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Abstract
Background and Objective The renal excretion of drugs via organic anion transporters 1 and 3 (OAT1/3) is significantly 
decreased in patients with renal impairment. This study uses physiologically based pharmacokinetic models to quantify the 
reduction in OAT1/3-mediated secretion of drugs throughout varying stages of chronic kidney disease.
Methods Physiologically based pharmacokinetic models were constructed for four OAT1/3 substrates in healthy individuals: 
acyclovir, meropenem, furosemide, and ciprofloxacin. Observed data from drug–drug interaction studies with probenecid, 
a potent OAT1/3 inhibitor, were used to parameterize the contribution of OAT1/3 to the renal elimination of each drug. The 
models were then translated to patients with chronic kidney disease by accounting for changes in glomerular filtration rate, 
kidney volume, renal blood flow, plasma protein binding, and hematocrit. Additionally, a relationship was derived between 
the estimated glomerular filtration rate and the reduction in OAT1/3-mediated secretion of drugs based on the renal extrac-
tion ratios of ƿ-aminohippuric acid in patients with varying degrees of renal impairment. The relationship was evaluated in 
silico by evaluating the predictive performance of each final model in describing the pharmacokinetics (PK) of drugs across 
stages of chronic kidney disease.
Results OAT1/3-mediated renal excretion of drugs was found to be decreased by 27–49%, 50–68%, and 70–96% in stage 
3, stage 4, and stage 5 of chronic kidney disease, respectively. In support of the parameterization, physiologically based 
pharmacokinetic models of four OAT1/3 substrates were able to adequately characterize the PK in patients with different 
degrees of renal impairment. Total exposure after intravenous administration was predicted within a 1.5-fold error and 85% of 
the observed data points fell within a 1.5-fold prediction error. The models modestly under-predicted plasma concentrations 
in patients with end-stage renal disease undergoing intermittent hemodialysis. However, results should be interpreted with 
caution because of the limited number of molecules analyzed and the sparse sampling in observed chronic kidney disease 
pharmacokinetic studies.
Conclusions A quantitative understanding of the reduction in OAT1/3-mediated excretion of drugs in differing stages of 
renal impairment will contribute to better predictive accuracy for physiologically based pharmacokinetic models in drug 
development, assisting with clinical trial planning and potentially sparing this population from unnecessary toxic exposures.
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1 Introduction

Chronic kidney disease (CKD) affects nearly 10% of the 
global population [1]. Chronic kidney disease is defined by 
a reduction in kidney function as approximated by the glo-
merular filtration rate (GFR) below 60 mL/min/1.73  m2 for 
3 months or more [2]. Several equations to approximate GFR 

are used in clinical practice such as the Cockcroft–Gault, 
Modification of Diet in Renal Disease, or the CKD Epide-
miology Collaboration equations [2]. Stages of CKD are 
classified by the degree of renal impairment, with stage 3, 
stage 4, and stage 5 defined by estimated GFR values of 
59–30, 29–15, and < 15 mL/min/1.73  m2, respectively [2]

Patients with CKD may take more than 12 different 
prescription drugs per day to reduce morbidity and mor-
tality associated with the disease [3]. It is a clinical chal-
lenge to ensure safe and effective dosing for each of these 
medications in patients with renal impairment because CKD 
affects many aspects of pharmacokinetics (PK) and drug 
disposition. Most intuitively, renal elimination pathways are 
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Key Points 

Physiologically based pharmacokinetic models were 
successfully developed to describe how organic anion 
transporter 1 and 3 (OAT1/3) activity may be compro-
mised across the stages of chronic kidney disease and to 
predict the pharmacokinetics (PK) of drugs that undergo 
OAT1/3-mediated renal excretion.

Quantifying the relationship between the 
ƿ-aminohippuric acid extraction ratio and the estimated 
glomerular filtration rate demonstrated that reductions in 
OAT-mediated renal excretion may occur disproportion-
ately to that of glomerular filtration as chronic kidney 
disease progresses.

The proposed workflow adequately predicts the intrave-
nous PK and renal elimination of four OAT substrates in 
patients with chronic kidney disease but may modestly 
over-predict renal elimination in patients undergoing 
intermittent hemodialysis.

compromised. About one-third of the most prescribed drugs 
in the USA undergo renal elimination and 90% of these are 
actively secreted by the kidney [4]. While passive filtration 
of drugs into urine declines directly in proportion to the 
GFR, the progressive decline in secretory function in each 
stage of CKD remains poorly understood.

There are two common groups of transporters by which 
drugs can be actively secreted from the interstitial space of 
the nephron across the renal epithelium and into the urine. 
Cations may be taken up by organic cation transporter 2 and 
secreted into urine by P-glycoprotein and/or the multidrug 
and toxin extrusion transporters (MATE1, MATE2K) [5]. 
Anions may be taken up by organic anion transporters 1 
and 3 (OAT1/3) and secreted into the urine by the multid-
rug resistance proteins 1–4 [5]. A recent review summarizes 
evidence that the activities of apical efflux transporters are 
largely preserved in CKD [5]. The renal clearances of drugs 
that are substrates for organic cation transporter 2 tend to 
decline in parallel with GFR, suggesting that the activity of 
renal organic cation transporters may not be significantly 
compromised by uremia [6, 7]. However, there is convinc-
ing evidence that the activities or expression of renal OAT 
transporters may be significantly compromised in renal 
impairment, with this inhibition driven by high levels of 
circulating uremic toxins [5, 8, 9]. The progressive decline 
in renal clearance for most OAT1/3 substrates is more severe 
than the decline in GFR [10, 11].

