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Abstract
Background  Medication use is highly prevalent with advanced age, but clinical studies are rarely conducted in the elderly, 
leading to limited knowledge regarding age-related pharmacokinetic changes.
Objective  The objective of this study was to investigate which pharmacokinetic parameters determine drug exposure changes 
in the elderly by conducting virtual clinical trials for ten drugs (midazolam, metoprolol, lisinopril, amlodipine, rivaroxaban, 
repaglinide, atorvastatin, rosuvastatin, clarithromycin and rifampicin) using our physiologically based pharmacokinetic 
(PBPK) framework.
Methods  PBPK models for all ten drugs were developed in young adults (20–50 years) following the best practice approach, 
before predicting pharmacokinetics in the elderly (≥ 65 years) without any modification of drug parameters. A descriptive 
relationship between age and each investigated pharmacokinetic parameter (peak concentration [Cmax], time to Cmax [tmax], 
area under the curve [AUC], clearance, volume of distribution, elimination-half-life) was derived using the final PBPK 
models, and verified with independent clinically observed data from 52 drugs.
Results  The age-related changes in drug exposure were successfully simulated for all ten drugs. Pharmacokinetic parameters 
were predicted within 1.25-fold (70%), 1.5-fold (86%) and 2-fold (100%) of clinical data. AUC increased progressively by 
0.9% per year throughout adulthood from the age of 20 years, which was explained by decreased clearance, while Cmax, tmax 
and volume of distribution were not affected by human aging. Additional clinical data of 52 drugs were contained within the 
estimated variability of the established age-dependent correlations for each pharmacokinetic parameter.
Conclusion  The progressive decrease in hepatic and renal blood flow, as well as glomerular filtration, rate led to a reduced 
clearance driving exposure changes in the healthy elderly, independent of the drug.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​2-019-00822​-9) contains 
supplementary material, which is available to authorized users.
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1  Introduction

The number of people older than 65 years of age is predicted 
to double in the US and Europe by 2050 [1, 2]. The burden 
of age-related comorbidities, such as cardiovascular dis-
eases, hypertension, diabetes mellitus and renal impairment, 
increases in the elderly [3], resulting in twice as high medi-
cation use compared with middle-aged adults [4]. Despite 
the growing population of elderly individuals, clinical trials 
are generally not conducted in this special population, lead-
ing to a knowledge gap regarding the effect of adult age 
on drug pharmacokinetics [5]. However, advanced age is 
characterized by anatomical, physiological and biological 
changes [6], which have the potential to affect the absorp-
tion, distribution, metabolism and elimination processes of 
a drug, resulting in altered pharmacokinetics.
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Key Points 

Drug pharmacokinetics in the elderly (≥ 65 years) were 
accurately predicted by our developed physiologically 
based pharmacokinetic framework.

The model suggested an average 0.9% increase in the 
area under the curve per year from the age of 20 years, 
which was explained by a decrease in clearance rather 
than an effect of altered drug absorption and distribution, 
because the peak concentration (Cmax), time to Cmax, and 
volume of distribution were not affected by advanced 
age.

Sensitivity analysis and statistical analysis of clinical 
pharmacokinetic data collected from 52 additional drugs 
showed that the progressive decrease in hepatic and 
renal blood flow and glomerular filtration rate led to the 
reduced clearance, and thus drove drug exposure changes 
in the elderly, independent of the drug.

Age-dependent anatomical, physiological and biological 
changes can be incorporated into a physiologically based 
pharmacokinetic (PBPK) model, which is used to overcome 
sparse clinical data, offering the possibility to run virtual 
clinical trials for special populations such as the elderly [6, 
9, 10]. A PBPK model describes the absorption, distribution, 
metabolism and elimination of a drug in a physiologically 
relevant compartmental structure, where each compartment 
represents an organ or tissue. Dynamic movement of the 
drug between compartments is mediated by regional blood 
flows and described by ordinary differential equations. The 
PBPK model is informed by a combination of in vitro and 
in vivo data regarding drug characteristics that are separated 
from physiological data describing the population of inter-
est [11].

The first aim of the present study was to evaluate the 
prediction of drug disposition in the elderly, of our previ-
ously developed and parameterized PBPK framework [11]. 
The second aim was to determine pharmacokinetic param-
eters driving clinically observed drug exposure changes in 
the elderly through sensitivity analysis on age. We inves-
tigated which physiological and drug-specific parameters 
determined the degree of age-dependent changes in phar-
macokinetic parameters in the model, by sensitivity analysis 
and with clinically observed data for 52 drugs additionally 
collected. Lastly, we analyzed the age at which pharmacoki-
netic parameters changed more than expected with respect to 
interindividual variability in comparison with the youngest 
studied age group (20–24 years).

2 � Methods

2.1 � Physiologically Based Pharmacokinetic (PBPK) 
Model

A whole-body PBPK model constructed in Matlab® 2017a 
was used. The model structure and code have been published 
previously [11]. Virtual individuals aged 20–99 years were 
generated according to our published repository describing 
age-dependent changes in anatomical, physiological and bio-
logical system parameters. Variability was considered for all 
population parameters by using a normal distribution [6].

