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Abstract
Polypharmacy is commonly employed in clinical settings. The potential risks of drug–drug interactions (DDIs) can com-
promise efficacy and pose serious health hazards. Integrating pharmacokinetics (PK) and pharmacodynamics (PD) models 
into DDIs research provides a reliable method for evaluating and optimizing drug regimens. With advancements in our 
comprehension of both individual drug mechanisms and DDIs, conventional models have begun to evolve towards more 
detailed and precise directions, especially in terms of the simulation and analysis of physiological mechanisms. Selecting 
appropriate models is crucial for an accurate assessment of DDIs. This review details the theoretical frameworks and quan-
titative benchmarks of PK and PD modeling in DDI evaluation, highlighting the establishment of PK/PD modeling against 
a backdrop of complex DDIs and physiological conditions, and further showcases the potential of quantitative systems 
pharmacology (QSP) in this field. Furthermore, it explores the current advancements and challenges in DDI evaluation 
based on models, emphasizing the role of emerging in vitro detection systems, high-throughput screening technologies, and 
advanced computational resources in improving prediction accuracy.

Key Points 

Polypharmacy may lead to DDIs and increases health 
risks, necessitating a precise assessment.

Summarizing frameworks and quantitation standards of 
PK and PD models for DDI evaluation aids in refining 
drug regimens and optimizing dosages.

Advancements in multidisciplinary technologies enhance 
data and modeling integration, overcome DDI assess-
ment challenges, and advance research.

1  Introduction

Polypharmacy is a common practice in clinical settings. 
A National Center for Health Statistics report covering 
2015–2018 revealed that 24% of US adults used three or 
more prescription drugs within a 30-day period, a figure 
that rises to 66.4% among those aged 65 and older [1, 2]. 
Given the potential for adverse reactions (ADRs) from drug 
interactions, the US Food and Drug Administration (FDA) 
has consistently updated guidelines on drug–drug interac-
tions (DDIs) since 1997 to improve predictions of efficacy 
and safety in polypharmacy regimens [3, 4].

Drugs undergo a series of processes in the body, includ-
ing absorption, distribution, metabolism, and excretion 
(ADME). Pharmacokinetics (PK) studies these processes 
and their temporal relationships, elucidating the changes 
in drug concentrations over time. Pharmacodynamics 
(PD) examines the relationship between drug concentra-
tions at the site of action and the resultant physiological 
effects, including the timing of these effects. Together, PK 
and PD determine a drug's efficacy and safety [5, 6]. DDI 
occurs when one drug (the perpetrator) modifies the in vivo 
exposure of another drug (the victim), affecting its PK and 
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PD properties. Potential DDI sites include gastrointestinal 
absorption, tissue distribution affected by protein binding 
differences, transporter-mediated transmembrane transport, 
and enzyme-driven metabolism (Fig. 1) [7, 8]. Extensive 
mechanistic studies have shown that DDIs can affect PD 
effects through changes in PK or occur independently at 
either level. For instance, minor changes in PD effects might 
lead to overlooking a DDI despite significant PK variations. 
Conversely, DDIs may alter PD effects without affecting the 
PK profile, especially when drugs act on different pathways. 
Identifying and managing DDIs is crucial in both clinical 
practice and drug development. Researchers utilize quantita-
tive PK and PD models to predict and assess potential DDI 
risks [9, 10].

PK and PD models serve as a robust framework for 
assessing DDIs. Empirical PK-based DDI studies typi-
cally observe changes in PK parameters of affected drugs. 
Early studies faced inconsistent assessment standards, but 

guidance from the FDA and international consensus forma-
tion have significantly improved methodologies [11, 12]. 
The FDA’s tiered evaluation strategy categorizes DDI risks 
based on potential clinical impacts, utilizing empirical base 
models initially and employing systematic methods and 
computational tools such as physiologically based pharma-
cokinetic (PBPK) models for enhanced accuracy if signifi-
cant DDI potential is identified [13]. In contrast, PD-based 
DDI research lacks a formal evaluation paradigm from regu-
latory agencies. Empirical PD models quantify individual 
drug contributions or overall effects of drugs. Recent shifts 
towards understanding underlying pathophysiological mech-
anisms mark significant progress in PD-based DDI modeling 
[14, 15]. Various factors affecting DDIs have entered the 
investigation funnel. Technological advancements enable 
detailed data collection on drug and physiological mecha-
nisms, facilitating the development of sophisticated, physi-
ologically based mathematical models for DDI assessment, 

Fig. 1  Determining DDI sites and concentration exposure in  vivo 
is crucial for DDI evaluation. The perpetrator drug may change the 
victim drug’s ADME process by impacting metabolic enzymes and 

transporters. Key DDI sites are as follows: absorption, plasma protein 
binding, tissue distribution, metabolism, and excretion
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aiding in translating findings from in vitro to in vivo studies 
and optimizing dosing regimens (Fig. 2) [16].

This review provides a comprehensive analysis of the 
integration of PK and PD models in the DDI contexts, 
summarizing traditional empirical models and delving into 
mechanism-based PK and PD models. This review elabo-
rates on the fundamental theories behind different modeling 
approaches, emphasizing key threshold values often over-
looked in previous reviews for identifying DDI risks. Unlike 
earlier literature focusing solely on PK or PD aspects, this 
paper also highlights interrelationship between PK and PD 
and their practicality in disease treatment [17–19]. Progress 
and challenges in DDI assessment through PK–PD models 
are also explored.

2  PK Models for DDIs

The FDA and other regulatory authorities have conducted 
extensive research and developed guidelines for DDIs medi-
ated by enzymes or transporters using mathematical mod-
els. The evaluation begins with conventional static models, 
which typically rely on the ratio of drug concentrations 
under steady-state conditions to estimate the effect of one 
drug on another, without requiring complex dynamic simu-
lations, such as basic models and static mechanism models 

[20, 21]. Basic models typically employ simplified math-
ematical equations to describe the interactions within the 
body. Static mechanism models delve into more detailed 
considerations of the specific mechanisms of drug interac-
tions, such as enzyme inhibition or induction, and the impact 
of transport proteins. These models generally evaluate the 
extent and potential clinical impacts of drug interactions 
based on mechanistic parameters, such as inhibition con-
stants (Ki), maximum induction rates, and others [22, 23]. If 
static models cannot exclude the risk of DDI, further testing 
using physiologically based PK (PBPK) models is recom-
mended. PBPK models integrate extensive physiological and 
biochemical data to simulate the ADME processes of drugs 
across various tissues and organs, providing a deeper under-
standing of complex DDI mechanisms [24]. PK-based DDI 
models are essential quantitative analytical tools for accu-
rately predicting, explaining, and managing DDIs. Table 1 
lists the applications of different PK models in DDI risk 
assessment [25–60].

2.1  Static PK Models

2.1.1  Drug‑Metabolizing Enzyme‑Mediated DDIs

The area under the plasma drug concentration–time curve 
(AUC ) is a critical parameter for evaluating a drug’s PK 

Fig. 2  Various mathematical modeling methods, including empirical, 
mechanism-based PK/PD, and QSP models, are employed for DDI 
analysis across experimental systems. Empirical models are typically 
used in in vitro screenings to assess DDI potential. Mechanism-based 

models provide a deeper understanding of drug effects, while QSP 
models explore DDI mechanisms, enhancing insights from the other 
models
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Table 1  Examples of PK models for DDIs

PK models Victim drug Perpetrator drug Underlying mechanism PK effect References

Static PK models
Basic models
 Ticagrelor Cyclosporine (−) CYP3A4 AUC  ↑ [25]
 Faldaprevir Efavirenz (+) CYP3A4 AUC  ↓, Cmax ↓, Cmin ↓ [26]
 Indinavir Cucurbitacin E (−) CYP3A4, (−) P-gp AUC  ↑, Cmax ↑. ADR ↑, 

hepatotoxicity
[27]

 Etoposide Ketoconazole (−) P-gp, (−) UGT1A1, (−) 
CYP3A4

AUC  ↑, CL/F ↓ [28]

