CLint,HHEP) 
[Eq. 5, ESM Table S1) is calculated as previously published 
[15], where fu,IC,HHEP is approximated with fu,IC,SCHH.

VEC,HHEP and VIC,HHEP are the total incubation (0.9987 
mL) and intracellular (0.0013 mL) volumes of the suspen-
sion hepatocyte assay, respectively.

2.3 � Physiologically Based Pharmacokinetic (PBPK) 
Modeling of Organic Anion Transporting 
Polypeptide (OATP) Substrates

A reduced PBPK model has been developed (schematic dia-
gram presented in Fig. 1). In the model, systemic plasma 
(P) and hepatic extracellular space (EC,H) are connected by 
hepatic blood flow (QH) [Eq. 6]. RB/P represents blood-to-
plasma ratio. A full PBPK model explicitly incorporating 
non-liver tissues was not considered in this study because 
such a model requires accurate values for tissue-to-plasma 
partitioning coefficients (KP). KP values for PBPK models 

(5)

CLint,HHEP =
CLapp,HHEP ⋅

(

VEC,HHEP − VIC,HHEP ⋅

(

1 − KP,HHEP

))

KP,HHEP ⋅ fu,IC,HHEP ⋅ VIC,HHEP

are typically predicted with mechanistic models, in silico 
models, or approximated with KP experimentally determined 
in preclinical species or in vitro assays [16]. When fixed 
at inaccurate values, KP of non-liver tissues are likely to 
confound estimates of hepatic clearance processes and cor-
responding in vitro to in vivo scaling factors. As such, we 
lump non-liver tissue distribution into a single peripheral 
compartment (Eq. 7), with its volume (VPERI) and distribu-
tion clearance (CLD) estimated by fitting clinical data. Renal 
clearance (CLR) is from the literature (ESM Table S1).

Oral absorption is modeled as follows (Eqs. 8, 9), where kt 
and ka represent the empirical mass transfer rate and absorp-
tion rate in the gastrointestinal tract, and kbile is an empirical 
biliary flow rate for modeling enterohepatic recycling.

(6)

VP ⋅

dCP

dt
= QH ⋅

(

CEC,H,5 − CP ⋅ RB/P

)

+ CLD ⋅

(

CPERI − CP

)

− CLR ⋅ CP

(7)VPERI ⋅
dCPERI

dt
= −CLD ⋅

(

CPERI − CP

)

(8)

dAabsorption,1

dt
= −kt,1 ⋅ Aabsorption,1 − ka,1 ⋅ Aabsorption,1 + kbile ⋅ Abile

Fig. 1   Physiologically based 
pharmacokinetic model 
structure. Black arrows are 
blood flows and distribution 
clearance. Between EC and IC, 
blue double-headed arrows are 
passive diffusion clearance and  
dark red single-headed arrows 
are active uptake clearance. 
Red arrows represent metabolic 
clearance, green arrows repre-
sent biliary excretion and bile 
flow, purple arrow represents 
renal clearance, and the light 
orange single-headed arrows 
represent mass transfer within 
empirical absorption compart-
ments. EC extracellular, IC 
intracellular
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The liver distribution in this model is described as per-
meability limited with five sequential segments as previ-
ously described [7]. Every segment includes one pair of 
extracellular (EC) and intracellular (IC) subcompartments. 
There is active hepatic uptake clearance (CLuptake,H) and pas-
sive diffusion clearance (CLpassive,H) between the extracel-
lular and intracellular subcompartments, and metabolism 
(CLmetabolism,H) and biliary excretion (CLbile,H) within the 
intracellular subcompartments (Eqs. 10–13).

In the above equations, i presents the second to the fifth 
segment, and fu,p and fu,IC,H represent plasma free fraction in 
plasma and hepatic intracellular space. The values of RB/P 
and fu,p have been previously determined (ESM Table S1), 
and fu,IC,H is approximated with fu,IC,SCHH. QH, VP, VEC,H, 
and VIC,H are set to the products of body weight and previ-
ously published values of 1.225 L/h per kilogram of body 
weight—0.04145, 0.004676, and 0.01931 L per kilogram of 
body weight [17]. The body weights are from original clini-
cal studies where pharmacokinetic data are digitized, or are 
assumed to be 70 kg if not reported.