2.2 � Parameters of Simulated Drugs

A structured literature search was performed to identify 
drugs with available pharmacokinetic data in elderly indi-
viduals in order to clinically verify the PBPK model simu-
lations. Ten drugs were selected: midazolam, metoprolol, 
lisinopril, amlodipine, rivaroxaban, repaglinide, atorvas-
tatin, rosuvastatin, clarithromycin and rifampicin. Input 
drug parameters were obtained from verified, published 

The impact of advanced age on drug absorption processes 
remains inconclusive due to contradictory findings in the 
literature. For instance, gastric emptying time is reported 
to be slower, similar or faster in the elderly compared with 
young adults. The distribution of drugs is affected by a pro-
gressive increase in adipose tissue weight, while total body 
water declines in the elderly. Hepatic drug metabolism is 
potentially affected by age-related changes in liver weight 
and hepatic blood flow, which are decreased by 10% and 
18%, respectively, in 70-year-old individuals compared 
with 30-year-old individuals. Reports regarding hepatic 
enzyme activity in the elderly are sparse and contradic-
tory. The only well-studied hepatic enzyme is cytochrome 
P450 (CYP) 3A, which shows age-independent activity [6]. 
Polasek et al. investigated five different probe substrates for 
hepatic metabolism, namely caffeine (CYP1A2), warfarin 
(CYP2C9), phenytoin (CYP2C19), desipramine (CYP2D6) 
and midazolam (CYP3A), and found a clearance decrease 
of 30–40% in 70-year-old subjects compared with younger 
individuals, which was explained by the changes in liver 
volume and blood flow rather than enzyme activity [7]. Data 
regarding drug transporter activity are generally sparse, but 
in a compact meta-analysis, age was tested as a covariate 
for hepatic drug transporter activity and was found to be 
non-significant [8]. Lastly, the most significant change with 
adult aging is the reduction in renal drug clearance, namely 
because of a reduction in kidney weight caused by a loss of 
nephrons, decreased renal blood flow, and, consequently, 
a decline in the glomerular filtration rate during the entire 
adulthood [6].



385PBPK Modelling to Predict Drug Exposure in the Elderly

PBPK models [11–19], except for lisinopril. The lisinopril 
PBPK model was developed combining published in vitro 
data (bottom-up approach) with available clinical clearance 
data (top-down approach). PBPK models were modified to 
adequately predict the pharmacokinetics in young adults 
before scaling the PBPK models to the elderly. Simulations 
of metoprolol were carried out in extensive metabolizers of 
CYP2D6 only. Tissue distribution of the amlodipine model 
has been modified to be used in a whole-body PBPK model 
based on the observed volume of distribution [20]. Meta-
bolic CYP3A4 clearance of amlodipine was calculated from 
the fraction of CYP3A4-mediated clearance [21] and clini-
cally obtained intravenous clearance [20]. The in vitro ratio 
between CYP3A4- and CYP3A5-mediated clearance for 
amlodipine was implemented [22]. The rest of the missing, 
observed amlodipine clearance was assigned to the unspeci-
fied hepatic intrinsic clearance. Active hepatic drug trans-
port was included in the repaglinide PBPK model based on 
published in vitro data [19]. The rifampicin clearance after 
intravenous administration was retrogradely calculated to an 
unspecified intrinsic hepatic clearance under the considera-
tion of the renal clearance of rifampicin [23, 24]. The param-
eters of the ten simulated drugs can be found in electronic 
supplementary Table S-1.

2.3 � Workflow for Simulations

The strategy for building and verifying the PBPK mod-
els and subsequently extrapolating the pharmacokinetics 
to elderly adults is described in Fig. 1. All PBPK models 
were verified in young adults (20–50 years), following the 
best practice approach [25], before scaling to elderly adults 
(≥ 65 years), without any modification of drug parameters. 
Published clinical study results (electronic supplementary 
Table S-2) were used to assess the accuracy of the predic-
tions. Observed data were extracted from the literature 
using GetData Graph digitizer V. 2.26. Pharmacokinetic 
parameters were not given in six publications [26–31] and 
thus the area under the curve for one dosing interval (AUC​
t) was calculated using the linear trapezoidal method, the 
area under the curve extrapolated to infinity (AUC​∞) was 
extrapolated from the last three given concentration–time 
points, and the clearance was calculated as dose/AUC​∞. If 
more than one published study was available, the weighted 
mean and standard deviation of reported pharmacokinetic 
parameters were calculated. Observed data were published 
in different formats and were converted into arithmetic mean 
and standard deviation [32, 33].

The simulations were matched as closely as possible to 
the published observed studies in terms of demographics, 
dose, dosing regimen and number of subjects (n), with 10 
trials × n virtual subjects being simulated in each case. If 
more than one published study was available for a drug, 

the dosing regimen was the same, the study participants 
were summed up and the weighted mean of demographic 
parameters was used. No adjustment to the PBPK model 
was carried out when scaling drug pharmacokinetics to the 
elderly. Calculation of pharmacokinetic parameters in the 
PBPK framework used has been described previously [11].

2.4 � Verification of the PBPK Drug Models

Predicted concentration–time profiles were visually com-
pared with observed clinical data for young and elderly 
adults (electronic supplementary Table S-2). Furthermore, 
published pharmacokinetic parameters [peak concentration 
(Cmax), time to Cmax (tmax), AUC and elimination half-life 
(t½)] were compared against our simulation results. Simula-
tions were defined as being successful in young adults if 
the predicted pharmacokinetic parameters were within the 
twofold interval of the observed data.