 Amlodipine Efavirenz (+) CYP3A4 AUC  ↓ [29]
 Pitavastatin, pravastatin, 

coproporphyrin-III
Rifampin (−) OATP1B AUC  ↑, Cmax ↑ [30]

 Furosemide Novobiocin (−) BCRP AUC  ↑, Cmax ↑, CLR ↓ [31]
 Sulfadiazine, florfenicol Allicin (−) P-gp, (−) BCRP AUC  ↑, Cmax ↑, CLz ↓ [32]
 Metformin Olaparib (−) OCT1, (−) MATE1, (−) 

MATE2K
AUC  ↑, Cmax ↑ [33]

 Carbamazepine Piperine (−) CYP3A2 AUC  ↑, liver microsomal 
activity↓

[34]

Static mechanism models
 Rosuvastatin, Atorvastatin, Darolutamide, letermovir (−) BCRP, (−) OATP1B1 AUCR  = 2.62/3.09 > 2, 

moderate DDI
[35]

 Atorvastatin Rifampicin (−) OATP1B1, (−) 
OATP1B3

AUCR  = 2~2.2 > 2, moder-
ate DDI

[36]

Pitavastatin Rifampin (−) OATP1B AUCR  = 7.55 > 5, strong 
DDI

[37]

 Rosuvastatin Atazanavir, lopinavir (−) BCRP, (−) OATP1B1 Atazanavir: AUCR  = 2.84 
> 2, lopinavir: AUCR  = 
2.16 > 2,

moderate DDI

[38]

 Midazolam Mitragynine (−) CYP2D6, time-depend-
ent inhibition

AUCR  = 5.69 > 5, strong 
DDI. ADR ↑, opioid-like 
effects

[39]

 Simvastatin acid Telithromycin (−) CYP3A4, time-depend-
ent inhibition

AUCR  = 10.8 > 5, strong 
DDI

[40]

 Midazolam Esaxerenone CYP3A AUCR  = 1.80 > 1.25, weak 
DDI

[41]

 Rivaroxaban Amiodarone, dronedarone (−) P-gp AUCR  = ~1.37–1.31 > 
1.25, weak DDI

[42]

PBPK models
 Rivaroxaban Rifampin (+) CYP 3A4, (+) P-gp AUC  ↓,  Cmax ↓, strong DDI [43]
 Apixaban, rivaroxaban Enzalutamide (+) CYP3A4, (+) P-gp AUC  ↓,  Cmax ↓, strong DDI [44]
 Vonoprazan Efavirenz, rifampin (+) CYP3A AUC  ↓, moderate DDI [45]
 Saxagliptin Nicardipine (−) CYP3A2 AUC  ↑, Rats: moderate 

DDI, Human: low DDI 
risk

[46]

 Phenytoin Itraconazole (−) CYP2C9, (−) CYP2C19 AUC  ↑, weak DDI [47]
 Cabotegravir, rilpivirine Rifampicin, rifabutin (+) UGT1A1, (+) 

UGT1A9, (+) CYP3A4
AUC  ↓, Cabotegravir/rilpiv-

irine/rifabutin: weak DDI
Cabotegravir/rifampicin, 

rilpivirine/rifampicin: 
moderate DDI

[48]

 Venlafaxine Clarithromycin, Paroxetine (−) CYP2D6 genetic poly-
morphism

AUC  ↑,  Cmax ↑, weak DDI [49]

 Eliglustat Ketoconazole, paroxetine (−) CYP2D6 deficiency AUC  ↑, moderate DDI [50]
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profile, indicating its systemic exposure. The evaluation of 
PK-based DDIs primarily quantifies the impact of DDIs by 
calculating the victim drug’s AUC  ratio (AUCR ) in the pres-
ence or absence of the perpetrator drug (AUC i/AUC ) [61]. 
Basic models are predicated on the “well-stirred” assump-
tion, positing that the distribution of a drug within the body 
is immediately uniform and is eliminated through a single 
pathway, such as renal excretion or hepatic metabolism. As 
the simplest PK model, the basic model typically employs 
first-order linear kinetics to describe the drug elimination 
process, where the effects of transient plasma binding (fμ,b) 
and changes in tissue blood flow (Q) are simplified, as shown 
in Eq. (1) [62, 63].

 F represents the bioavailability of the drug, CL denotes the 
clearance of the drug, and CLint refers to the intrinsic clear-
ance, with AUC i, Fi, CLi, and CLi

int being the corresponding 
parameters in the presence of the perpetrator drug. When the 
Michaelis–Menten equation (Eq. 2) is introduced to describe 
drug metabolism, it accounts for enzyme saturation effects. 
Here, V represents the rate of the enzymatic reaction, Vmax is 

(1)

AUCi
p.o.

AUC
p.o.

=
Fi
h

F
h

×
CLh

CLi
h

=

QH

QH+f�,b×CL
i
�,int

QH

QH+f�,b×CL�,int

×

QH×f�,b×CL�,int

QH+f�,b×CL�,int

QH×f�,b×CL
i
�,int

QH+f�,b×CL
i
�,int

=
CL�,int

CLi
�,int

the maximum rate achieved by the system at saturating sub-
strate concentration, and Km is the substrate concentration 
at which the metabolic rate reaches half of Vmax. Therefore, 
when the substrate concentration (S) is significantly lower 
than Km, the metabolic rate is linearly related to the substrate 
concentration, simplifying CLint as shown in Eq. (3).

When a perpetrator drug is introduced, the Vmax and Km 
values of the victim drug are altered. The ratio CLμ,int/CLi

μ,int 
is designated as R, representing the fold change in victim 
exposure resulting from the interaction with the perpetrator 
drug. R1, R2, and R3 correspond to reversible inhibition, time-
dependent inhibition (TDI), and induction, as detailed in Eqs. 
(4)–(6). Imax,u is the maximum unbound plasma concentration 
of the investigational drug at steady state, whereas Ki,u rep-
resents the unbound inhibition constant determined through 
in vitro studies. The observed rate constant for enzyme inacti-
vation is kobs, kdeg is the rate constant for enzyme degradation, 
and kinact is the maximum rate of enzyme inactivation. Emax 
and EC50 represent the maximal induction effect and the con-
centration for half-maximal effect, measured in vitro. Using 
the cutoff values of R is a common method for predicting the 
potential for DDIs in basic models. According to the latest 
FDA DDI guidelines, if R1 ≥ 1.02, R2 ≥ 1.25, or R3 ≤ 0.8, 
the drug is considered to potentially induce DDIs. Further 

(2)V =
Vmax × [S]

Km + [S]

(3)CLint =
V
[S]

=
Vmax

Km

AUC  area under the curve, Cmax maximum (peak) plasma drug concentration, CL clearance, ADR adverse reaction
AUCR  Area under the curve ratio. AUCR  < 1.25, low DDI potential; 1.25 < AUC  < 2 weak DDI; 2 < AUCR  < 5 moderate DDI; AUCR  > 5 
strong DDI [60]

Table 1  (continued)

PK models Victim drug Perpetrator drug Underlying mechanism PK effect References

 Salbutamol Fluvoxamine (−) CYP2C19, (−) 
CYP2D6, (−) SULTs

AUC  ↑, weak DDI [51]

 Zanubrutinib, Acalabru-
tinib

Voriconazole, Fluconazole, 
itraconazole

(−) CYP2C19, (−) 
CYP2C9, (−) CYP3A4

AUC  ↑, zanubrutinib/
triazole: weak DDI, 
acalabrutinib/triazole: 
moderate DDI

[52]

 Tacrolimus Schizandrol B (−) CYP3A4, (−) CYP3A5 AUC  ↑, weak DDI [53]
 Midazolam Carbamazepine (+) CYP3A4 AUC  ↓, weak DDI [54]
 Oxycodone Ritonavir (−) CYP3A4, (−) CYP2D6 AUC  ↑, Cmax ↑, weak DDI [55]
 Tacrolimus Elexacaftor/tezacaftor/iva-

caftor (ETI)
(−) CYP3A4 AUC  ↑, Cmax ↑, moderate 

DDI,
[56]

 Daprodustat Gemfibrozil (−) OATP1B, (−) CYP2C8 AUC  ↑, strong DDI [57]
 Tegoprazan Rifampicin (+) CYP3A4 AUC  ↓ , Cmax ↓, moderate 

DDI
[58]

 Metformin Cimetidine (−) OCT1/3 AUC  ↑, moderate DDI. 
ADR ↑, lactic acidosis

[59]
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investigation is recommended to evaluate the DDI potential 
using mechanism models [64, 65].