In this work, a parameterization for the relative activity of 
OAT1/3 transporters across various stages of renal impair-
ment is developed and evaluated using a mechanism-based 

modeling approach. Physiologically based pharmacoki-
netic (PBPK) models represent drug absorption, distribu-
tion, metabolism, and excretion within virtual individuals 
according to the actual mechanisms responsible, as far as 
can be feasibly identified. This exercise leverages recent 
advancements in PBPK modeling in patients with CKD that 
quantify the systemic impact of the disease on parameters 
related to renal, hemodynamic, and gastrointestinal physiol-
ogy [7]. Building on this foundation, we developed PBPK 
models for four drugs that are OAT substrates (acyclovir, 
meropenem, furosemide, ciprofloxacin) with the overall 
objective of using a physiological model to understand how 
OAT1/3 activity may be compromised in patients with vary-
ing degrees of renal impairment and evaluated their predic-
tive accuracy when the parameterization for OAT activity 
is applied.

2  Methods

2.1  Software

All PBPK modeling was carried out using PK-Sim version 
9.1 as part of the Open Systems Pharmacology suite (www. 
open- syste ms- pharm acolo gy. org). Parameter sets for healthy 
adults and aged persons in European and white American 
populations have been described previously [12, 13]. Sci-
entific data to inform the individual and population-level 
parameter changes in CKD were applied using MATLAB 
R2021a (Mathworks, Natick, MA, USA) as published pre-
viously [7]. A noncompartmental analysis of observed PK 
datasets was conducted with the PKNCA package in R 
where necessary.

2.2  PBPK Models for Healthy Adults

PBPK models were constructed to mechanistically repre-
sent the PK of four drugs that are substrates of OAT1/3 in 
healthy adults. A detailed report of model development and 
verification for each molecule in healthy adults is available 
in the Electronic Supplementary Material (ESM). The final 
parameters for each molecule are presented in Table 1.

Briefly, each model in healthy adults was developed by 
collecting and appraising the physicochemicl properties 
of each molecule from the literature. Organ-specific parti-
tion coefficients were calculated with the PK-Sim standard, 
Schmitt, or the Rodgers and Rowland algorithms [29–31]. 
Information regarding the expression and localization of 
renal transporters was extracted from Ivanyuk et al. and pre-
viously published PBPK models [15, 25]. It was assumed 
that basolateral uptake into the renal epithelium by OAT1 
and OAT3 occurs via one generic OAT transporter within 
the models as the processes are not uniquely identifiable.

http://www.open-systems-pharmacology.org
http://www.open-systems-pharmacology.org
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Previous PBPK models for drugs with active tubular 
secretion often simplified the two processes of basolateral 
influx and apical efflux with ‘global’ renal drug transport-
ers to represent the net flux into urine. Such assumptions 
were largely owing to the absence of in vitro and in vivo 
data to parameterize each process separately [7, 11, 32]. 
In this work, uptake via OAT transport was mathemati-
cally identified by optimizing against a drug–drug inter-
action (DDI) study with one arm where OAT activity was 
strongly inhibited by probenecid and one control arm. The 
PBPK model for probenecid was downloaded from the 
Open Systems Pharmacology repository and can be found 
at: https:// github. com/ Open- Syste ms- Pharm acolo gy/ Probe 
necid- Model [15]. Probenecid is a competitive inhibitor of 

OAT with an inhibition constant (KI) of 5.41 µM; previ-
ous validation of this inhibition constant for prediction of 
the furosemide-probenecid DDI has been published [15]. In 
the DDI simulation of probenecid and the OAT substrates, 
the apparent Michaelis–Menten constant for OAT transport 
(KM,app) was calculated as (Eq. 1): 

where I represents the concentration of the competitive 
inhibitor, probenecid [15].

Incorporating empirical data derived from probenecid-
DDI PK studies follows a “middle-out” approach, which 

(1)Kmapp = Km ×

(

1 +
I

KI

)

,

Table 1  Physiologically based pharmacokinetic model parameters

a Parameters optimized from their literature values
b Relative expression in human organs extracted from the PK-Sim Gene Database for Humans
c TS; generic apical transporter on the apical side of kidney cells
d CMMG; assumed first-order metabolism within the liver
e Percentage of tubular secretion of renal clearance was calculated as  (CLR − fu × GFR)/CLR

Parameter Ciprofloxacin Furosemide Meropenem Acyclovir

Fraction unbound in plasma 
(fu)

0.67 [14] 0.022 [15] 0.98 [16, 17] 0.85 [18]

Lipophilicity (logP) 0.95 [14] − 0.24 − 1.21a [− 1.21 to − 1.21] − 0.69a [− 0.69 to − 0.69]
Molecular weight (g/mol) 331.30 [14] 330.74 383.46 [17, 19] 225.21 [18]
Effective molecular weight 

(g/mol) accounting for 
halogens

314.30 330.74 383.46 225.21

Fraction excreted in urine 
(fe; %)

61.2 ± 7.2 [20] 74 ± 7 [15] 79 ± 2 [21] 86.2 ± 11.4 [22]