2.5 � Extrapolation to Aged Individuals

The final PBPK models were utilized to predict age-related 
changes in pharmacokinetic parameters from 20 to 99 years 

Fig. 1   Workflow of the present study. DDI drug–drug interaction, 
DMPK drug metabolism and pharmacokinetics, fm fraction metabo-
lized
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in 500 virtual individuals split into ten different trials 
(proportion of women: 0.5) in 5-year steps. The analyzed 
pharmacokinetic parameters (Cmax, tmax, AUC, clearance, 
apparent volume of distribution and t½) were normalized 
to the youngest investigated age group (20–24 years). We 
examined when age-related differences of investigated phar-
macokinetic parameters changed more than expected from 
interindividual variability defined as the 1.25-fold interval 
(bioequivalence criterion). Additionally, the normalized 
pharmacokinetic parameters were fitted to descriptive lin-
ear, exponential and monotonic functions containing age as 
an independent variable. The corrected Akaike’s informa-
tion criterion was used to select the best-performing func-
tion among those tested, which, in contrast to the coefficient 
of determination, exhibits no bias to higher parameterized 
models. The analysis was performed for men, women and all 
virtual subjects, to investigate whether sex has an impact on 
age-related changes in pharmacokinetic parameters.

2.6 � Sensitivity Analysis

Sensitivity analysis was performed to investigate which 
population- and drug-specific parameters drive the age-
related pharmacokinetic parameter changes in the used 
PBPK model. A fictive drug was generated, informed by the 
median input parameters of the ten investigated drugs, and 
it was ensured that age-related pharmacokinetic changes fell 
within the average predicted rate (data not shown). Sensitiv-
ity analysis was run in a single male individual representa-
tive of the entire population at ages 20–99 years, in 5-year 
steps, looking at the:

(a)	 octanol-water partition coefficient (logP) between − 5 
and + 5, and its impact on age-related changes in the 
apparent volume of distribution;

(b)	 fraction unbound in plasma (fup) between 0.01 and 1, 
and its impact on age-related changes in clearance;

(c)	 hepatic blood flow between 8 and 30% of cardiac out-
put, and its impact on age-related changes in clearance 
of a fictive drug being exclusively cleared hepatically;

(d)	 renal blood flow between 5 and 25% of cardiac output, 
and its impact on age-related changes in clearance of a 
fictive drug being exclusively cleared renally;

(e)	 glomerular filtration rate between 60 and 150 mL/min, 
and its impact on age-related changes in clearance of a 
fictive drug being exclusively cleared renally.

Additionally, the total clearance of the fictive drug was 
either assigned completely to CYP3A4, CYP2D6, CYP2C9, 
CYP1A2, CYP2C8, UGT1A1, to an unspecified hepatic 
intrinsic clearance, or to the renal clearance to investigate 
the impact of different clearance pathways on the age-related 
changes in clearance.

2.7 � Verification of the Extrapolation to Aged 
Individuals

To verify the derived correlation between age and the inves-
tigated pharmacokinetic parameters, a literature search was 
performed using the MEDLINE database to screen for clini-
cal studies comparing the pharmacokinetics in young and 
elderly individuals. Keywords used were ‘pharmacokinetic’ 
plus ‘aging’, ‘young vs. elderly’ or ‘young vs. geriatric’. 
Inclusion criteria were a direct comparison of the pharma-
cokinetics between young adults with a mean age ≤ 35 years 
and adults aged ≥ 40 years. The age bands were chosen to 
allow inclusion of middle-aged adults. The subject should 
apparently be healthy, with no disease conditions or medi-
cation use that could possibly alter the pharmacokinetics of 
the drug of interest (the included drugs and references can 
be found in electronic supplementary Table S-3). Included 
pharmacokinetic parameters were normalized to young 
adults and the observed data were visually compared against 
the prediction of the derived age-dependent functions.

To check the performed sensitivity analysis against clini-
cally observed data, logP, fup and the main metabolizing 
enzyme were collected for each of the investigated drugs in 
the additional dataset (electronic supplementary Table S-3). 
Physiological parameters, such as hepatic and renal blood 
flow and glomerular filtration rate, important in determining 
drug clearance, were not usually measured in the published 
clinical studies and were thus calculated assuming random 
variability to adequately describe the general aging popula-
tion [6]. Between-group comparisons of the main route of 
elimination (hepatic vs. renal) and route of administration 
(intravenous vs. oral) were performed using the Wilcoxon 
test after checking normal distribution, by the Shapiro–Wilk 
test. Analysis of variance was performed for the impact of 
the main metabolizing enzyme on age-related changes in 
clearance. Pearson’s correlation was performed for continu-
ous variables (i.e. logP, fup, age, hepatic and renal blood 
flow, glomerular filtration rate).

3 � Results

3.1 � Predicting Drug Pharmacokinetics in the Elderly

PBPK models for all drugs were developed and adjusted in 
young adults (20–50 years) until simulations captured the 
clinically observed concentrations (the clinical studies used 
are listed in electronic supplementary Table S-2) visually 
and the observed pharmacokinetic parameters were pre-
dicted within twofold. Afterwards, drug pharmacokinetics 
were simulated in elderly adults aged ≥ 65 years, without 
any modification of drug parameters, and the predictions 
were compared with clinically observed data (Table 1). Ten 
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drugs commonly used in the elderly and for which clinical 
pharmacokinetic data have been published in study partici-
pants older than 65 years, were investigated. The enzymes 
and transporters involved in the disposition of the ten inves-
tigated drugs, as well as references to clinical studies used 
to verify the simulations, can be found in electronic supple-
mentary Tables S-1 and S-2.