Basic models often rely on simplified assumptions that 
drug interactions remain static and unchanged throughout the 
administration period, implying that the effects of the drug are 
immediate and constant. However, this is obviously inconsist-
ent with most situation. In scenarios where a drug is metabo-
lized through multiple pathways, such as hepatic or intestinal 
routes, or by different enzymes, it is essential to assess the 
individual contributions of each pathway or enzyme to the 
total clearance. Therefore, the modified “Rowland–Maitland” 
model was proposed, as shown in Eq. (7), where f i represents 
the metabolic fraction [66, 67].

Mechanistic static models enhance prediction accuracy by 
incorporating additional factors such as enzyme metabolic 
fractions and unbound liver concentrations, along with more 
kinetic parameters. They offer a comprehensive substrate dis-
position process and allow for the quantitative evaluation of 
the perpetrator drug’s impact on the victim drug through vari-
ous mechanisms. Assuming clearance through both the gut and 
liver, this is represented in Eq (8).

Here, h and g denote hepatic and gastrointestinal (gut) 
routes, respectively. Fg is the fraction of drug absorbed intes-
tinally but not metabolized, and fm is the fraction of hepatic 

(4)R1 = 1 +
Imax,u

Ki,u

(5)

R2 = 1 +
kobs

kdeg

= 1 +
kinact × 50 × Imax,u

kdeg
(
KI,u + 50 × Imax,u

)

(6)R3 =
1

1 +
Emax×10×Imax,u

EC50+10×Imax,u

(7)

AUCR =
AUCi

AUC

=
1

f i

1+
I�

Ki

+ (1 − f i)

(8)

R4 =

⎛
⎜⎜⎜⎝

1�
1

R1,g

×
1

R2,g

×
1

R3,g

�
×
�
1 − Fg

�
+ Fg

⎞
⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝

1�
1

R1,g

×
1

R2,g

×
1

R3,g

�
× fm +

�
1 − fm

�
⎞⎟⎟⎟⎠

substrate clearance mediated by P450s. By integrating Eqs. 
(4), (5), and (6) into the model, Eq. (9) is derived. If R4 < 
1.25 for inhibition or R4 > 0.8 for induction, it indicates 
the drug’s potential to affect metabolic enzyme activity and 
induce DDI [68].

2.1.2  Transporter‑Mediated DDIs

Transporters, such as P-glycoprotein (P-gp), breast cancer 
resistance proteins (BCRPs), organic anion transporting 
polypeptides (OATPs), organic cation transporters (OCTs), 
multidrug and toxin extrusion proteins (MATEs), and 
organic anion transporters (OATs), play a crucial role in 
drug bioavailability and systemic clearance by facilitating 
the transmembrane movement of drugs and their metabo-
lites. Perpetrator drugs can affect the expression and activity 
of transporters, thereby altering the ADME processes of the 
victim drug. To evaluate the potential for DDIs, it is essen-
tial to assess the transporter’s ability to uptake the victim 
drug, considering its intended site of action and elimination 
pathways. The assessment process starts with a basic model 
similar to that used for P450s, generally assuming reversible 
inhibition and employing IC50 or Ki values for evaluation, as 
represented by Eqs. (10) or (11) [69].

For P-gp or BCRP, transporters crucial for absorption in 
the small intestine, biliary secretion, and renal secretion, a 
drug poses a DDI risk for oral administration if R ≥ 11 (Igut 
= administered dose/250 mL), and for parenteral administra-
tion if R ≥ 1.1 (Imax,u is the maximum unbound plasma con-
centration of the drug at steady state). Similarly, for OATs, 
OCTs, and MATEs, which mainly facilitate renal secretion, 
R ≥ 1.1 indicates a potential for DDIs [70].

For OATPs, which are mainly responsible for hepatic or 
biliary elimination, the threshold for DDI risk is also R ≥1.1, 
as determined by Eq. (12). In this equation, fu,p denotes the 
drug’s free fraction in plasma, IC50 is the median inhibitory 

(9)

R4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
(

1
1+ [I]g

Ki
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kdeg,g+
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×
(
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)

)

×
(

1 − Fg
)

+ Fg

⎞

⎟

⎟

⎟

⎟

⎟
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×

⎛

⎜

⎜

⎜

⎜
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1
(

1
1+ [I]h

Ki

× kdeg,h
kdeg,h+

[I]h×kinact
[I]h+KI
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1 + Emax×[I]h
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(
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)
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(10)R = 1 +
Igut

Ki

(11)R = 1 +
Imax,u

IC50
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concentration for the unbound drug, and Iin,max is the maxi-
mum inhibitor concentration in plasma at the entry to the 
hepatic portal vein [71, 72].

Static models are a widely used approach that predicts the 
potential for DDIs using simplified mathematical equations. 
These models allow for a quick preliminary evaluation of 
DDIs and are useful for the initial screening of numerous 
drugs without the need for complex computations. In the 
early phases of drug development, both basic and mecha-
nistic static models are crucial for identifying potential DDI 
risks and informing clinical research design. A study utiliz-
ing the DDI static model-assessed polypharmacy strategies, 
approved from 1998 to 2019, involving antiviral drugs and 
acid reducers, including proton pump inhibitors, histamine 
H2 receptor antagonists, and antacids. Clinical research 
confirmed that 90.5% of cases exhibited trends consistent 
with the assessment outcomes. The current FDA-proposed 
model assessment strategy offers significant viable recom-
mendations for managing DDIs associated with high-risk 
antiviral drugs [73]. However, static models typically do 
not account for variations in drug concentrations over time 
within the body, which may lead to inaccuracies in predict-
ing long-term or complex drug interactions. Moreover, their 
reliance on simplified assumptions may not fully capture the 

(12)R = 1 +
fu,p × Iin,max

IC50

complexities of DDIs, especially those involving multiple 
metabolic pathways and nonlinear kinetics. To achieve more 
accurate predictions in such complex scenarios, advanced 
models such as PBPK models are necessary.

2.2  PBPK Models

PBPK models incorporate a drug’s physicochemical prop-
erties and biological characteristics, providing significant 
advantages in assessing complex DDIs. PBPK models are 
structured with multiple compartments, each representing 
a different physiological organ (e.g., liver, kidneys, heart), 
interconnected via the circulatory system to mimic drug 
transport throughout the body. The model’s complexity can 
be tailored according to the objectives of the research and 
the data available. The liver, being the primary organ for 
drug metabolism, is a critical component in these models 
[74]. PBPK models for DDIs are developed using a bottom-
up approach, as illustrated in Fig. 3. Initially, separate mod-
els for both perpetrator and victim drugs are constructed, 
focusing on their distribution and absorption. This involves 
mathematical representation based on drug properties such 
as solubility and volume of distribution, and tissue charac-
teristics such as hemodynamics and enzyme expression. Col-
lecting human ADME data, both from in vitro and in vivo 
studies, is crucial at this stage. This data includes physico-
chemical properties (LogP and pKa), absorption (Peff and 
solubility), distribution (B/P, Kp, Kd, fu,p), metabolism, and 

Fig. 3  PBPK models can be utilized to assess DDIs by integrating 
in  vitro experiments and computational predictions of ADME data 
with human PK data from in  vivo studies. The evaluation process 
involves collecting drug-related data, building and verifying PBPK 
models of individual drug, simulating interactions between drugs, 

and analyzing the results to evaluate potential clinical impact. This 
process requires consideration of factors such as a drug’s ADME 
properties, metabolic pathways, transporter protein competition, etc. 
to predict PK alterations that may result from DDIs
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transport (Km, Vmax, Jmax, CLint), as well as DDI parameters 
(Ki, Kinact, KI, EC50, and Emax). Calibration of these models 
is achieved by aligning model predictions with observed 
data to enhance accuracy. Validation then follows, using 
independent experimental data not previously utilized, 
often involving PK data from various doses, administration 
routes, or demographic groups. After validation, the models 
are linked via equations to predict DDIs, with further valida-
tion against in vivo PK data [75, 76].