An empirical biliary compartment is included to enable 
enterohepatic recycling (Eq. 14).

(9)

dAabsorption,2

dt
= kt,1 ⋅ Aabsorption,1 − kt,2 ⋅ Aabsorption,2 − ka,2 ⋅ Aabsorption,2

(10)

VEC,H

5
⋅

dCEC,H,1

dt
= QH ⋅

(

CP ⋅ RB/P − CEC,H,1

)

+ ka,1 ⋅ Aabsorption,1 + ka,2 ⋅ Aabsorption,2

−
CLpassive,H

5
⋅

[

CEC,H,1 ⋅

fu,p

RB/P

− CIC,H,1 ⋅ fu,IC,H

]

−
CLuptake,H

5
⋅ CEC,H,1 ⋅

fu,p

RB/P

(11)

VEC,H

5
⋅

dCEC,H,i

dt
= QH ⋅

[

CEC,i−1 − CEC,i

]

−
CLpassive,H

5
⋅

[

CEC,H,i ⋅

fu,p

RB/P

− CIC,H,i ⋅ fu,IC,H

]

−
CLuptake,H

5
⋅ CEC,H,i ⋅

fu,p

RB/P

(12)

VIC,H

5
⋅

dCIC,H,1

dt
=

CLpassive,H

5
⋅

[

CEC,H,1 ⋅

fu,p

RB/P

− CIC,H,1 ⋅ fu,IC,H

]

+
CLuptake,H

5
⋅ CEC,H,1 ⋅

fu,p

RB/P

−
CLmetabolism,H + CLbile,H

5
⋅ CIC,H,1 ⋅ fu,IC,H

(13)

VIC,H

5
⋅

dCIC,H,i

dt
=

CLpassive,H

5
⋅

[

CEC,H,i ⋅

fu,p

RB/P

− CIC,H,i ⋅ fu,IC,H

]

+
CLuptake,H

5
⋅ CEC,H,i ⋅

fu,p

RB/P

−
CLmetabolism,H + CLbile,H

5
⋅ CIC,H,i ⋅ fu,IC,H

In vivo CLuptake,H, CLpassive,H, and CLmetabolism,H are con-
nected with in vitro CLuptake,SCHH, CLpassive,SCHH, CLint,HHEP 
with both physiological scaling factors (i.e., 120 million 
cells per gram of liver tissue [18]) and empirical scaling 
factors (ESF) [Eqs. 15–18].

(14)
dAbile

dt
= CLbile,H ⋅

∑5

i=1
CIC,H,i ⋅ fu,IC,H − kbile ⋅ Abile

(15)
CLuptake,H = CLuptake,SCHH ⋅ 120 ⋅ VIC,H ⋅

60∕1000 ⋅ ESFuptake

Three ESFs, VPREI, CLD, ka,2, kt,1, and kt,2 for seven OATP 
substrates are estimated simultaneously by fitting clinical 
data of all compounds. The ka,1 value is not identifiable and 
is hence fixed at zero. Interstudy variabilities are estimated 
for all fitted parameters, assuming distributions of individual 
values follow log normal distributions. In total, forty-nine 

(16)
CLpassive,H = CLpassive,SCHH ⋅ 120 ⋅ VIC,H ⋅

60∕1000 ⋅ ESFpassive

(17)
CLmetabolism,H = CLint,HHEP ⋅ 120 ⋅ VIC,H ⋅

60∕1000 ⋅ ESFmetabolism

(18)CLbile,H = CLbile,SCHH ⋅ 120 ⋅ VIC,H ⋅
60∕1000 ⋅ ESFbile
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clinical studies (66 groups of different participants) are 
included in the current analysis. Given that all clinical data 
included in this study are digitized from previous publica-
tions (ESM Table S2) where results were presented as mean 
exposures, only interstudy, but not intersubject, variability 
can be accessed. All data from the same group of partici-
pants are treated as data from a single individual. The Impor-
tance Sampling approach (IMP method in NONMEM®) is 
applied in estimating population mean and variability. The 
95% confidence intervals are approximated by the Markov 
Chain Monte Carlo approach for accessing uncertainty of 
estimates (BAYES method in NONMEM®), but not the esti-
mated covariance matrix considering that confidence regions 
are irregular for nonlinear multiparameter PBPK models [6]. 
As the current study focuses on predicting hepatic clearance 
processes, oral absorption in population predictions is simu-
lated with individually fitted values, so that the prediction is 
not confounded by improperly assumed values for absorp-
tion parameters.