Contribution of TS of  CLR
e 

(%)
73 98 96 74

Partition coefficient algo-
rithm

PK-Sim Standard Schmitt Rodgers and Rowland Rodgers and Rowland

Cell permeability algorithm PK-Sim Standard Charge-dependent Schmitt Charge-dependent Schmitt Charge-dependent Schmitt
GFR fraction 1.0 1.0 1.0 1.0
OAT concentration (µM) 0.0917b [15] 0.0917b [15] 0.0917b [15] 0.0917b [15]
OAT Vmax (µM/min) 5.96a (M/min) [5.60–

6.30]
754.40 [15] 1262.57a [1248.49–

1268.14]
25.75a (mM/min) [25.70–

26.19]
OAT Km (µM) 70 [23] 21.50 [15] 847 [24] 342.30 [23]
Apical transporter type TSc MRP4 [15] TSc MATE [25]
Apical transporter concen-

tration (µM)
1.0b 0.02b [26, 27] 1.0b 1.0b

Apical transporter Vmax 
(µM/min)

58.39a [55.45–61.62] 163.09 [15] 116.11a [115.67–117.16] 0.99a (mM/min) [0.98–0.99]

Apical transporter Km (µM) 1000 27.96 [15] 770 [28] 3480 [23]
Metabolizing enzyme CYP  1A2b UGT  1A9b [15] Renal DHP-1b [21] CMMGd

Metabolizing enzyme con-
centration (µM)

1.8 0.197 [15] 1.0 1.0

Metabolizing enzyme 
specific clearance (L/
µmol/min)

0.027a [0.027–0.027] 187.53 [15] 89.21a [88.99–89.90] 0.031a [0.031–0.031

https://github.com/Open-Systems-Pharmacology/Probenecid-Model
https://github.com/Open-Systems-Pharmacology/Probenecid-Model
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implements an in vitro understanding of the PK (bottom-up) 
with observed clinical data (top-down) [33–35]. Although 
this modeling strategy differs slightly from “traditional” 
PBPK model development, it provides the most mechanis-
tically accurate approach in the absence of a proper method 
to scale in vitro data for OAT transport to in vivo.

For uncertain parameters, numerical optimization was 
performed using the parameter identification tool in PK-Sim. 
A Monte Carlo method was used to search the parameter 
space for the optimal solution that minimized the sum of the 
squared error on the simulated vs observed drug concentra-
tions and fractions excreted to urine. Multiple optimization 
runs (6–10) were performed to confirm identifiability of a 
unique solution.

The models that were optimized using mean individu-
als were then expanded to simulate the pharmacokinetics 
in virtual populations for model verification. Datasets for 
model verification are presented in the ESM. One hundred 
individuals were generated for each virtual population. 
Patient demographics were set according to those reported 
in each observed study population being simulated. User-
defined variability was assigned to the renal transporter con-
centrations with a normal distribution and a coefficient of 
variation of 20% [7, 36]. Verification was assessed using the 
average fold error (AFE) (Eq. 2) and absolute average fold 
error (AAFE) (Eq. 3) for each simulation. Acceptance was 
confirmed if the AFE was < 30% (0.7–1.3) and the AAFE 
was ≤ 2. For data sets including individual patient samples, 
inter-individual variability in the population simulation was 
accepted if 85–95% of observed concentrations fell within 
the 90th prediction interval.

where  predictedi and  observedi correspond to predicted and 
observed plasma concentrations respectively.

2.3  PBPK Models for CKD

Final population models for healthy adults were carried for-
ward for evaluation in CKD with modifications to account 
for the systemic changes in whole-body anatomy and 
physiology that occur throughout the course of the disease 
such as GFR, kidney volume, renal perfusion, hematocrit, 
and plasma protein concentrations. The methodology and 
evaluation of this modeling strategy have been published 
previously [7]. Additionally, nonrenal clearance  (CLNR) 
was scaled for various stages of CKD to account for inhi-
bition or downregulation of liver enzymes due to chronic 
uremia throughout disease progression as outlined in the 

(2)AFE = 10
1

N

∑
i log

�
predictedi

observedi

�

,

(3)AAFE = 10

1

N

∑
i

����
log

�
predictedi

observedi

�����,

corresponding section [35]. Utilizing the CKD-PBPK mod-
eling approach, we produced several PBPK models across 
stages 3–5 of CKD to evaluate the proposed parameteriza-
tion for OAT activity in CKD.

Predictive accuracy for the extrapolation to CKD was 
assessed by a limit of a 1.5-fold error (0.67–1.5) when 
comparing simulated exposures to observed data from the 
literature. Exposure was quantified as the area under the con-
centration–curve extrapolated to infinity (AUC ∞). If AUC 
∞ was not reported within the study, AUC ∞ was calculated 
by noncompartmental analysis. Additionally, predicted vs 
observed half-lives were compared. The limit of a 1.5-fold 
error for each PK parameter was used as the threshold for 
acceptable performance when extrapolating to vulnerable 
and diverse populations based on previous criteria used in 
recent years [11, 37].

Additionally, model performance against the conventional 
AUC scaling method was also explored. Scaling AUC ∞ from 
healthy individuals was conducted using:

where AUC is the area under the concentration–time curve 
extrapolated to infinity for CKD and healthy individuals 
respectively, BW is body weight, GFR is glomerular filtra-
tion rate, and fe is the fraction excreted to urine unchanged 
after an intravenous dose. Within this assessment, patients 
undergoing dialysis were assumed to have a GFR of 5 mL/
min/1.73  m2.