PBPK models simulate the dynamic distribution and 
metabolism of drugs within the body, providing time-
dependent changes in drug concentration. These models 
can emulate complex DDIs, including nonlinear effects. 
Importantly, PBPK models account for physiological and 
pathological conditions of patients, such as hepatic or renal 
impairment, age, and weight, which significantly influence 
drug behavior. They are also applicable to assessing DDIs 
in special populations like children and pregnant women, 
who often have limited data in clinical trials [77]. Addition-
ally, PBPK models help reduce costly and time-consuming 
clinical trials, especially during the early stages of drug 
development. Establishing a PBPK model requires extensive 
physiological and drug characteristic data, and the process 
of building and validating these models is complex [78]. It 
is an iterative process that benefits from advancements in 
computing and the growing body of biomedical data. This 
development necessitates collaboration across disciplines 
like pharmaceutical science, physiology, biostatistics, and 
computer science. Currently, platforms such as GastroPlus, 
SimCyp, PK-Sim, and CLOEPK facilitate the widespread 
use of PBPK models [18].

3  PD Models for DDIs

A wide range of mathematical modeling approaches have 
been used to understand PD-based DDIs. The PD models 
not only assess the risk of DDIs but also evaluate the clini-
cal value of polypharmacy based on the nature of DDIs. 
Hill’s equation is a fundamental basis for describing the 
dose-response relationship of drugs. Numerous models 
predict the drug effects based on varying assumptions. The 
“Interaction–Existence Assumption” model is predicated on 
the existence of interactions between drugs, implying that 
the effects of drugs when used together include synergistic 
and antagonistic actions, exemplified by models like Greco 
model, the Generalized Drug-Potency Interaction (GPDI) 
model, Minto model, Chou–Talalay model, and Isobologram 
analysis exemplify this approach [79–81]. These are nonad-
ditive models. In contrast, the “no interaction assumption” 
model operates on the premise that drugs act independently, 
without synergistic or antagonistic interactions, illustrated 
by models such as the Loewe additivity model and Bliss 

independence model, falling under additive models [82, 
83]. As PD assessment transitions to in vivo studies, mod-
els based on physiological mechanisms play a greater role 
in describing DDI. Table 2 presents examples of the appli-
cation of PD models in the assessment of DDIs [84–123].

3.1  Conventional PD Models

3.1.1  Nonadditive Model

3.1.1.1 Hill’s Equation and Its Variant Models The PD effect 
of a drug largely depends on its concentration in the body, 
which can be categorized into central or peripheral com-
partments. Hill’s equation, a cornerstone in modeling dose–
response relationships, facilitates the simulation of effects 
for both single and multiple drug regimens by adjusting its 
parameters. Specifically, the equation is represented as Eq. 
(13).

Emax is the maximum achievable effect, IC50 is the con-
centration at which 50% of Emax is observed, D is the drug 
concentration, and r is the Hill coefficient, which describes 
the steepness of the curve. Notably, when r = 1, Hill’s equa-
tion simplifies to the Michaelis–Menten equation. Hill’s 
equation describes the nonlinear relationship between drug 
efficacy and concentration, especially when the effect tends 
to saturate as the concentration increases. It can adjust 
parameters to reflect the impact of competitive binding to 
receptors between drugs [124].

Greco and colleagues introduced the universal response 
surface approach based on the concept of Hill’s equation. A 
key advancement of the Greco model is the introduction of 
an interaction parameter, α, to quantify DDIs. This param-
eter allows the model to accurately reflect the primary DDI 
types—synergism, antagonism, and additivity—and provide 
a comprehensive description of the dose–effect relationships 
of drugs, as detailed in Eq. (14). In this model, D1 and D2 
denote the doses needed to achieve an effect (E) through 
combined drug administration. The parameter “α” represents 
the type and degree of DDI. A positive a value indicates 
a synergistic interaction, while a negative value suggests 
antagonism. A value of 0 signifies no interaction [125].

(13)E = Emax

Dr

ICr
50
+ Dr

(14)

1 =
d1

IC50, 1
(

E
Emax,1−E

) 1∕r1
+

d2

IC50,2

(

E
Emax,2−E

) 1∕r2

+
ad1d2

IC50,1IC50,2

(

E
Emax,1−E

) 1∕2r1 ( E
Emax,2−E

) 1∕2r2
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Whica and his team introduced the Generalized Drug-
Potency Interaction (GPDI) model. The GPDI model 
essentially expands on Hill’s equation by using the sum (or 
another form of combination) of multiple drug concentra-
tions as a new “effective concentration” and is regarded as 
semi-mechanistic sometimes [126]. This approach allows 
the model to assess the overall efficacy of multiple drugs 
when used together. A common form of the GPDI model 
is as Eq. (15):

Ci represents the concentration of the ith drug. k denotes 
the total number of drugs. This model classifies drugs as either 
victims, perpetrators, or both. It assesses the combined effects 
of drugs by measuring deviations in Emax or EC50, which refer 
to the drug's effects at concentration C. These deviations are 
quantified by INT, the maximum PD parameter change fraction 
due to polypharmacy. For drugs with competitive interactions, 
the GPDI model is compatible with the common additivity 
model, represented by Eq. (16).

INT12 quantifies the maximal fractional change in drug1’s 
EC50 induced by drug2, while INT21 represents the opposite 
effect. A positive INT value signals an EC50 increase, a range 
between −1 and 0 suggests a decrease, and INT equal to 0 
denotes no interaction. Synergy is inferred when both INT12 
and INT21 are negative, whereas positive values for both indi-
cate antagonism. The variance in INT values points to a con-
centration-dependent relationship, either antagonistic or syn-
ergistic. This framework is adept at analyzing DDIs involving 
two or more drugs, including those with intricate or partially 
understood mechanisms of action and effect pathways. It ena-
bles quantitative assessment of these interactions and handles 
complex combination data.

Minto et al. developed a model for analyzing PD, which 
requires that the dose–effect relationship of an individual drug 
meets Hill’s equation. The model is an extension of the clas-
sic sigmoid Emax model and characterizes the concentration 
ratio of drugs by introducing a new variable, θ, that is defined 
by normalization. The drugs can be seen as a new agent with 
a fixed combination ratio, θ, that has its own dose–response 
relationship. The potency of the two drugs is normalized and 
represented as U1 = d1 / IC50,1, and U2 = d2/IC50,2, with the 
ratio defined as θ = U1/(U1 + U2). The model’s core equa-
tion, Eq. (17), calculates the maximum effect [Emax(θ)] of the 

(15)E = Emax

�∑k

i=1
Ci

�n

ECn
50
+
�∑k

i=1
Ci

�n

(16)1 =
C1

EC50,1 ×

(
1 +

INT12×C
hINT ,12

2

EC50
hINT ,12

INT ,12
+ChINT ,12

2

)
×
(

Ecomb

Emax 1−Ecomb

)1∕h1
+

C2

EC50,2 ×

(
1 +

INT21×C
hINT ,21

1

EC50
hINT ,21

INT ,21
+ChINT ,21

1

)
×
(

Ecomb

Emax 2−Ecomb

)1∕h2

drug combination at ratio θ. Another critical parameter, U50(θ), 
represents the concentration achieving 50% of the maximum 
effect at this ratio, detailed in Eq. (18) [127].

The coefficients βi define model parameters, with U50(θ) > 1 
indicating antagonism and U50(θ) < 1 suggesting synergism in 
PD-based DDIs. This model’s ability to quantify drug combina-
tion effects has led to its widespread adoption in anesthesia. The 
Minto model, an evolution of the Greco model, offers enhanced 
flexibility in analyzing anesthetic agent interactions.