To test predication accuracy of the model, a ‘leave-one-
out’ analysis has been performed as previously described 
by predicting the pharmacokinetic profile of one individual 
compound each time it is taken out of the training set [6], 
although with interstudy variability incorporated into the 
current prediction. Median prediction and 95% intervals for 
testing compounds are generated based on 2000 simulated 
studies, with mean and interstudy variability estimated using 
training compounds.

3 � Results

3.1 � Modeling In Vitro Sandwich Culture Human 
Hepatocyte Data

The proposed model structure can reasonably describe the 
data generated from SCHH studies (ESM Fig. S1). Although 
the mean CLuptake,SCHH can be precisely determined, rela-
tively large interrun variability has been observed for a few 
compounds (Table 1), highlighting the importance of gener-
ating data from repeated runs to be used as reliable inputs for 
PBPK modeling. The CLbile,SCHH values can be confidently 
estimated for most compounds, except for cerivastatin, gly-
buride, PF-05089771, and repaglinide, for which biliary 
excretions in PBPK modeling are fixed at zero.

3.2 � PBPK Modeling of 12 OATP Substrates

The proposed PBPK model structure is robust enough to 
describe all pharmacokinetic data included in the current 
analysis (individual fits in Fig. 2 and ESM Fig. S2). Albeit 
variabilities in the in vitro and clinical studies, popula-
tion simulations still reasonably match the data for most 

compounds (Fig. 2 and ESM Fig. S2). The estimated mean 
values of ESFs (Table 2) are largely consistent with pre-
vious estimates [6]. The estimated interstudy variabilities 
(expressed as coefficients of variation) are > 50% for these 
parameters. Large uncertainties are seen for two biliary 
parameters, potentially because of insufficient training 
data for biliary excretion. As to estimates for individual 
compounds and individual studies, except for repaglinide 
and PF-05241328, it is difficult to see an apparent corre-
lation between estimated values and compounds (Fig. 3). 
PF-05241328 data for analysis are only available from two 
groups in a single study. Hence, we cannot rule out the pos-
sibility that the estimates for PF-05241328 are just outli-
ers that do not represent population means. In the ‘leave-
one-out’ analysis, it is hard to identify a singular influencer 
(Table 3). Most compounds can be reasonably predicted, 
with the 95% prediction intervals covering the observations 
(Fig. 4).

4 � Discussion

As gaps are frequently seen between in vitro scaled versus 
in vivo observed hepatic clearance for OATP1B substrates, a 
set of ESFs are usually required for PBPK models to describe 
clinical pharmacokinetics. The source of ESF is unknown 
and is not explored in this study, but could be a result of low 
in vitro protein expression, low in vitro transporter activity, 
in vitro experimental conditions inconsistent with in vivo 
conditions, a misspecified structural PBPK model that can-
not accurately describe in vivo transporter-mediated pro-
cesses, and/or other unknown key physiological processes 
not captured by the PBPK model [2, 19]. For instance, there 
are several recent reports debating the potential ‘albumin-
mediated uptake’ to recover the in vitro to in vivo discon-
nect in predicting transporter-mediated hepatic clearance 
[20–23]. Given some knowledge gaps, translation of trans-
porter data based on current in vitro assays has been a chal-
lenge, and thus identifying ESF values will be the center of 
building a PBPK model for predicting transporter-mediated 
clearance. ESFs are initially included as compound-depend-
ent parameters in an effort to build ‘top-down’ PBPK mod-
els for OATP substrates [2]. Using compound-dependent 
ESF may substantially reduce the PBPK model’s predic-
tion ability for novel compounds in drug discovery as dis-
cussed previously [2, 6]. To address this issue, compound-
independent ESFs are developed in a ‘middle-out’ modeling 
approach by fitting clinical pharmacokinetic data of multiple 
OATP substrates with ‘two-stage’ and ‘naïve pooled data’ 
approaches [6, 7]. The ‘two-stage’ approach can be limit-
ing due to parameter identification issue in fitting individual 
compounds, while the ‘naïve pooled data’ approach cannot 
capture variability and will likely lead to bias in estimating 
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the population mean of ESF across multiple studies and 
multiple compounds [8]. In addition, previous studies [6, 7] 
only used data from a limited number of in vitro and clini-
cal studies for global ESF estimation. Considering relatively 
large interstudy variability observed, data from additional 
studies may be required to increase the reliability of ESF 
estimates. To further improve the ‘middle-out’ PBPK model 
for OATP substrates, in this study we applied the nonlinear 
mixed-effect approach in estimating values of both in vitro 
transport parameters and in vivo PBPK parameters. Coupled 
with the nonlinear mixed-effect approach, a large amount 
of in vitro SCHH data (3–16 replicates per compound) and 
clinical pharmacokinetic data from multiple independent 
studies were also included in the current study.