2.4  OAT Parameterization

The utility of ƿ-aminohippuric acid (PAH) as a diagnostic 
indicator of renal plasma flow and tubular excretion was 
first discovered in the 1940s by Smith et al. [38]. Based on 
its physicochemical properties, PAH has since become rec-
ognized as a prototypical OAT substrate and has helped to 
define the OAT pathway of several drugs [39–42]. Numerous 
publications have since quantified the activity of OAT excre-
tion in various stages of CKD by comparing the renal extrac-
tion ratio of PAH (EPAH%) to eGFR [42–47]. Individual 
patient data was extracted, and several exploratory analyses 
were conducted to describe the relationship between EPAH 
and eGFR, including the logarithmic of EPAH, LASSO 
regression, and polynomial function. Ultimately, a Weibull 
function utilizing Poisson weighting and setting the inter-
cept equivalent to zero was used to convey this relationship. 
Weighting of observed EPAH values was conducted to char-
acterize the EPAH in patients with severe renal impairment. 
The resulting EPAH% vs eGFR relationship is presented in 
Fig. 1.

(4)

AUCCKD =
BWCKD

BWHealthy

⋅ AUCHealthy ÷

[

fe ⋅
GFRCKD

GFRHealthy

+ (1 − fe)

]

,
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The final function of EPAH (y) and eGFR (x) was given 
by (Eq. 5):

This parameterization describes how OAT medi-
ated secretory function declines through various stages of 
CKD due to a combination of transporter down-regulation 
and competitive OAT inhibition from uremic solutes [5, 8, 
9].

2.5  Non‑renal Clearance in CKD

Evolving data suggest that CKD reduces  CLNR through vari-
ous mechanisms [48–50]. Work conducted by Sayama et al. 
quantified the reduction in  CLNR for several metabolic path-
ways [35]. The mean relative percentage (RP%) of  CLNR was 
69% for moderate CKD (eGFR: 30–59 mL/min/1.73  m2) and 
64% for severe CKD (eGFR: 15–29 mL/min/1.73  m2) com-
pared to healthy individuals [35]. The mean RP was used 
to scale  CLNR in our PBPK simulations across the stages of 
CKD. It was assumed that the mean RP of  CLNR for stage 
5 CKD (GFR < 15 mL/min/1.73  m2) was consistent with 
severe CKD (RP = 64%).

2.6  Sensitivity Analysis

A local sensitivity analysis was performed to test the impor-
tance of OAT activity for DDI potential in healthy adults and 
each stage of CKD. Simulations were built for mean male 
individuals at stages 3, 4, and 5 (ESRD) and healthy condi-
tions. All virtual subjects received a standard therapeutic 

(5)EPAH(%) =

(

1 − e

(

−
(

eGFR

43.9

)0.9
))

× 100%.

dose of each drug (i.e., 400 mg intravenously for ciproflox-
acin, 40 mg intravenously for furosemide). Organic anion 
transporter activity in each scenario was varied by 10% and 
the relative changes in AUC ∞ were reported as sensitivity 
coefficients. The sensitivity coefficient (Sp) for the effect of 
the parameter (p) on the PK output (PK) was calculated as 
the average of:

Therefore, a sensitivity coefficient of 1 means that a 10% 
change in the parameter value caused a ± 10% change in the 
PK output, and a sensitivity coefficient of 0.1 means that a 
10% change in the parameter value caused a ± 1% change 
in the PK output.

3  Results

3.1  PBPK Models for Healthy Adults

Population PBPK models for four OAT substrate drugs 
were developed and verified to describe the mechanistic 
disposition in healthy adults with an explicit contribution 
of OAT characterized using DDI modeling with probenecid. 
Detailed reports of model development and verification of 
meropenem, acyclovir, and ciprofloxacin are shown in the 
ESM. Furosemide model development and verification was 
included from previous work by another group [15]. Figure 2 
shows the fitted concentration vs time profiles for the DDI 
with probenecid for each drug.

Active tubular secretion mediated by OAT transport 
contributes to a significant percentage of  renal clearance 
 (CLR) (60–98%) for each investigative drug. This PBPK-
DDI modeling strategy enabled us to identify a unique solu-
tion for this process. Upon model simulation, all individual 
and population model simulations fell within the predefined 
acceptance criteria for the model fit.

3.2  PBPK Models for CKD

Parameters for virtual individuals in the healthy populations 
were then modified to simulate the PK of OAT substrate 
drugs in various stages of CKD. Parameterization for CKD 
included a novel quantification of OAT activity, reduction in 
 CLNR, and foundational CKD physiological scaling [7]. To 
assess the accuracy of this approach and success of the OAT 
parameterization, predictions for exposure and half-life were 
compared to observed data from eight clinical trials across 
CKD stages 3–5 (Table 2).

Mean AUC ∞ was predicted within a 1.5-fold error across 
all observed data sets except for two involving patients with 

(6)Sp =
|
|
|
|

PK(p + 0.1 × p) − PK(p)

PK(p)

|
|
|
|
×
100%

10%
.

Fig. 1  Parameterization of organic anion transporter 1 and 3 function-
ality across varying stages of chronic kidney disease. Data investigat-
ing the relationship between the ƿ-aminohippuric acid extraction ratio 
(EPAH) and the estimated glomerular filtration rate (eGFR) were 
extracted from several studies (black dots) [42–47]. A Weibull func-
tion (blue line) was determined to be the best representation of the 
relationship between EPAH and eGFR
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ESRD undergoing intermittent hemodialysis (IHD) receiv-
ing meropenem (Figs. 3, 4, 5, 6). Within these data sets, 
predicted AUC ∞ was within a two-fold error of observed 
values. The meropenem-CKD model was able to accurately 
capture clearance processes in ESRD; however, it sig-
nificantly underpredicted maximum concentration (Cmax) 
[Fig. 6]. Of note, AUC ∞ predictions were suitable for CKD 
stages 3 and 4 within the same trials. Similarly, Cmax was 
underpredicted within our acyclovir-CKD model, which may 
have contributed to underpredictions in AUC ∞.