In summary, Hill’s equation is fundamental in phar-
macology for modeling dose–response curves, providing 
clear quantification of drug efficacy and potency with 
parameters such as Emax and EC50. However, it simpli-
fies drug interactions and is less effective for complex, 

(17)E = Emax(�)

(
U1+U2

U50(�)

)
r(�)

1 +
(

U1+U2

U50(�)

)
r(�)

(18)
U50(�) = �0,U50 + �1,U50� + �2,U50 �

2 + �3,U50�
3 + �4,U50�

4

nonmonotonic responses, limiting its direct application 
in multidrug therapies. The Greco model extends Hill’s 
equation to address synergies and antagonisms in drugs. 
It offers a more detailed analysis of interactions than Hill’s 
basic model by incorporating effects from multiple drugs, 
enhancing its utility in DDI assessment. Nonetheless, its 
reliance on accurate parameter estimation can be challeng-
ing in systems with incomplete interaction data. The GDPI 
model advances the capability to analyze multidrug inter-
actions by integrating the effects of drugs across different 
pathways and mechanisms. It provides a comprehensive 
framework for evaluating complex interactions, which 
is crucial for polypharmacy management. However, the 
GDPI model requires extensive data to define interactions 
precisely, which can be a limitation in scenarios with lim-
ited experimental data. The Minto model is specifically 
designed for anesthetic drugs, utilizing PK and PD data 
to optimize dosing in clinical settings. It excels in predict-
ing the combined effects of anesthetics such as propofol 
and opioids, aiding in tailored anesthesia management. 
To accurately quantify PD effects, it is necessary to select 
appropriate concentration–effect structure models for 
each drug and use them complementarily to gain a deeper 
understanding of the mechanisms of PD-based DDI.
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3.1.1.2 Chou–Talalay model The Chou–Talalay model, 
devised by Ting-Chao Chou and Paul Talalay, quanti-
tatively analyzes drugs’ effects [128]. The Chou–Tala-
lay model employs the median-effect equation, which is 
derived from the Michaelis–Menten equation and shares 
similarities with the Hill equation. However, while the 
Hill equation is primarily used for dose–response analy-
sis of a single drug, the Chou–Talalay model extends this 
concept by incorporating a combination index (CI) to 
include the combined effects of multiple drugs, as repre-
sented by Eq. (19).

The fa represents the fraction of the system affected by 
the drug, such as the proportion of cells killed or inhibited 
by the drug. The fm

a is the level of effect at the median-
effect concentration. D is the dose of the drug, while Dm 
represents the median-effect concentration, similar to 
EC50. n represents the slope factor, akin to the Hill coef-
ficient in the Hill equation, describing the steepness of the 
dose–response curve. Adjusting D and Dm allows deriv-
ing the median-effect equation for different effect levels. 
From this analysis, the CI can be calculated, presented as 
Eq. (20) [129].

D1 and D2 represent the respective doses required for 
each drug to achieve the effect E when used in combina-
tion, while Dm1 and Dm2 are the respective doses required 
for each drug to achieve the same effect E when used indi-
vidually. The Chou–Talalay model evaluates the interac-
tion between drugs by calculating the CI: CI < 1 indi-
cates synergy, CI = 1 indicates additive effect, and CI > 1 
indicates antagonism. The Chou–Talalay model provides 
a quantitative method for assessing DDIs, applicable to 
various types of drugs and biological effects, such as 
cytotoxicity, proliferation inhibition, and viral suppres-
sion. It is particularly valuable in drug development for 
cancer treatment, antiviral, and antimicrobial therapies. 
Moreover, the Chou–Talalay model is adept at managing 
combinations of drugs at varying doses and proportions, 
rendering it highly useful for optimizing drug dosages and 
designing therapeutic strategies. In practice, calculating 
the CI, especially with multiple drugs, can be complex and 
often requires specialized software such as CompuSyn for 
accurate CI values and effect analysis [130].

3.1.1.3 Isobologram Analysis The isobologram analysis 
is a graphical method proposed by J. H. Gaddum. This 
analysis method is based on the equivalence principle, and 

(19)fa =
f ma

1 − f ma
=
(

D
Dm

)n

(20)CI =
D1

Dm1

+
D2

Dm2

the type of DDI is judged by comparing the experimen-
tally observed effects with the additive effect expected in 
theory [131]. First, the effect of each drug is tested inde-
pendently to determine the dose required to produce a 
specific effect (such as EC50). Based on the single drug 
effect, the additive combination dose of two drugs that 
theoretically produces the same effect is predicted by a 
mathematical model. The effect of the drug combination 
is actually tested at different dose ratios to determine the 
experimental observed combination dose to achieve the 
same effect level as the single drug. In a two-dimensional 
coordinate system, the horizontal axis and the vertical axis 
represent the doses of two drugs respectively. A straight 
line (additive line) is drawn to connect the dose points of 
two drugs that produce a specific effect when used alone. 
Then, the experimental observed drug combination effect 
points are marked. If the effect points are located on the 
additive line, the interaction between drugs is additive; if 
the points are located below the additive line, the interac-
tion between drugs is synergistic; if the points are located 
above the additive line, the interaction between drugs is 
antagonistic. Isobologram analysis provides an intuitive 
and practical tool for understanding and predicting DDIs, 
especially during the drug screening and optimization 
phase [132, 133].

Compared with complex mathematical models, Isobolo-
gram analysis is easier to understand and interpret, mak-
ing it suitable for rapid evaluation of DDI potential in 
pharmaceutical development and clinical trial design. It 
is applicable to any type of drug combination and is not 
limited by the mechanisms of drug action. By analyzing 
the effects at different combination doses, Isobologram 
can help determine the optimal drug combination dosage, 
thus optimizing therapeutic effects and reducing adverse 
reactions. However, Isobologram primarily provides vis-
ual analysis results and lacks in-depth quantitative analy-
sis. Moreover, the accuracy of this approach depends on 
the quality of experimental data and the additive model 
selected. In practical applications, it may be necessary to 
combine other models and biological validation to com-
prehensively evaluate [134, 135].

3.1.2  Additive Models

3.1.2.1 Loewe Additivity Model To evaluate DDIs, the 
Loewe additivity model, formulated on the premise of 
“no interaction,” serves as a classical approach [136]. This 
model, especially with its CI metric, provides insights into 
the nature of DDIs at specific inhibition levels, as shown 
in Eq. (21). The n represents the number of drugs or the 
number of different effects considered in a model. For a two-
drug regimen, the expression is depicted as Eq. (22). The 
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CI values categorize the interaction as synergistic (CI < 1), 
antagonistic (CI > 1), or no interaction (CI = 1) based on the 
doses required to achieve a given effect E, either individu-
ally [(D1) and (D2)] or in combination [(d1) and (d2)].

The additive model functions as an approximation of the 
combined treatment effect by representing it as a hypotheti-
cal individual response, relying solely on the concentration-
effect curve of the drug. This prediction relies on the princi-
ple that each drug’s dosage contribution to the overall effect 
is additive. The Loewe additivity model offers a simple and 
intuitive method for evaluating the effects of drugs, espe-
cially in the preliminary research phase. This model operates 
on the assumption that drugs act independently, allowing 
the combined dosage-efficacy curve of multiple drugs to be 
predicted from the individual dosage-efficacy curves of sin-
gle drugs. However, the Loewe additivity model assumes 
that the drugs have similar concentration–response curves, 
a limitation that restricts its predictive capability for diverse 
therapeutic strategies [137]. To address this, Van der Borght 
et al. introduced the extended biochemically intuitive gen-
eralized Loewe (BIGL) model. This advanced model incor-
porates a scaling factor, enhancing its flexibility to account 
for drugs with different maximum effects in the concentra-
tion–response relationship [138].