3.1.1 � Midazolam

The benzodiazepine midazolam is predominantly metabo-
lized by CYP3A (95.2%) and, to a lesser extent, by UGT1A1 
(4.7%). The remaining 0.1% of midazolam is excreted via 
glomerular filtration [18]. Clinically observed data of a 
single oral dose of midazolam (4 mg in young adults and 
3–4 mg in the elderly) were contained in the 95% predic-
tion interval for the PBPK simulations in both age groups 
(Fig. 2a, b). Pharmacokinetic parameters were normalized to 
4 mg for comparison between both age groups. The predicted 
AUC was in close agreement with the observed clinical data 
in young (44.1 ± 23.2 ng*h/mL vs. 50.9 ± 19.1 ng*h/mL) and 
elderly adults (42.9 ± 17.2 ng*h/mL vs. 54.8 ± 22.5 ng*h/
mL), including the observed variability [34, 35]. The ratio 
of elderly/young for Cmax and tmax was predicted to be within 
the 1.25-fold interval (predicted:observed ratio of 0.98 and 
0.87, respectively), while the t½ of midazolam was overpre-
dicted in both age groups (predicted:observed ratio of 1.30 
and 1.89) [34].

3.1.2 � Metoprolol

Metoprolol is predominantly metabolized by CYP2D6 
(79.2%). Other routes of metoprolol elimination involve 
CYP3A (13.7%) and renal clearance (7.1%) [13]. The 
β-blocker metoprolol was studied as a single oral dose of 
100 mg. The variability of metoprolol was covered by the 
PBPK model in young and elderly individuals (Fig. 2c, d). 
Cmax, AUC and t½ were accurately scaled to elderly individu-
als by the PBPK model (predicted:observed ratio, for the 
ratio of elderly/young, of 1.10, 1.06 and 0.97, respectively). 
The tmax of metoprolol was overpredicted in the elderly by 
twofold as the model suggested only a slight increase in the 
elderly compared with young adults, whereas tmax was half 
in the observed study [36].

3.1.3 � Lisinopril

The angiotensin-converting enzyme (ACE) inhibitor lisino-
pril is filtered by the glomerulus and is not bound to any 
plasma-binding protein [37]. The predictions of a single oral 
dose of lisinopril (20 mg) were in close agreement to clini-
cally observed data in young and elderly adults (Fig. 2e, f). 
The Cmax of lisinopril was well-predicted in young adults 

(predicted:observed ratio of 0.95), but Cmax was predicted 
to increase in the elderly by 9% and was increased in the 
clinical study by 51% [27, 28]. The ratio of elderly/young 
for tmax and AUC was accurately predicted by the model 
(predicted:observed ratio of 1.10 and 0.95, respectively).

3.1.4 � Amlodipine

Amlodipine is metabolized by CYP3A (49.4%), an unspeci-
fied enzymatic pathway (4.0%), and eliminated unchanged 
by glomerular filtration (6.1%). Additionally, biliary clear-
ance (40.5%) was implemented in the model, representing 
clearance of amlodipine metabolites [14]. The observed 
elimination phase of amlodipine (2.5 mg once daily) was 
well captured by the PBPK model for young and elderly 
individuals, including variability (Fig. 3a, b). Cmax was well 
predicted in both age groups (predicted:observed ratio of 
0.98 and 0.92), but tmax was reached too early in the simula-
tion (predicted:observed ratio of 0.5 in both age groups). 
However, the age-related increase in tmax of 14% observed 
in the clinical study in elderly compared with young study 
participants [38] was correctly captured by the model 
(predicted:observed ratio of 1.0). Simulated AUC and t½ 
were both in close agreement with the observed clinical data 
(predicted:observed ratio of 1.06 and 1.25 in the young, and 
1.01 and 1.14 in the elderly, respectively).

3.1.5 � Rivaroxaban

Rivaroxaban is metabolized by CYP3A4 (20.0%), CYP2J2 
(15.7%), an unspecified enzymatic pathway (18.3%), and 
is cleared unchanged by the kidney (46.0%) [11]. A 10 mg 
single oral dose of the anticoagulant rivaroxaban was stud-
ied. The observed terminal elimination phase of rivaroxaban 
was contained within the 95% confidence interval (CI) of 
the PBPK model simulations for young and elderly adults 
(Fig. 3c, d), as were the observed ratios of Cmax, AUC and 
t½ for elderly/young adults (predicted:observed ratio of 0.89, 
0.84, and 0.98, respectively).