Of the remaining CKD-PBPK simulations, predicted 
AUC ∞ fell within a 1.5-fold error of observed values across 
all stages of CKD. Additionally, seven of the 15 predictive 
AUC ∞ values were within a more rigorous 1.25-fold error 
(Fig. 7a). Predicted elimination half-life within the CKD-
PBPK simulations fell within a 1.5-fold error for 11 of the 
15 simulations. Predictive accuracy for an elimination half-
life resulted in an equal number of over-predictions and 
under-predictions.

Overall, AUC ∞ tended to be modestly underpredicted in 
eight of the 15 simulations over the course of CKD progres-
sion. This trend was most notably witnessed with merope-
nem and acyclovir, both of which undergo large contribu-
tions of OAT-mediated clearance. This error is largely driven 
by an inability to accurately capture Cmax in these simu-
lations, but the contribution of reduced apical transporter 
activity is plausible.

The conventional scaling method for predicting AUC 
failed to meet the 1.5-fold criteria in seven of 12 empiri-
cal calculations (58%). Most notably, scaling predictions 
were unsuccessful in CKD stages 4 and 5. Comparisons of 
the conventional scaling method to observed values may be 
found in Fig. 7b.

Representative PK profiles with interindividual variabil-
ity may be found in Figs. 3, 4, 5, 6. Overall, 85% of the 
simulated mean drug concentrations for CKD stages 3–5 fell 
within 1.5-fold of the corresponding observed drug concen-
trations used for model verification. Including simulations 
with ESRD between dialysis sessions, approximately 80% 

Fig. 2  Simulated physiologically based pharmacokinetic-drug–drug 
interaction plasma concentration–time profiles after optimization 
compared to observed data for A furosemide, B ciprofloxacin, C acy-
clovir, and D meropenem. Observed data presented as mean (circles) 
with standard error of the mean (error bars) for each respective study 

[20, 21, 51, 52]. The blue line represents the same dose of investi-
gative drug administered after completion of probenecid dosing pro-
tocols. Details on dosing regimen and study populations are shown 
in each respective ESM file. IV intravenous, PO by mouth, sd single 
dose, sol solution
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of simulated mean drug concentrations met the acceptance 
criteria (Fig. 1 of the ESM).

3.3  Sensitivity Analysis

Local sensitivity analyses for the four investigative drugs 
reveal the importance of OAT activity related to exposure in 
both healthy individuals and those across the stages of CKD 

(Fig. 8). Organic anion transporter Km and Vmax appear to 
be less influential on AUC ∞ throughout CKD progression. 
Based upon this analysis, patients with CKD may be less 
vulnerable to OAT-mediated DDIs compared with healthy 
adults. A recent in vivo analysis determined that PAH clear-
ance was reduced by nearly 50% in subtotal nephrectomy 
rats compared with the healthy rat model in the presence 
of probenecid OAT-mediated inhibition [61]. Because of 

Table 2  Exposure predictions of drugs undergoing active tubular secretion via organic anion transporters in chronic kidney disease

Data presented as mean ± standard deviation (range)
Bolded region indicates failed predictions
AUC  area under the concentration–time curve, GFR glomerular filtration rate, h hours, IHD intermittent hemodialysis, IV intravenous, t½ half-
life
a AUC calculated until the last sampling time due to initiation of dialysis

Study Drug Dose (mg) GFR (mL/
min) [range]

Observed 
AUC (mg∙h/L)

Predicted 
AUC 
(mg• h/L)

Scaled AUC 
(mg •h/L)

Observed t½ 
(h)

Predicted t½ 
(h)

Stage 3
Drusano et al. 

[54]
Ciprofloxacin 200 mg IV 39.84 [13.33–

56.67]
12.36 12.36 10.98 7.7 ± 1.22 8.57

Shah et al. 
[55]

Ciprofloxacin 400 mg IV 
every 12 h

44.8 [31.3–
59.9]

21.5 23.22 11.59 5.72 9.77

Chimata et al. 
[53]

Meropenem 500 mg IV 34.13 
[32–37.3]

74.6 ± 29 88.26 Healthy com-
parator not 
available

3.36 ± 1.02 2.31

Christensson 
et al. [56]

Meropenem 500 mg IV 34 ± 11.8 89.8 ± 17.9 89.86 82.6 2.34 2.84

Leroy et al. 
[57]

Meropenem 500 mg IV 50.3 ± 16.7 
[30–80]

88 ± 33.9 66.35 65.81 1.93 ± 0.81 2.61

Stage 4
Gladziwa 

et al. [58]
Furosemide 120 mg IV 16.7 ± 5.5 

[7–27]
47.2 ± 15.6 60.05 Healthy com-

parator not 
available

4.6 ± 3 2.81

Christensson 
et al. [56]

Meropenem 500 mg IV 17 ± 8 156 ± 63.8 128.88 99.89 3.82 5.24

Stage 5
Drusano et al. 