In this study, relatively large interstudy variability is 
noted for most estimated parameters of the in vitro SCHH 
and in vivo PBPK models. This highlights the impor-
tance of including data from multiple studies for unbiased 
parameter estimation in building ‘middle-out’ models. By 
checking distinct PBPK parameter values for individual 
studies estimated in the nonlinear mixed-effect modeling 

(Fig. 3), we note that most compounds share similar ESF 
values, and that the interstudy variabilities for parameters 
are more likely due to participants of different physio-
logical profiles included in clinical studies of small sam-
ple sizes, quality of in vitro and digitized clinical data, 
and potentially a parameter identifiability issue in fitting 
a PBPK model to data from individual studies, but less 
likely due to an ‘intrinsic’ difference in ESF values for 
different compounds. In other words, the variability seen 
among different studies of different compounds is likely an 
interstudy variability but not an intercompound variabil-
ity. The observation supports the use of multiple training 
compounds to identify a set of uniform ESFs in predict-
ing the pharmacokinetics of novel OATP substrates. By 
incorporating quantified parameter variability into PBPK 
prediction (Fig. 4), it is now possible to know how well the 
pharmacokinetics from individual studies of small sample 
sizes can be predicted. This can be critical in designing 
an optimal dosing regimen in first-in-human studies. The 
prediction intervals tend to become wider towards the 
end of the study, indicating less confidence in predicting 

Table 1   Estimated in vitro parameter values from a sandwich culture human hepatocyte assay

Data are expressed as mean, 95% confidence interval of the mean, and interrun variability as CV%. Ka,EC values are provided in electronic sup-
plementary material Table S3
SCHH sandwich culture human hepatocytes, CV% percentage coefficient of variation,  CLuptake,SCHH SCHH active uptake clear-
ance,  CLpassive,SCHH  SCHH passive diffusion  clearance,  CLbile,SCHH SCHH biliary clearance,  fu,IC,SCHH SCHH intracellular unbound frac-
tion, Ka,EC empirical binding association constants

Compounds No. of runs CLuptake,SCHH (µL/
min/mg protein)

CLpassive,SCHH (µL/
min/mg protein)

CLbile,SCHH (µL/min/mg protein) fu,IC,SCHH

Bosentan 8 13.3 (8.2–21)
57%

10.2 (7.4–14)
38%

2.97 (0.82–5.7) 0.0267 (0.021–0.033)

Cerivastatin 7 5.49 (3.1–10)
43%

18.0 (8.8–36)
79%

0 (fixed) 0.0142 (0.011–0.017)

Fluvastatin 8 25.9 (15–44)
65%

16.3 (9.7–27)
65%

2.57 (0.64–5.0) 0.0311 (0.027–0.035)

Glyburide 7 18.7 (13–27)
35%

7.52 (2.4–22)
123%

0 (fixed) 0.0375 (0.030–0.047)

PF-05089771 4 7.68 (0.082–16)
41%

34.5 (24–45)
41%

0 (fixed) 0.0111 (0.0078–0.015)

PF-05150122 3 2.58 (0.063–21)
130%

16.3 (10–23)
21%

9.46 (3.4–26)
59%

0.0542 (0.042–0.066)