3.1.2.2 Bliss Independence Model Bliss and his associates 
introduced the Bliss independence model to evaluate the 
efficacy of drugs using the independence criterion, which 
notably disregards the nonlinearity of dose–response rela-
tionships [139]. This model applies probability theory to 
deduce the rationality behind combining drugs by calculat-
ing the probability (P) of a PD effect occurring, where P 
ranges between 0 and 1. If the regimen comprises two drugs, 
the corresponding equations are Eqs. (23) and (24). Specifi-
cally, P(D1, D2) represents the proportion of the combined 
effect E to the maximum possible effect Emax of the drugs 
when used in combination, while P(D) indicates the ratio of 
an individual drug’s effect at dose (D) to its maximum effect 
when administered alone. A measured P(D1, D2) value 
exceeding the model’s predicted value suggests synergism, 
whereas a lower value indicates antagonism [140].

(21)CI =

n∑
i=1

di

Di

(n = 1, 2, 3……)

(22)CI =
d1

D1

+
d2

D2

The Bliss independence model calculates the combined 
effect of two drugs by predicting the probability of their 
independent actions. It is applicable to drugs with differ-
ent mechanisms, as it does not require the drugs to share 
the same targets or pathways. This makes the Bliss model 
particularly useful in multitarget drug research. However, in 
some cases, the Bliss model may underestimate the true syn-
ergistic effects, especially when the mechanisms or pathways 
of the drugs overlap. The original Bliss independence model 
often led to false positives due to its failure to consider the 
variability in drug efficacy [141, 142]. To address this issue, 
Liu and Zhao et al. [143] developed a two-stage Bliss inde-
pendence model that evaluates an overall interaction index 
(τ) with a 95% confidence interval, significantly reducing the 
risk of false positives. However, as mechanistic assessment 
methods based on fixed modes of action, both the Loewe 
additivity model and the Bliss independence model are 
unable to fully capture the complex DDIs. Meletiadis and 
Kashif et al. have employed a combined use of these two 
models to assess polypharmacy strategies in antimicrobial 
and anticancer therapies. Their validated results have been 
applied to guide clinical medication regimens [144, 145].

3.2  Mechanism‑Based PD Models

Empirical approaches help identify potential combination 
regimens but face limitations in complex DDI evaluations. 
Under complex physiological conditions, empirical models 
that rely on extensive data present challenges and are often 
unstable in extensive cell line studies. Therefore, PD-based 
DDI studies require models based on physiological mecha-
nisms to effectively address these challenges [146, 147].

Mechanism-based PD models are founded on a compre-
hensive understanding of drug action mechanisms. Such 
models are crucial for evaluating DDIs at the PD level, 
which typically involve assessing how drugs compete for 
receptor sites, interfere with signaling pathways, regulate 
physiological feedback mechanisms, and either augment 
or negate each other’s effects [148, 149]. The initial step 
involves examining drug–receptor interactions, the corner-
stone of PD modeling, which includes analyzing the kinet-
ics of how drugs bind to their specific receptors. Following 
receptor binding, the focus shifts to signal transduction pro-
cesses, examining how drugs activate or inhibit intracellular 
signaling pathways, ultimately leading to pharmacological 

(23)P = E
Emax

=

(

D
IC50

) r

1 +
(

D
IC50

) r

(24)P(D1,D2) = P(D1) + P(D2) − P(D1) ⋅ P(D2)
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outcomes. This phase may encompass a variety of complex 
mechanisms, including the generation of second messengers 
and the activation of protein kinases, among others. The 
final process is the activation (or inhibition) of signaling 
pathways, leading to specific cellular responses—such as 
alterations in gene expression, cell differentiation, or apop-
tosis—that collectively result in the observed pharmaco-
logical effects at both the tissue and whole-organism levels 
[150–152].

Mechanism-based PD models provide profound mecha-
nistic insights and robust predictive capabilities in the study 
of DDIs, aiding in the optimization of drug dosages and 
the design of clinical trials, thereby supporting personalized 
medicine and decision-making assistance. However, these 
models require extensive interdisciplinary data and involve 
complex and time-consuming construction and maintenance 
processes. For instance, in mechanism-based PD models, it 
is crucial to accurately predict the drug concentrations at 
target sites. This may require the integration of PD models 
with PK models to capture the in vivo processes of drugs 
[153, 154].

4  PK/PD Models for DDIs

PK/PD models are mathematical frameworks in pharma-
cology designed to describe and predict the interactions 
between the PK and PD of drugs within the body. These 
models facilitate understanding the ADME processes of 
drugs. Quantifying the relationship between drug exposure 
and response characterizes the impact of DDIs on drug 
specificity, and physiological and pathological systems [155, 
156]. Empirical PK/PD models are typically constructed by 
assembling the basic PK and PD model components dis-
cussed in previous sections. The models focus on estab-
lishing relationships between different drug concentrations 
and drug efficacy using statistical or mathematical methods 
based on clinical trials or laboratory data, without delving 
into the specific biological mechanisms behind these rela-
tionships. Mechanism-based PK/PD models cover multiple 
biological parameters and variables to accurately simulate 
the dynamic processes of drugs in vivo and their interac-
tions. These models pertain to drug site-target distribution, 
target activation and transduction, and disease progression, 
as illustrated in Fig. 4 [157, 158]. This multiscale approach 
allows for the exploration of complex DDIs, accounting for 
the intricate interplay between various biological compo-
nents and their dynamic responses to multiple perturba-
tions. Owing to the complexity of biological system, many 
of the models integrate intricate details of cellular signal-
ing pathways, gene regulatory networks, and physiological 
processes. The QSP approach is particularly effective in 
addressing these complex dynamic DDIs.

QSP model offers a detailed biological foundation for 
the PK/PD model, while the PK/PD model provides quan-
titative pharmacological data for the QSP model. Together, 
these models can mutually validate and calibrate each other, 
forming a closed-loop modeling framework. QSP models 
have enhanced and expanded the capabilities of mechanistic 
models by providing a comprehensive view of how vari-
ous drugs interact within interconnected biological pathway 
networks [159, 160]. The QSP model integrates diverse data 
sources such as genomics, proteomics, metabolomics, and 
physiological data, enabling a mechanistic understanding 
of drug actions across multiple scales spanning molecular, 
cellular, tissue, and system levels, as illustrated in Fig. 5 
[161]. By bridging the gap between simple target interac-
tions and complex system effects, QSP models enhance the 
accuracy of DDI predictions and address key challenges in 
DDI assessment, such as individual response heterogeneity, 
variability in disease response, stages of disease progres-
sion, and optimizing drug therapy while minimizing ADRs 
[162, 163].

4.1  Drug Site–Target Distribution

The alterations induced by the perpetrator drug on the meta-
bolic attributes of the victim drug at the site of action are 
primary factors affecting the onset and duration of drug 
effects. Previous research utilized the “effect compartment 
model” to describe changes in drug concentration within 
specific tissues, such as the liver or kidneys, and their PD 
outcomes [164, 165]. DDI targets include enzyme systems, 
transporters, receptors, ion channels, and plasma protein 
binding sites. Drugs acting on the same target can produce 
synergistic effects in polypharmacy therapy, while those 
acting on different targets may offer complementary ther-
apeutic benefits. The basis for drug and target binding is 
the chemical affinity, spatial and charge complementarity, 
specificity, dynamic adaptability, and influence on target bio-
logical activity between the drug molecule and the target. 
These factors collectively determine a drug’s selectivity and 
efficacy. Some models use receptor theory to elucidate the 
relationship between the affinity and concentration effects of 
compounds on receptors. Mehta et al. proposed an integrated 
model that considers both drug-specific and system-specific 
characteristics, using human blood–brain barrier (BBB) per-
meability values derived from animal experiments to suc-
cessfully predict the concentrations of specific drugs in the 
human central nervous system (CNS) [166]. Iwasaki et al., 
utilizing clinical data and human physiological parameters, 
especially by considering the binding affinity of bortezomib 
to proteasomes in red blood cells and the proteasome con-
centration, accurately predicted drug exposure and its target 
inhibition in the blood based on a mechanistic model. This 



933Pharmacokinetics–Pharmacodynamics Modeling

Fig. 4  Mechanistic PK/PD 
model of DDIs describe the 
causal relationship between 
drug exposure and response. A 
Drug target distribution in the 
circulatory system and tissues 
is influenced by specificity and 
adaptability. B Factors such as 
drug–target affinity, receptor 
expression, and transduction 
mechanisms affect drug binding 
to targets and receptor activa-
tion. Drugs may act on the same 
or distinct targets and pathways. 
C Integrating the therapeutic 
effects into the dynamic changes 
in disease progression provides 
personalized and precise guid-
ance for clinical medication use
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model can also predict the impact of P450 3A inducers and 
inhibitors on bortezomib exposure, indicating the potential 
for DDI [167]. Dudas et al. successfully simulated the tran-
sitions between the inward and outward states of the trans-
porter ABCG2 and the transport of the endogenous substrate 
estrone 3-sulfate, providing transition pathways for identify-
ing new substrates and inhibitors as well as exploring drug 
candidates for DDI [168].