[54]
Ciprofloxacin 200 mg IV IHD 15.06 20.35 17.56 8.55 ± 3.27 10.82

Shah et al. 
[55]

Ciprofloxacin 300 mg IV 
every 12 h

14.5 
[4.8–24.1]

30.1 25.86 19.18 8.33 11.75

Rane et al. 
[59]

Furosemide 80 mg IV 11 ± 1 27.79 39.84 26.89 2.6 2.66

Chimata et al 
.[53]

Meropenem 500 mg IV 12.08 
[4.3–21.5]

186.8 ± 68.5 157.25 Healthy com-
parator not 
available

5 ± 1.05 3.61

Christensson 
et al. [56]

Meropenem 500 mg IV IHD 393 ± 83.8 207.21 91.04 6.81 6

Leroy et al. 
[57]

Meropenem 500 mg IV 12.7 ± 6.6 
[2–30]

179 ± 64.1 136.38 110.34 5.22 ± 1.58 7.79

Leroy et al. 
[57]

Meropenem 500 mg IV IHD 360 ± 108 204.33 118.71 9.73 ± 3.03 9.15

Laskin et al. 
[60]

Acyclovir 2.5 mg/kg IV IHD 354.51a 
(µmol• h/L)

265.77a 
(µmol •h/L)

102.50 19.5 ± 5.9 11.4



1004 S. Dubinsky et al.

OAT transporter downregulation and/or inhibition from ure-
mic toxin accumulation, it is plausible that there are fewer 
available binding sites for inhibitors to occupy as CKD 
progresses. However, to our knowledge, there is no clinical 
data in humans to support this theory and further research 
is needed to investigate this hypothesis.

4  Discussion

In this work, we demonstrated that PBPK models for CKD 
populations that additionally incorporated a new parame-
terization for the impairment of OAT transporter secretory 

Fig. 3  Simulated chronic kidney disease-physiologically based phar-
macokinetic (CKD-PBPK) plasma concentration–time profiles com-
pared to observed data for CKD stage 3. Observed data presented as 
mean (circles) with standard error of the mean (error bars) for each 
respective study [53–57]. The red line represents the simulated mean 

concentration–time profile facilitated by the population CKD-PBPK 
models in PK-Sim, while the shaded region indicates the correspond-
ing standard deviation (SD). Details on the dosing regimen and study 
populations are shown in the ESM. IV intravenous, sd single dose

Fig. 4  Simulated chronic kidney disease-physiologically based phar-
macokinetic (CKD-PBPK) plasma concentration–time profiles com-
pared to observed data for CKD stage 4. Observed data presented as 
mean (circles) with standard error of the mean (error bars) for each 
respective study [56, 58]. The red line represents the simulated mean 

concentration–time profile facilitated by the population CKD-PBPK 
models in PK-Sim, while the shaded region indicates the correspond-
ing standard deviation (SD). Details on the dosing regimen and study 
populations are shown in the ESM. IV intravenous, sd single dose
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activity adequately described the pharmacokinetics of four 
renally cleared OAT substrates  (feurine > 0.5) with a high 
contribution of active tubular secretion (> 60% to  CLR) in 
patients across various stages of CKD but struggled to cap-
ture the pharmacokinetics in patients receiving IHD between 
dialysis sessions. Recent efforts have addressed the complex-
ity of renal handling of drugs within CKD by incorporating 
physiological changes, as well as the competitive inhibition 
of uremic toxins and downregulation of metabolic enzymes 
and transporters [11, 62–65]. The work conducted within 
this analysis builds upon this foundation and a previously 
validated CKD parameterization that has incorporated these 
physiological changes [7]. Successful predictions of expo-
sure for the investigative drugs from real-world clinical trials 
support the use of this PBPK modeling approach for OAT1/3 
substrates.

Estimations of renal drug clearance approximated 
through creatinine clearance (Cockcroft–Gault) are based 
on the “intact nephron hypothesis”. This theory suggests 
that the renal elimination processes, glomerular filtration, 
tubular secretion, and active reabsorption decline propor-
tionally with the progression of CKD [66–68]. In other 
words, the theory suggests that the decline in  CLR of a drug 

that undergoes active tubular secretion is similar to one that 
does not. A recent analysis by Chapron et al. challenged 
this hypothesis by demonstrating that the method of scal-
ing by GFR was unable to predict  CLR in CKD for half 
of the investigative drugs that were eliminated by tubular 
secretion [68], most notably as CKD progressed. Our results 
confirmed this approach as 58% of CKD simulations failed 
to meet successful predictions of AUC ∞ using the conven-
tional scaling method, a result that has been demonstrated 
previously [7]. The conventional scaling method provided 
reasonable predictions in the early stages of CKD; however, 
it failed to meet acceptance criteria in more advanced stages 
(stages 4 and 5). Such a discrepancy was most notably wit-
nessed with meropenem and acyclovir, two molecules with 
a large contribution of  CLR to total clearance (> 75%) and 
a large percentage of active tubular secretion accounting for 
 CLR (> 75%). Therefore, caution should be warranted when 
incorporating the conventional scaling method to predict PK 
parameters of molecules with such characteristics in patients 
with advanced CKD. The results of this analysis highlight 
that characterization of active tubular secretion by param-
eterizing the effects of functional changes on OAT within 

Fig. 5  Simulated chronic kidney disease-physiologically based phar-
macokinetic (CKD-PBPK) plasma concentration–time profiles com-
pared to observed data for CKD stage 5 without administration of 
intermittent hemodialysis. Observed data presented as mean (circles) 
with standard error of the mean (error bars) for each respective study 

[53, 54, 57, 58]. The red line represents the simulated mean concen-
tration–time profile facilitated by the population CKD-PBPK mod-
els in PK-Sim, while the shaded region indicates the corresponding 
standard deviation (SD). Details on the dosing regimen and study 
populations are shown in the ESM. IV intravenous, sd single dose
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CKD is of the upmost importance for accurately describing 
the PK within this population.