PF-05186462 4 26.4 (15–44)
38%

11.8 (9.7–14)
5.4%

2.07 (1.1–3.6) 0.0734 (0.056–0.093)

PF-05241328 5 19.1 (3.4–52)
91%

42.5 (28–65)
35%

5.68 (1.2–11) 0.0193 (0.016–0.023)

Pravastatin 8 2.86 (1.6–6.1)
83%

0.788 (0.55–1.8)
97%

0.0448 (0.023–0.073) 3.73 (3.1–5.1)

Repaglinide 8 4.68 (0.64–9.5)
73%

33.4 (22–51)
51%

0 (fixed) 0.0256 (0.023–0.028)

Rosuvastatin 16 5.40 (3.9–7.6)
11%

0.849 (0.67–1.1)
11%

1.22 (0.82–1.9) 0.325 (0.23–0.41)

Valsartan 7 2.03 (1.3–3.1)
40%

0.332 (0.15–0.62)
41%

0.271 (0.11–1.1)
78%

0.723 (0.39–0.93)
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low concentrations in the terminal phase of the plasma 
concentration-time profiles. However, for compounds with 
efficacy and adverse effects likely driven by high concen-
trations, low confident predictions at a low concentration 
range may be less concerning (see the leave-one-out analy-
sis result plotted in normal scale in ESM Fig. S3). Due to 
the empirical nature of ESF, it is challenging to identify 
the source of variability, although it could be a result of 
polymorphism of OATPs and other hepatic uptake trans-
porters [24]. Although hepatic uptake of all training com-
pounds in the current study are mediated mainly through 
OATP1B, other transporters may also contribute to this 
process to various degrees, which may require scaling 
values different from OATP1B, and potentially result in 
differences in ESF values observed among different com-
pounds. Variabilities in fixed parameters (e.g., hepatic 
blood flow) are also lumped into the variabilities of ESF 
and other fitted parameters. 

Although deviations between data and population simu-
lations are typically expected for nonlinear mixed-effect 

Table 2   Estimated population means and interstudy variabilities 
(CV%) of empirical scaling factors and periphery distribution

The estimated residual unexplained variability (CV%) was 22.2%. 
The ka,2, kt,1, and kt,2 values are provided in electronic supplementary 
material Table  S4. Markov Chain Monte Carlo-approximated 95% 
confidence intervals are shown in parentheses
CV% percentage coefficient of variation, ESF empirical scaling factor 
for hepatic clearance processes, VPERI volume of peripheral compart-
ment, CLD distribution clearance, kbile empirical biliary flow rate, kt 
empirical  mass transfer rate  in gastrointestinal tract, ka empirical 
absorption rate

Parameters Mean Variability

ESFuptake 62.3 (44–90) 109% (87–140%)
ESFpassive 1.83 (1.3–2.8) 96.2% (72–130%)
ESFmetabolism 0.454 (0.36–0.54) 50.9% (40–68%)
ESFbile 0.155 (0.082–0.58) 160% (100–270%)
VPERI (L/kg) 0.114 (0.079–0.17) 87.4% (61–120%)
CLD (L/h) 2.36 (1.3–3.7) 144% (110–180%)
kbile (1/h) 0.0805 (0.0097–0.14) 174% (150–380%)

kbile

VPERI CLD
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Fig. 3   Estimated parameter values of individual studies by the nonlinear mixed-effect modeling