3.1.6 � Repaglinide

Repaglinide is mainly metabolized by CYP2C8 (75.5%) and, 
to a minor extent, by CYP3A4 (24.5%) [39]. The uptake 
of repaglinide into hepatocytes is mediated by OATP1B1 
[19]. A 2 mg single oral dose of the antidiabetic drug repa-
glinide was simulated. The mean prediction of repaglinide 
was close to the mean observed, but the observed variability 
of repaglinide pharmacokinetics was not completely cap-
tured by the model (Fig. 4a, b). Cmax, tmax and AUC were 
predicted with good accuracy in young (predicted:observed 
ratio of 0.84. 0.86 and 1.18, respectively) and elderly 
adults (predicted:observed ratio of 0.80, 1.00 and 1.06, 
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Table 1   Observed versus predicted pharmacokinetic parameters

Young adults Elderly adults Ratio elderly/young

Observed Predicted Observed Predicted Observed Predicted

Mean SD Mean SD Mean SD Mean SD

Midazolam
 Cmax (ng/mL) 16.2 7.7 15.9 6.4 15.3 7.3 14.8 6.3 0.94 0.93
 tmax (h) 0.7 0.2 0.5 0.1 0.8 0.6 0.5 0.2 1.10 0.96
 AUC (ng*h/mL) 44.1 23.2 50.9 19.1 42.9 17.2 54.8 22.5 0.97 1.08
 t½ (h) 3.4 1.6 4.4 1.4 3.2 2.2 6.1 2.0 0.94 1.37

Metoprolol
 Cmax (ng/mL) 115 24 124 69 106 24 126 79 0.92 1.02
 tmax (h) 2.4 0.4 2.3 0.4 1.2 0.1 2.3 0.4 0.50 1.00
 AUC (ng*h/mL) 1048 196 878 559 1021 105 910 754 0.97 1.04
 t½ (h) 9.9 0.3 8.8 2.9 9.6 0.4 8.3 2.1 0.97 0.94

Lisinopril
 Cmax (ng/mL) 87.4 83.3 23.3 132.1 90.4 34.9 1.51 1.09
 tmax (h) 7.0 6.2 0.4 7.3 7.1 0.6 1.04 1.15
 AUC (ng*h/mL) 1399 1339 359 1736 1577 566 1.24 1.18
 t½ (h) 28.4 17.0 2.4 – 23.2 5.0 1.36

Amlodipine
 Cmax (ng/mL) 4.2 1.1 4.1 1.0 5.8 1.7 5.3 1.2 1.38 1.30
 tmax (h) 7.0 2.0 3.5 0.5 8.0 2.0 4.0 0.6 1.14 1.14
 AUC (ng*h/mL) 81 22 86 22 112 40 113 26 1.38 1.31
 t½ (h) 53 14 66 6 69 20 79 6 1.30 1.19

Rivaroxaban
 Cmax (ng/mL) 190 54 191 33 237 50 213 40 1.25 1.12
 tmax (h) 2.3 0.6 1.2 0.2 2.6 0.1 1.3 0.2 1.12 1.12
 AUC (ng*h/mL) 1245 417 1262 348 1890 432 1604 347 1.52 1.27
 t½ (h) 9.0 6.4 10.5 2.9 11.6 3.7 13.2 2.8 1.29 1.26

Repaglinide
 Cmax (ng/mL) 38.0 20.7 31.9 8.0 47.5 29.3 38.2 8.9 1.25 1.20
 tmax (h) 0.7 0.4 0.6 0.1 0.7 0.2 0.7 0.1 1.00 1.17
 AUC (ng*h/mL) 43.9 36.7 51.7 19.7 78.7 48.7 83.5 23.4 1.79 1.62
 t½ (h) 1.3 0.3 2.3 0.6 1.9 0.4 3.0 0.6 1.46 1.30

Atorvastatin
 Cmax (ng/mL) 14.8 7.6 16.2 8.0 18.1 15.2 8.9 1.22 0.94
 tmax (h) 1.0 0.3 1.4 0.4 1.8 1.5 0.5 1.80 1.07
 AUC (ng*h/mL) 77.9 30.9 86.3 50.3 107.8 114.1 68.7 1.38 1.32
 t½ (h) 9.2 3.6 13.1 3.7 18.8 16.1 4.5 2.04 1.23

Rosuvastatin
 Cmax (ng/mL) 20.9 10.6 16.2 5.7 19.9 7.4 14.8 5.0 0.95 0.91
 tmax (h) 5.0 1.6 2.5 0.5 4.0 1.2 3.0 0.7 0.80 1.20
 AUC (ng*h/mL) 188 78 188 59 194 28 233 92 1.03 1.24
 t½ (h) 18.6 4.8 14.8 4.9 24.4 12.5 16.8 6.4 1.31 1.14

Clarithromycin
 Cmax (ng/mL) 2410 670 2570 497 3217 927 3672 764 1.33 1.43
 tmax (h) 2.1 2.3 3.1 2.5 1.45 1.07
 AUC (ng*h/mL) 18,870 5550 20,227 4116 28,840 9549 29,940 5260 1.53 1.48
 t½ (h) 11.7 3.4 13.8 2.2 21.3 8.0 17.7 2.9 1.82 1.28

Rifampicin
 Cmax (ng/mL) 5570 2200 7841 2230 7300 2300 8310 1977 1.31 1.06
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respectively). t½ was overpredicted in both age groups 
(predicted:observed ratio of 1.77 and 1.58), but the pre-
dicted ratio of elderly/young was in agreement with clini-
cally observed data (predicted:observed ratio of 0.89) [40].