ƿ-Aminohippuric acid  CLR may be used as an estimator 
of renal plasma flow because of its high extraction ratio in 
a healthy kidney, ability for free filtration from plasma, low 
protein binding, and negligible tubular reabsorption [39, 
69–71]. In vitro, OAT1 has been identified as an efficient 
transporter for PAH [72–74]. Although, additional work has 
recorded limited and variable affinity of PAH for the OAT3 
transporter, it is generally assumed that PAH has a greater 
affinity for the OAT1 transporter [74, 75]. As such, utilizing 
PAH as a surrogate for OAT1/3-mediated renal secretion 
within our unique parameterization across the stages of CKD 
offers mechanistic and physiologic relevance. It should be 
noted, all data sets included within the OAT parameteriza-
tion determined EPAH at steady-state concentrations upon 
continuous infusion of PAH. This methodology ensures 
saturation of renal tubules and provides an accurate repre-
sentation of PAH  CLR [72, 76]. Through investigation of the 
relationship between EPAH and GFR, we determined that 
OAT-mediated excretion was reduced by 27–49%, 50–69%, 
and 70–96% across CKD stages 3, 4, and 5, respectively. 
Previous reports by Hsueh et al. from an analysis of 18 OAT 
substrates within CKD determined a median reduction of 
secretory clearance of 27% and 59% in moderate and severe 

stages of CKD [10]. Our results coincide with these reported 
values.

Conclusions in this analysis are in accordance with pre-
vious work suggesting that reductions in OAT clearance 
should occur in addition to impairment of GFR and  CLNR 
processes in PBPK models of severe CKD [11]. However, 
the work presented here offers several key differences. First, 
this analysis uniquely incorporated DDI-PBPK modeling 
using probenecid within our base model construction fol-
lowing a “middle-out” approach to address the knowledge 
gaps in OAT transporter expression in the kidneys of patients 
with CKD [4, 35, 62]. DDI-PBPK modeling has served as 
a valuable tool in drug development to provide mechanistic 
insight into clinically relevant DDIs [77–80]. Incorporation 
of probenecid DDI-PBPK model simulations enabled the 
identification of a unique solution for the contribution of 
OAT-mediated renal excretion in total CL for each com-
pound. Second, development of an OAT parametrization 
across stages of CKD through EPAH confirms that reducing 
 CLR in proportion to GFR is not sufficient to describe the PK 
of OAT substrates across all stages of CKD. Utilizing this 
approach increases the generalizability as the OAT-mediated 
renal excretion may be manipulated to further reflect the 
degree of renal impairment of the population of interest. 
Further research is essential to expand upon this analysis 

Fig. 6  Simulated chronic kidney disease-physiologically based 
pharmacokinetic plasma concentration–time profiles compared to 
observed data for patients with end-stage renal disease undergoing 
intermittent hemodialysis. Observed data presented as mean (circles) 
with standard error of the mean (error bars) for each respective study 
[54, 56, 57, 60]. The red line represents the simulated mean concen-

tration–time profile facilitated by the population chronic kidney dis-
ease-physiologically based pharmacokinetic models in PK-Sim, while 
the shaded region indicates the corresponding standard deviation 
(SD). Details on the dosing regimen and study populations are shown 
in the ESM. IV intravenous, sd single dose
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for alternative OAT substrates with varying contributions 
of tubular secretion on total clearance.

The chronic state of inflammation and uremia throughout 
CKD has been cited as a contributing factor for the inhi-
bition or downregulation of  CLNR processes within this 

population [63, 64, 81, 82]. Increasing efforts have sought 
to quantify the decreases in  CLNR throughout CKD progres-
sion; however, the degree of effect amongst pathways may 
be quite variable [35, 63, 64]. The four investigative drugs 
within this analysis undergo different mechanisms of  CLNR, 

Fig. 7  Predicted vs observed area under the concentration–time curve 
extrapolated to infinity (AUC ∞) of included simulations using chronic 
kidney disease-physiologically based pharmacokinetic simulations 
(A) in comparison to conventional scaling methods (B). The dashed 

line represents a 1.25-fold error, while the dotted line represents a 
1.5-fold error. AUC  area under the curve, ESRD end-stage renal dis-
ease
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however, all are predominantly renally cleared  (feurine > 0.5). 
As a result, the effects of reduced  CLNR on simulated AUC 
∞ appears to be minimal. Utilization of these scaling factors 
enabled accurate predictions of AUC ∞ with the investigative 
drugs across all stages of CKD; however, further analyses 
are required to determine the validity in drugs that undergo 
predominant  CLNR. Information on enzyme-specific path-
ways is preferred where applicable [63, 64].

The analysis is not without limitations. Using EPAH vs 
eGFR for OAT parameterization allowed us to successfully 
predict the decline in OAT-mediated secretion throughout 
CKD. However, as depicted in Fig. 1, there is a paucity of 
data investigating this relationship in severe CKD. This may 
have over-predicted the contribution of OAT secretion in 
stage 5 CKD for patients undergoing IHD between dialysis 
sessions and could explain the trend to underpredict AUC ∞ 
for meropenem and acyclovir. Future studies investigating 
EPAH in severe CKD may enhance the accuracy of model 
predictions.