1186	 R. Li et al.

modeling simply due to interindividual variability (inter-
study variability in this analysis), such deviations for bosen-
tan, glyburide, PF-05241328, and repaglinide are larger than 
deviations for other training compounds (ESM Fig. S2). 
Similarly, bosentan, repaglinide, and PF-05241328 are not 
well-predicted in the leave-one-out analysis (Fig. 4), poten-
tially due to disposition mechanisms specific for these com-
pounds that are not well captured either in the current PBPK 
model structure or by SCHH assay. Although in this study 
we have tried to incorporate as many SCHH runs as pos-
sible and have estimated values of SCHH parameters with 
a nonlinear mixed-effect modeling approach, the estimated 
in vitro transport clearances may still deviate from ‘true’ 
population means given the high variability and relatively 
small sample size of SCHH runs. The potentially biased 
in vitro inputs may contribute to deviations between PBPK 
fitting and clinical observations. Bosentan is known for its 
nonlinear pharmacokinetics and potentially saturated clear-
ance at high concentration [25], however this may not be the 
reason for underpredictions as the individual fitting assum-
ing linear processes can describe the data (i.e., the bosen-
tan pharmacokinetic data included in the current analysis 
are still in the linear range). The PBPK model overpredicts 
plasma concentrations of repaglinide and PF-05241328 in 
humans. The difficulty in capturing active uptake of repa-
glinide by in vitro assay has been previously documented 
[26], hence it is possible that the SCHH assay underpredicts 
its active uptake in the current study. As for PF-05241328, 
in-house data from an intravenous (1 mg/kg) bile duct can-
nulated rat study suggests that approximately 72% dosing 
amount is excreted as unchanged parent in rat bile over 
6 h. However, in the current PBPK model, biliary secretion 
for PF-05241328 is not sufficiently high based on SCHH 
input (Table 2, ESM Fig. S1). Hence, it is likely that the 

current PBPK model does not capture the biliary secretion 
of PF-05241328 and thus projected a lower overall sys-
temic clearance. For the majority of other compounds, the 
model predictions align with the clinical pharmacokinetics 
observed across multiple studies.

A reduced PBPK model is employed in the current study 
instead of a full-body PBPK model. A full-body PBPK model 
requires tissue-to-plasma partition coefficients (KP) for all non-
liver tissues, which are typically predicted by mechanistic mod-
els based on physiochemical properties of the compounds [27]. 
However, it has been previously noted that predicted KP may 
not reliably represent compound distribution into non-liver tis-
sues [10, 16]. The estimated ESFs for hepatic clearance will be 
biased if KP for non-liver tissues are fixed at misspecified val-
ues. Additional scalers can be applied to correct the predicted 
KP values, however the use of compound-dependent empirical 
scalers makes the physiological distribution model a compli-
cated empirical distribution model. As such, we decided to use 
the simple empirical distribution model to reduce the compu-
tational burden in data fitting. The estimated VPERI and CLD are 
largely consistent across different compounds (Fig. 3) and can 
be used in predicting novel OATP1B substrates, typically seen 
with ECCS class 1B/3B drugs (Fig. 4). The estimated mean 
VPERI value of 0.114 L/kg is also consistent with current under-
standing of volume of distribution for acids [28]. For any future 
compound with a non-liver tissue distribution significantly 
different from the training compounds, the current empirical 
distribution model can be easily replaced with a physiological 
model, an animal-based model, or any other distribution model 
without changing liver-related equations and parameters.

In the current model, a five-segment liver is applied fol-
lowing previous publications [6, 7]. The five-segment model 
that approximates the dispersion model is typically required 
for in vitro to in vivo scaling of compounds with high 

Table 3   Leave-one-out analysis (mean and CV%)

CV% percentage coefficient of variation, ESF empirical scaling factor for hepatic clearance processes, VPERI volume of peripheral compartment, 
CLD distribution clearance, kbile empirical biliary flow rate

Compounds excluded ESFpassive (%) ESFbile (%) ESFuptake (%) ESFmetabolism (%) VPERI [L/kg] (%) CLD [L/h] (%) kbile [1/h] (%)