The QSP model provides a dynamic and systematic per-
spective for understanding of how drugs distribute within 
the body and interact with biological targets. By integrating 
PK data with biomarkers and target expression data, QSP 
models establish relationships between drug concentrations 
and biological effects. A study employed a QSP model 
to evaluate the DDI effects of the NK3 receptor (NK3R) 
antagonist ACER-801 with tamoxifen and leuprolide. This 
model incorporated the PK, PD, and hepatic metabolism of 
ACER-801, tamoxifen, and leuprolide. Findings suggested 
that coadministration of ACER-801 significantly reduces the 
severity and frequency of vasomotor symptoms in patients 
treated with tamoxifen or leuprolide, without necessitating 
adjustments in hormone deprivation therapy due to minimal 
DDIs [169]. QSP models not only depict the interactions 
between drugs and their targets and the resultant biological 
effects but also simulate drug behavior at various dosages 

and predict the effects of DDIs when multiple drugs are used 
concurrently.

4.2  Target Activation and Transduction Model

Drug–receptor interactions can either activate or inhibit tar-
get functions, impacting both physiological and pathological 
processes. One factor to consider is the receptor’s activa-
tion and subsequent signal transduction. This process is the 
activation of the target to the initiation of the effect, and is 
characterized by cascading and nonlinear dynamics. DDIs 
can be regarded as a concentration–effect relationship that 
is not influenced by time in instances where transduction 
occurs swiftly and with no discernible metabolic mecha-
nism in the crucial response pathway [170, 171]. Conversely, 
when transduction within the body is gradual, the mani-
festation of the effect is intricately linked to time, thereby 
requiring the adoption of a time-dependent transduction PD 
model, namely the turnover model. Lint et al. established 
an integrated two-compartment model describing the PK 
of carfilzomib incorporating linear disposition. An irrevers-
ible deactivation turnover model was built using proteasome 
activity in peripheral blood mononuclear cells at different 
times as PD biomarker. By integrating the two models, a 
mechanism-based PK/PD model with high precision was 
developed to assess the DDI potential of carfilzomib [172]. 

Fig. 5  Polypharmacy is complex, involving a variety of physiologi-
cal processes across different time frames and locations, including 
ADME, cellular variability, and whole-organ responses. QSP lever-
ages robust datasets and individual patient characteristics to fine-tune 

polypharmacy therapy. Moreover, machine learning algorithms pro-
vide a robust framework for analyzing large-scale biomedical data-
sets, predicting pharmacological impacts, refining drug development, 
and customizing patient care plans
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In DDI studies, turnover models are frequently employed 
and examined using various models, including drug metabo-
lizing enzyme kinetic, drug clearance kinetic, drug metabo-
lite kinetic, and drug metabolic pathway regulation models.

By constructing a cascade reversal model, wherein the 
output of one model serves as the input for another model, 
it becomes possible to elucidate the biochemical processes 
involved in drug–target–DDI–biological response interac-
tions. Guo et al. developed an enzymatic turnover model that 
incorporates both intestinal and hepatic P450 3A induction 
as well as P-gp effects, aiming to accurately predict P450 
3A induction-mediated DDIs. The model initially utilized 
enzyme kinetics to predict the PK characteristics of 14 P450 
3A inducers and substrates. Building on this foundation, it 
then employed the theory of drug clearance to predict the 
DDIs between these inducers and substrates. This approach 
highlighted the significant advantage of turnover model in 
providing quantitative predictions of DDIs [173]. In PK/PD 
studies concerning drug–target activation and transduction, 
QSP models are crucial. These models go beyond merely 
tracking the relationship between drug concentrations and 
biological effects. They aim to uncover how drugs trigger 
complex biological responses by influencing specific bio-
molecular networks. QSP models provide a comprehensive 
method for understanding drug mechanisms by simulating 
and analyzing how drugs affect specific signaling pathways 
within biological systems. They integrate experimental data 
related to the target and its signaling pathways, encompass-
ing key parameters such as drug concentrations, target acti-
vation states, and changes in signaling molecules [174, 175]. 
A study applied QSP model to Huntington’s disease, utiliz-
ing a chemogenomics platform to identify strategies that pro-
tect neuronal cells from death induced by mutant huntingtin 
protein. The research screened several small-molecule probe 
drugs with distinct mechanisms by measuring phosphoryl-
ated PKA levels in the STHdh Q111 cell model. These 
drugs were found to enhance therapeutic effects and exert 
synergistic actions by activating the PKA pathway [176]. 
QSP models are constructed using collected data and should 
include submodels describing drug PK characteristics (e.g., 
absorption and clearance mechanisms) and PD submodels 
(describing drug interactions with targets and subsequent 
changes in the signaling network) [177, 178].

4.3  Disease Progression Model

Disease progression models (DPMs) encapsulate the 
dynamic nature of diseases, including changes in disease 
status and progression rates, which are critical for evaluating 
DDIs and establishing dosage recommendations [179, 180]. 
They assess disease progression using diverse data sources, 
from initial diagnosis to ongoing biomarker data, employ-
ing mathematical functions to describe the relationships 

between biomarkers and disease progression [146, 181]. 
Key dynamic models, including those for growth, infec-
tious diseases, and tumor growth, can improve predictions of 
DDIs–disease interactions by being continuously validated 
with appropriate biomarkers, such as tumor and inflamma-
tory markers. For instance, considering that chronic kidney 
disease (CKD) affects the clearance rate and distribution 
volume of drugs, a new virtual severe CKD disease model 
was developed, incorporating the impact of the disease on 
both renal and nonrenal pathways, and verified through a 
PBPK model. The disease model successfully predicted the 
PK changes of statins in patients with severe CKD and their 
interaction with Roxadustat, providing guidance for appro-
priate dosage regimens [182]. DPMs of tumors are used to 
evaluate the interactions between chemotherapy drugs and 
other medications (such as painkillers and antibiotics). These 
models specifically focus on the impact of tumor growth on 
drug distribution and metabolism, and how adjusting the 
dosage of chemotherapy drugs can minimize adverse DDIs 
and optimize treatment outcomes [183]. In the treatment of 
human immunodeficiency virus/acquired immune deficiency 
syndrome (HIV/AIDS), DPMs consider the impact of HIV 
infection on drug metabolic pathways, and how different 
stages of HIV infection can change the nature and extent of 
DDIs [184, 185]. QSP models evaluate the potential effects 
of different drugs on disease progression based on the key 
biological markers and pathways. Sang et al. developed a 
translational platform combining human induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs) with a 
QSP–PBPK model to predict systolic dysfunction induced 
by antineoplastic drugs. This mechanism-based toxicology 
(TD) model integrates drug exposure, cardiomyocyte inter-
action, and systemic response, to evaluate DDIs and validate 
the sequential treatment regimen of amiodarone and trastu-
zumab [186]. Additionally, the QSP model can simulate how 
drugs affect inflammatory pathways, cell growth signaling, 
or apoptosis, enabling longitudinal tracking and prediction 
of disease progression and therapeutic outcomes. The QSP 
model integrates tumor-associated macrophages (TAMs), 
crucial for the immunosuppressive tumor microenviron-
ment, to evaluate the clinical activity of atezolizumab and 
nab-paclitaxel in triple-negative breast cancer patients with 
PD-L1-positive, tumor-infiltrating immune cells. This model 
adeptly captures macrophage heterogeneity and maintains 
robust predictive accuracy for clinical trials [187].