3.1.7 � Atorvastatin

Atorvastatin is mainly metabolized by CYP3A (88.9%). 
Other minor excretion routes for atorvastatin are CYP2C8 
(0.2%), UGT1A1 and 1A3 (both 4.9%), and renal elimina-
tion (1.1%). Atorvastatin uptake into hepatocytes is medi-
ated by OATP1B1 [16]. The concentration–time profile of 
atorvastatin (40 mg single dose) was in good agreement with 
the observed data of young volunteers, also capturing the 
variability adequately (Fig. 4c). In the elderly, only one clini-
cal pharmacokinetic study was identified, and the terminal 
elimination phase was underpredicted in adults aged older 
than 65 years (Fig. 4d). Cmax was shown to increase by 22% 
in the clinical study [41], but was predicted to be 6% lower 
by the PBPK model. The AUC was accurately predicted in 
young and elderly adults (predicted:observed ratio of 1.11 
and 1.06). t½ was overpredicted by 42% in the young adults 
(observed 9.2 ± 3.6 h vs. predicted 13.1 ± 3.7 h), but was 
predicted adequately by the PBPK model in the elderly 
(predicted:observed ratio of 0.86).

3.1.8 � Rosuvastatin

The uptake of rosuvastatin into hepatocytes is mediated by 
different uptake transporters. Rosuvastatin is cleared via 
enzymatic metabolism (1.8%), biliary clearance (74.6%) and 
renal clearance (23.6%) [17]. A single oral dose of rosu-
vastatin (40 mg) was captured by the model (Fig. 4e, f). 
The Cmax of rosuvastatin was underpredicted in young and 
elderly adults (predicted:observed ratio of 0.78 and 0.74), 
but the decrease in Cmax with age was accurately predicted 
for rosuvastatin (predicted:observed ratio, for the ratio of 
elderly/young, of 0.96). The predicted increase in AUC and 
t½ with adult age was in accordance with the observed clini-
cal data (predicted:observed ratio of 1.20 and 0.87).

3.1.9 � Clarithromycin

The antibiotic clarithromycin is mainly metabolized in the 
liver (75.6%), predominately by CYP3A and, to a lesser 
extent, the kidney (24.4%) [42]. Clinically observed data 
of oral clarithromycin 500 mg twice daily were contained 
in the 95% prediction interval for the PBPK simulations of 
young and elderly adults (Fig. 5a, b). All pharmacokinetic 
parameters were predicted within 1.25-fold of clinically 
observed data.

3.1.10 � Rifampicin

Rifampicin, a potent inducer of CYP3A, is mainly metabo-
lized in the liver (92.6%) and only a small fraction is excreted 
by the kidney (7.4%) [43]. Predictions of rifampicin 300 mg 
twice daily were comparable with clinically observed data 
for young and elderly individuals (Fig. 5c, d). The AUC 
was accurately predicted in young (21,428 ± 7648 ng*h/
mL vs. 23,608 ± 15,742  ng*h/mL) and elderly adults 
(37,342 ± 16,485 ng*h/mL vs. 36,793 ± 20,424 ng*h/mL). 
The predicted increase in Cmax, tmax and t½ was in accordance 
with clinically observed data (predicted:observed ratio of 
0.81, 0.73 and 0.87, respectively).

3.2 � Pharmacokinetic Parameters Driving 
Age‑Related Changes in Drug Exposure

After the successful prediction of drug pharmacokinetics 
in adults older than 65 years of age, the developed PBPK 
models of all ten drugs have been used to simulate Cmax, tmax, 
AUC, clearance, apparent volume of distribution and t½ for 
individuals aged 20–99 years. The impact of adult age on 
Cmax was not consistent for the different drugs investigated 
(Fig. 6). The predicted Cmax of atorvastatin declined with 
age by 0.42%, whereas the Cmax of amlodipine and clarithro-
mycin increased by 1.1% per year. The Cmax of midazolam, 
metoprolol and rosuvastatin did not change with advanced 
age. tmax showed a tendency to increase with age, but was 
only outside the bioequivalence criterion for lisinopril and 
rosuvastatin, with a maximum change of 43%. The predicted 

Table 1   (continued)

Young adults Elderly adults Ratio elderly/young

Observed Predicted Observed Predicted Observed Predicted

Mean SD Mean SD Mean SD Mean SD

 tmax (h) 1.0 1.4 0.3 1.5 1.1 1.5 0.3 1.46 1.07
 AUC (ng*h/mL) 21,428 7648 23,608 15,742 37,342 16,485 36,793 20,424 1.74 1.56
 t½ (h) 4.9 1.7 4.3 1.5 7.9 3.5 6.0 2.0 1.62 1.40

AUC​ area under the curve, Cmax maximal concentration, SD standard deviation, tmax time to Cmax, t½ elimination half-life
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Fig. 2   Predicted versus observed concentration–time profiles for 
midazolam (a young, and b elderly), metoprolol (c young, and d 
elderly), and lisinopril (e young, and f elderly). The red markers show 
the observed clinical data (mean ± SD), and the solid lines, dashed 
line, and shaded area represent the mean of each virtual trial, the 

mean, and the 95% confidence interval, respectively, of all virtual 
individuals. Green and blue show simulations in young and elderly 
adults, respectively. Used clinical studies for model verification can 
be found in electronic supplementary Table S-2. SD standard devia-
tion
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AUC showed a linear increase of 0.9% per year from the age 
of 20 years. Atorvastatin showed no changes in AUC with 
age, whereas repaglinide and lisinopril showed the high-
est change, with up to a 2.5-fold difference compared with 
young adults. Clearance decreased with age, with a more 
than a 1.25-fold change at the age of 55 years. Atorvastatin 
showed the least change with age (0.06% per year), while 
lisinopril showed the highest change, with a 0.84% decrease 
in drug clearance per year, matching the decline in the glo-
merular filtration rate. The apparent volume of distribution 
was independent of adult age for all investigated drugs. t½ 
increased by an average of 0.8% per year. The lowest and 
highest age-related change in t½ was estimated for clarithro-
mycin (0.32% per year) and lisinopril (1.4% per year). The 

age-dependent changes for all investigated pharmacokinetic 
parameters were independent of sex.