Second, the four investigative drugs chosen within this 
analysis were all administered intravenously. While the find-
ings for renal OAT are generalizable, there are additional 
uncertain factors that may need to be accounted for when 
simulating the oral PK of an OAT substrate drug in CKD. 
Chronic uremia throughout CKD progression may disrupt 
gastrointestinal physiology, leading to reductions in gas-
tric emptying time and small and large intestinal transit 
times [83, 84]. Additionally, many OAT substrates such as 
cephalexin, methotrexate, ciprofloxacin, and rosuvastatin 
have been documented to also be substrates of the organic 

anion transporting polypeptide (OATP) family—transporters 
responsible for the absorption of relevant compounds from 
the intestinal lumen [23, 85]. Reductions in the uptake of 
OATP substrates into hepatocytes have been documented in 
CKD; however, the impact on oral bioavailability remains 
largely undefined [63, 86–88]. Future research is needed 
to accurately describe any potential PK changes of orally 
administered OAT/OATP substrates in patients with CKD.

Third, in the analyses including patients with ESRD 
undergoing IHD, there was a tendency to over-predict  CLR, 
resulting in an inability to meet acceptance criteria for two 
simulations (Fig. 6). It was assumed that apical transporter 
function on the renal tubule remains largely intact owing 
to the inability to identify the specific transporter for each 
molecule and limited data supporting the functionality 
across CKD [5]. However, several in vivo animal studies 
suggest that apical transporters may be susceptible to uremic 
toxin inhibition and/or down-regulation as CKD progresses 
[88–91]. Contributions of such physiologic changes cannot 
be discounted within this population and further work is 
required to provide a more accurate representation of the 
renal drug handling of OAT substrates in the most severe 
stages of CKD.

Previous work has identified genetic polymorphisms 
amongst differing ethnicities that may have the potential 
to affect OAT activity by reducing the capacity for tubular 
secretion [92–94]. However, the results of such polymor-
phisms appear to have a negligible effect on  CLR and tubular 
secretion in healthy individuals [95]. The observed clini-
cal PK studies in healthy patients and patients with CKD 
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to which PBPK models were constructed and validated did 
not report ethnicities of study participants. As a result, dif-
ferences in physiology and PK based on ethnicities were 
not considered in the model. Further research is needed to 
confirm any potential contribution of genetic polymorphisms 
of OAT activity in those with CKD.

Finally, challenges in model verification were limited 
because of the lack of available individual subject data 
within CKD studies. All but one study by Laskin et al. 
included mean subject PK data used for model compari-
son (Fig. 2 of the ESM) [60]. However, when comparing 
a range of exposures within individual-level data, the pre-
dicted mean exposure fell within the upper and lower limits 
(234–498 µmol• h/L). Future work including individual PK 
data will allow for further assessment of model accuracy. 
Additionally, the model may be refined upon availability of 
clinical data to expand with additional compounds, incor-
poration of OAT polymorphisms [96], or age differences to 
predict changes in PK for pediatric patients.

Dedicated PK studies in subjects with renal impairment 
offer many challenges because of the potential for toxic 
exposures and difficulties in recruitment. There is clear 
application for this work in drug development, assessing 
the PK of investigational drugs that are OAT substrates in 
patients with CKD ahead of clinical trials to assist with dose 
selection and clinical trial planning. When CKD effects on 
drug disposition are well characterized, CKD-PBPK models 
can be used to estimate DDIs in patients with CKD, or even 
estimate PK parameters across the disease spectrum in dif-
ferent ages, sexes, and body weights that were not tested. 
There is also potential to supplement the clinical data col-
lected from renal impairment trials so that the results are 
confirmatory, rather than exploratory. Fewer of these vulner-
able subjects will be required to be enrolled in the studies.

5  Conclusions

Use of PBPK modeling within organ impairment to inform 
dose selection has not been supported with an adequate 
level of confidence from regulatory agencies such as the 
US Food and Drug Administration and the European Medi-
cines Agency, especially in more advanced stages [49, 97]. 
This work builds more evidence toward this end. Utilizing a 
unique PBPK-DDI model development approach and param-
eterizing OAT-mediated excretion through EPAH, we were 
accurately able to predict exposures of four OAT substrates 
across the stages of CKD. However, the results should be 
interpreted with caution because of the limited number of 
drugs investigated, small sample sizes of included stud-
ies, and similar PK characteristics between molecules (i.e., 
OAT substrates with a high contribution of active tubular 
secretion).

Although further refinement and verification may be 
needed for oral OAT substrates, the proposed workflow 
provides a building block towards quantifying the effects 
of CKD disease progression on  CLR, and more specifically 
the contribution of OAT-mediated tubular secretion to the 
elimination of major substrate drugs. The work herein ade-
quately predicts the intravenous PK and renal handling of 
OAT substrates in patients with CKD but may under-predict 
concentrations in patients undergoing IHD between dialysis 
sessions. A quantitative understanding of the reduction in 
OAT1/3-mediated excretion of drugs in varying stages of 
renal impairment will contribute to better predictive accu-
racy for PBPK models in drug development, assisting with 
clinical trial planning and potentially sparing this population 
from unnecessary toxic exposures.
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