5  Challenges and Advancements

Advancements in science and technology, such as high-
throughput screening tools, advanced in vitro systems, and 
computational resources, have expanded research into the 
factors influencing DDIs. These developments have enabled 
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the collection of detailed data on drug and physiological 
mechanisms, leading to more sophisticated mathematical 
models for DDI assessment.

Drug clearance rate is a crucial parameter in the assess-
ment of DDIs. The perpetrator drug can significantly alter 
the clearance of the victim drug, inducing DDIs. For exam-
ple, resibufogenin decreases the clearance of amlodipine, 
leading to an extended half-life and potential adverse reac-
tions [188]. Traditional in vitro systems like human hepat-
ocytes (PHHs) and human liver microsomes (HLMs) are 
commonly used for in vitro experiments to predict drug 
clearance. However, these systems have limitations, such 
as a short survival time of only 4–6 h and a rapid decline in 
P450 enzyme activity to 10%, making them unsuitable for 
assessing drugs with low turnover and prolonged half-life 
[189, 190]. Novel approaches, such as suspension hepatocyte 
culture techniques, micropatterned cell co-cultures (MPCC), 
and hepatocyte coculture systems, have shown the ability 
to maintain liver cell metabolic stability over weeks, offer-
ing advantages in predicting low clearance and analyzing 
metabolite structures [191]. For instance, research teams 
of Lin and Khetani significantly improved the accuracy 
of predicting hepatic drug clearance rates in vivo by using 
MPCCs constructed with cryopreserved non-parenchymal 
primary human hepatocytes (PHHs) and 3T3-J2 fibroblasts. 
Compared with traditional PHH suspension and monolayer 
cultures, MPCCs can maintain function long-term and accu-
rately predict the clearance rates of 26 different drugs with 
an accuracy ranging from 73% to 96%. By adjusting P450 
enzyme activity, it can simulate the impact of drug induc-
tion and inhibition on clearance rates, providing an effective 
tool for predicting drug clearance rates and simulating DDIs 
[192, 193]. Furthermore, three-dimensional (3D) cell cul-
tures and multiorgan-on-a-chip (MOC) technologies enable 
detailed exploration of drug pharmacological actions at tar-
geted sites. These methods create a reproducible, controlled 
microenvironment that simulates in vivo conditions, effec-
tively embodying PBPK models, and have been invaluable 
in DDI research [194].

As observed in the previous sections on the establish-
ment of PK and PD models, traditional PK/PD research 
methods typically rely on the average response of tissues 
or cell populations, ignoring the heterogeneity between 
cells. The application of single-cell technology in PK/PD 
model research has provided a new dimension to the study of 
DDI. By utilizing single-cell mass spectrometry technology, 
researchers can directly measure drug concentrations within 
individual cells, providing refined PK information for under-
standing how drugs distribute across different cell types and 
subpopulations, as well as their heterogeneity [195]. This 
approach facilitates a more detailed analysis of the PK prop-
erties at the cellular level, enhancing our understanding of 
drug efficacy and DDI profiles. Through single-cell RNA 

sequencing (scRNA-seq), researchers can analyze in detail 
how drugs impact gene expression in different cells, reveal-
ing drug-specific effects at the cellular level and mecha-
nisms of drug interactions in complex disease models. This 
approach allows for a comprehensive understanding of the 
PD effect within individual cells, providing insights into the 
efficacy and potential side effects of therapeutic interven-
tions [196, 197]. By collecting single-cell data at different 
time points, researchers can construct dynamic models of 
drug interactions, monitoring how drugs influence cell states 
over time and how drug interactions evolve. Single-cell tech-
nology enables data acquisition from individual samples, 
offering the potential to build personalized PK/PD models 
that account for inter-individual differences, providing a 
powerful tool for precision medicine and personalized drug 
therapy [198].

Research on PK/PD of DDI also faces challenges in 
establishing accurate exposure–response relationships. On 
one hand, there is a lack of comprehensive exploration of the 
mechanisms of individual drugs. Many drugs, such as aspi-
rin and metformin, affect multiple biological pathways and 
targets through nonspecific actions, leading to complex and 
variable pharmacological effects, which pose challenges to 
the quantitative assessment of DDIs [199–201]. On the other 
hand, the study of DDI mediating factors is insufficient. 
Non-P450 enzymes, including transport proteins, esterases, 
aminases, and glucuronosyltransferases, play a crucial role 
in the ADME processes of drugs. Due to the diversity and 
wide distribution of these mediating factors, and the signifi-
cant differences among individuals, the current research on 
them is relatively inadequate, especially the lack of specific 
inducers and inhibitors, which increases the difficulty of 
assessing related DDIs [202]. Omics technologies, including 
genomics, proteomics, and metabolomics, along with bio-
informatics, offer new perspectives for understanding drug 
mechanisms, pathophysiology, and the potential of DDIs. 
Omics technologies can identify potential biomarkers that 
accurately reflect the mechanisms of action and expected 
activities of drugs, which are crucial for a broad analysis 
of the molecular composition and function within organ-
isms [203]. Incorporating omics data into PK/PD models 
can help construct dynamic models that include factors such 
as gene expression and signal transduction. This integration 
strengthens DDI research and improves the predictive capa-
bility of models, thereby providing more accurate guidance 
for drug development and clinical application [204].

In accurately modeling complex disease pathways and 
validating models with large datasets, researchers face sig-
nificant hurdles in data acquisition and processing. Despite 
biotechnology advancements enabling vast data collection, 
the variability in data quality, consistency, and complete-
ness challenges extracting pertinent information and inte-
grating this intricate data effectively. Machine learning 
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(ML) has become pivotal in discerning patterns within 
large datasets, enhancing model accuracy and predictive 
capacity [116]. Specifically, ML excels at identifying cor-
relations between drugs and their physiological impacts. 
In PK research, it facilitates extracting insights from 
experimental data, such as predicting metabolic pathways 
and excretion rates from drug concentration–time curves, 
crucial for optimizing dosages [205]. It also predicts AUC  
fold changes using FDA drug label information for precise 
quantitative DDI analysis. Moreover, ML improves drug 
distribution pattern predictions, aiding in targeted deliv-
ery, and broadly predicts DDIs, focusing on P450 enzyme 
interactions [206, 207]. In PD research, ML is essential 
for analyzing bioinformatics and genomics data to predict 
and identify new drug targets, validating their effective-
ness by examining target-disease associations [208, 209]. 
ML identifies complex relationships between PK and PD 
parameters, guiding model construction [210, 211]. Lev-
eraging big data in PK and PD research not only identi-
fies new targets but also assesses DDI impacts on diverse 
individuals, broadening research horizons.

6  Conclusion

This article reviews the research models and latest advance-
ments in DDIs based on PK and PD. It highlights how clas-
sical basic models and static mechanism models serve as 
foundational approaches for assessing the potential risks of 
DDIs from a PK perspective. PBPK models, noted for their 
dynamic and information-rich capabilities, are increasingly 
advocated for predicting DDIs more accurately. The PD 
mathematical model is utilized to evaluate DDIs by com-
paring the efficacy of single and polypharmacy, aiding in 
determining whether polypharmacy or specific dosage strat-
egies enhance clinical value. Mechanism-based PK/PD mod-
eling advances this by offering a multiscale, translational 
research approach that elucidates dose–exposure–response 
relationships of drugs. QSP models represent a powerful 
platform for understanding and predicting DDIs by inte-
grating complex biological systems networks. This review 
underscores the importance of continuously optimizing and 
integrating experimental resources and computational tools 
to enhance the accuracy of DDI predictions. In summary, the 
article serves as a comprehensive reference for updating DDI 
models and clinical practices, covering various modeling 
approaches and their applications. The primary objective 
is to integrate individualized PK and PD characteristics of 
DDIs, driven and updated by these models, into the regula-
tion and development of clinical medication strategies.
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