Sensitivity analysis demonstrated that predicted age-
related changes in the apparent volume of distribution and 
drug clearance did not depend on the investigated drug char-
acteristics (logP, fup, route of elimination), but did depend 
on physiological changes in hepatic and renal blood flow and 
glomerular filtration rate (Fig. 7).

If changes in pharmacokinetics with advanced age depend 
only on age-related physiological alterations, as determined 
by the conducted sensitivity analysis, our derived correla-
tions between altered pharmacokinetics and age (Fig. 6) 
should hold true for any drug. In order to verify this hypoth-
esis, a literature search was conducted to seek studies having 

Fig. 3   Predicted versus observed concentration–time profiles for 
amlodipine (a young, and b elderly) and rivaroxaban (c young, 
and d elderly). The red markers show the observed clinical data 
(mean ± SD), and the solid lines, dashed line, and shaded area repre-
sent the mean of each virtual trial, the mean, and the 95% confidence 

interval, respectively, of all virtual individuals. Green and blue show 
simulations in young and elderly adults, respectively. Used clinical 
studies for model verification can be found in electronic supplemen-
tary Table S-2. SD standard deviation
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Fig. 4   Predicted versus observed concentration–time profiles for 
repaglinide (a young, and b elderly), atorvastatin (c young, and d 
elderly), and rosuvastatin (e young, and f elderly). The red markers 
show the observed clinical data (mean ± SD), and the solid lines, 
dashed line, and green-shaded area represent the mean of each vir-

tual trial, the mean, and the 95% confidence interval, respectively, of 
all virtual individuals. Green and blue show simulations in young and 
elderly adults, respectively. Used clinical studies for model verifica-
tion can be found in electronic supplementary Table S-2. SD standard 
deviation
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a direct pharmacokinetic comparison between young and 
elderly adults. Clinically observed data for 52 additional 
drugs (electronic supplementary Table S-3) were gathered. 
The observed age-dependent pharmacokinetic alterations of 
this additional dataset could be appropriately described by 
our derived relationship (Fig. 8). Variability was underes-
timated for Cmax and tmax, but clinically observed data for 
the apparent volume of distribution, AUC, clearance and 
t½ were mostly contained within the estimated variability 
of derived age-related changes. There were no significant 
differences between the main route of elimination (hepatic 
vs. renal) and route of administration (intravenous vs. oral) 
for any of the investigated pharmacokinetic parameters. Age 
was significantly correlated for alterations in AUC, clear-
ance and volume of distribution, but not for Cmax, tmax and 

t½ (Table 2). Surprisingly, there was no correlation between 
the lipophilicity of a drug and the clinically observed age-
related changes in the volume of distribution (Figs. 7, 9). 
Age-related changes in drug clearance were not impacted by 
the extent of protein binding (Table 2) or the main enzyme 
responsible for drug metabolism (p value 0.31). In contrast, 
there was a linear correlation between hepatic blood flow 
and the clearance of mainly hepatically cleared drugs (cor-
relation coefficient 0.27, 95% CI 0.05–0.48, p = 0.02), as 
well as a correlation between renal blood flow (correlation 
coefficient 0.60, 95% CI 0.30–0.79, p = 0.006) and glo-
merular filtration rate (correlation coefficient 0.65, 95% CI 
0.38–0.82, p = 0.001) and the clearance of mainly renally 
cleared drugs (Fig. 9).

Fig. 5   Predicted versus observed concentration–time profiles for 
clarithromycin (a young, and b elderly) and rifampicin (c young, 
and d elderly). The red markers show the observed clinical data 
(mean ± SD), and the solid lines, dashed line, and shaded area repre-
sent the mean of each virtual trial, the mean, and the 95% confidence 

interval, respectively, of all virtual individuals. Green and blue show 
simulations in young and elderly adults, respectively. Used clinical 
studies for model verification can be found in electronic supplemen-
tary Table S-2. SD standard deviation
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4 � Discussion

The elderly population is usually excluded from clinical 
trials, resulting in a knowledge gap regarding the effect of 
adult age on drug pharmacokinetics. In this study, the phar-
macokinetics of ten drugs that are metabolized and excreted 

through different pathways were successfully predicted in 
the elderly using a whole-body PBPK model demonstrating 
the predictive power of the PBPK approach to investigate 
and predict drug disposition in special populations. The 
conducted virtual trials across adulthood elucidated that an 
increase in AUC of 0.9% per year from the age of 20 years 

Fig. 6   Pharmacokinetic parameters normalized to the youngest 
investigated age group (20–24  years). Circles, triangles, diamonds, 
squares, plus symbol, cross symbol, left-, right-, and downward-
pointing triangles, and dots represent midazolam, metoprolol, lisino-
pril, amlodipine, rivaroxaban, repaglinide, atorvastatin, rosuvastatin, 
clarithromycin, and rifampicin, respectively. Blue and red markers 
show data for men and women, respectively. The solid line and grey-

shaded area display the fitted mean relationship with estimated vari-
ability between age and the pharmacokinetic parameter of interest. 
The grey dashed lines represent the 1.25-fold interval (bioequivalence 
criterion). AUC​ area under the curve, Cmax peak concentration, CLF 
clearance, tmax time to Cmax, t½ elimination half-life, VdF apparent 
volume of distribution
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is mainly determined by decreased drug clearance, which 
itself is caused by a progressive decrease in hepatic and 
renal blood flow, as well as glomerular filtration rate. Those 
physiological changes drive age-dependent drug exposure 
changes in the elderly, independent of the drug, as shown by 
sensitivity analysis and clinically observed data of 52 drugs 
additionally collected.