Bosentan 1.71 (76.5) 0.356 (129) 79.8 (86.2) 0.445 (61.1) 0.102 (84.3) 2.65 (139) 0.229 (157)
Cerivastatin 2.14 (94.1) 0.115 (194) 67.7 (118) 0.501 (49.0) 0.132 (96.1) 3.32 (162) 0.0945 (92.1)
Fluvastatin 1.84 (102) 0.13 (162) 60.1 (125) 0.437 (53.5) 0.126 (93.6) 2.17 (154) 0.0672 (162)
Glyburide 2.52 (104) 0.252 (116) 92.7 (121) 0.413 (42.6) 0.103 (82.0) 1.87 (175) 0.217 (158)
PF-05089771 2.23 (84.4) 0.11 (193) 62.2 (108) 0.563 (49.3) 0.162 (88.0) 3.08 (157) 0.0767 (103)
PF-05150122 1.59 (98.0) 0.126 (137) 58.3 (99.1) 0.485 (51.6) 0.131 (90.9) 2.57 (149) 0.120 (80.7)
PF-05186462 1.89 (95.4) 0.13 (165) 66.6 (113) 0.431 (49.5) 0.130 (79.5) 2.61 (156) 0.0516 (204)
PF-05241328 1.92 (101) 0.21 (144) 61.2 (109) 0.433 (30.7) 0.115 (72.7) 2.18 (130) 0.184 (131)
Pravastatin 1.96 (80.8) 0.115 (83.8) 65.7 (82.1) 0.555 (50.7) 0.135 (88.5) 3.32 (161) 0.0969 (48.1)
Repaglinide 1.94 (122) 0.225 (197) 50.2 (109) 0.426 (52.0) 0.0992 (45.0) 2.03 (143) 0.168 (110)
Rosuvastatin 1.77 (100) 0.380 (120) 59.5 (133) 0.430 (41.1) 0.0892 (75.9) 2.20 (124) 0.247 (132)
Valsartan 1.51 (103) 0.110 (117) 61.5 (90.6) 0.480 (54.2) 0.149 (87.3) 3.29 (143) 0.0677 (151)
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Fig. 4   Leave-one-out analysis. The compounds shown in the titles of 
subplots are the testing compounds not included in modeling training. 
Black circles represent observations, and solid lines and grey bands 

represent the 50, 2.5, and 97.5% percentiles of 2000 simulations. IV 
intravenous, PO oral
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hepatic extraction ratios [29]. Considering that most training 
compounds in the current study may not have extremely high 
hepatic extraction ratios, the liver model with segments less 
than five may also be able to describe the training data. How-
ever, estimated ESF values are specific to the liver model. 
Using the five-segment model enables the prediction of the 
pharmacokinetics of compounds with high hepatic extrac-
tion in future without re-estimating ESF, or incorporating 
such compounds into the training set without changing the 
existing model structure. All floating parameters in the cur-
rent PBPK model are estimated with interstudy variability, 
to avoid making an arbitrary assumption that the observed 
variability in pharmacokinetic data is only due to variabili-
ties in some parameters but not others. However, given that 
most literature pharmacokinetic data included in this study 
are following oral dosing, the variabilities in absorption 
parameters may not be precisely separated from the variabil-
ities associated with hepatic clearance parameters and distri-
bution parameters. This may confound the estimated values 
of ESF. As more training compounds with intravenous data 
are likely incorporated into this modeling platform in future, 
part of the oral data may be removed from the training set 
by then. Although values of absorption parameters are also 
estimated in the fitting process (ESM Table S4), we do not 
recommend using these values to predict oral absorption 
of any future OATP substrates, as the values of empirical 
absorption parameters estimated in this study may not be 
universally applicable to other OATP substrates.

In Table 1, the fu,IC,SCHH value for pravastatin is estimated 
to be > 1. In the current SCHH model and similar previ-
ously published models [7], the fu,IC,SCHH value is essentially 
determined as the ratio of unbound media concentration to 
total intracellular concentration at equilibrium in the absence 
of active transport. Hence, its value is affected by all fac-
tors that contribute to intracellular concentration. These 
factors include intracellular binding, pH partitioning, and 
permeation of ionized and neutral molecules [30]. Although 
intrinsic unbound fraction due to intracellular binding is 
bounded by 1, fu,IC,SCHH is not necessarily < 1. We prefer 
using fu,IC,SCHH over intrinsic unbound fraction in SCHH 
and PBPK models because it implicitly incorporates factors 
contributing to intracellular concentration without explic-
itly modeling complicated processes of pH partitioning and 
permeation of various species of different ionization status.

5 � Conclusion

By incorporating in vitro SCHH data of repeated runs and 
clinical pharmacokinetic data from multiple studies, we 
have applied the nonlinear mixed-effect approach in esti-
mating ESFs and other parameters in a PBPK framework 

for OATP1B substrates. The new method presented here 
provides a less biased and more reliable approach in trans-
lating in vitro transporter data into clinical pharmacokinetic 
predictions.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40262-​024-​01408-w.
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