Predictions from our developed PBPK models for all 
investigated drugs compared well with observed clinical 
data based on visual inspection. In all cases, clinical data in 
the elderly were quite sparse. The predicted decline in mida-
zolam clearance with age (i.e. − 21% by the age of 85 years, 
when clearance is corrected by body weight) is in agreement 
with the results reported by Polasek et al. [7], who investi-
gated the influence of adult age on drugs being metabolized 
by a dominant hepatic CYP enzyme.

The age-dependent pharmacokinetics of metoprolol have 
previously been investigated in three different studies, with 
contradictory findings. Kendall et al. found a decline in 
clearance of 60% [26], which could be explained through 
the age-dependent changes in liver weight and hepatic blood 
flow [6], but two other studies reported a higher clearance 

in the elderly compared with young study participants 
[36, 44]. Metoprolol is mainly metabolized by CYP2D6, 
an enzyme with known genotypes, leading to distinct drug 
metabolizing phenotypes, which could explain the observed 
variability [13]. It would be of interest to conduct a clinical 
pharmacokinetic study for metoprolol in the elderly, using 
CYP2D6 genotyping, to adequately analyze the impact of 
age on metoprolol clearance.

We found lisinopril had the highest age-dependent impact 
on drug clearance, due to the pronounced age-dependent 
decline in the glomerular filtration rate [6]. Tubular secretion 
was not modelled, and it is worthwhile mentioning that tubu-
lar secretion cannot be excluded for lisinopril, although its 
renal clearance matches the glomerular filtration rate [45]. 
The rate of absorption was predicted too rapidly for amlodi-
pine and rivaroxaban; however, the observed Cmax were well 
predicted and the observed terminal elimination phases were 
contained in the 95% prediction interval of the PBPK model 
simulations for both drugs. The reason for the slower absorp-
tion rate observed in clinical studies could be the formula-
tion, and more sophisticated absorption models [46] might 
improve the prediction of tmax. Nevertheless, the tmax ratio 

Fig. 7   Results of the conducted sensitivity analysis for drug (a–c) and 
physiological (d–f) parameters. CLint,hep intrinsic, hepatic clearance, 
CLF clearance, fup fraction unbound in plasma, GFR glomerular fil-

tration rate, logP octanol-water partition coefficient, QKI renal blood 
flow, QLI hepatic blood flow, VdF apparent volume of distribution
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for the elderly/young was exactly predicted by the PBPK 
model (predicted:observed ratio of 1.0 for both drugs) and 
was thus judged to be sufficient for age-dependent analysis. 
Across the ten drugs studied, the drug clearance of atorv-
astatin was least impacted by age, which is likely explained 
by the fact that metabolism in the intestine is least impacted 

by adult age and extensive intestinal metabolism is a key 
characteristic of atorvastatin [47].

Overall, the pharmacokinetics of the ten drugs selected 
for model qualification were adequately predicted in the 
elderly, confirming the predictive power of the PBPK 
approach in special populations, which was previously 

Fig. 8   Verification of derived pharmacokinetic parameter changes 
with age against 52 additional drugs. The solid black line, grey-
shaded area, and grey dashed lines represent the fitted mean relation-
ship, the estimated variability, and the 1.25-fold interval (bioequiva-
lence criterion), respectively. Red, blue, and green markers show 
drugs primarily undergoing hepatic, renal, and biliary eliminations, 

respectively. Triangle and circles represent intravenous and oral drug 
administration. References of the studied drugs can be found in elec-
tronic supplementary Table S-3. AUC​ area under the curve, Cmax peak 
concentration, CLF clearance, tmax time to Cmax, t½ elimination half-
life, VdF apparent volume of distribution
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shown for seven model drugs of CYP enzymes [10], as well 
as for morphine and furosemide administered intravenously 
[9]. The AUC was generally predicted to increase progres-
sively, with an average rate of 0.9% per year from the age 
of 20 years. Despite the higher drug exposure in the elderly, 
dose adjustment based on age alone is not recommended in 
the labelling of any of the ten studied drugs. The age-related 
changes in AUC can be explained by the linear decrease 
in drug clearance as a result of reduced hepatic and renal 
blood flow and glomerular filtration rate [6], rather than drug 
characteristics (i.e. logP, fup, main metabolizing enzyme, 
main route of elimination), as shown by our conducted sen-
sitivity analysis (Fig. 7) and statistical analysis of clinically 
observed age-dependent pharmacokinetic alterations of 52 
drugs additionally collected (Fig. 9). These findings are 
contrary to conventional thinking. It is believed that vol-
ume of distribution changes with advanced age because of 
altered body composition [6], which would suggest a higher 
volume of distribution for lipophilic drugs and a lower vol-
ume of distribution for hydrophilic drugs. Indeed, there are 
contradictory findings in the literature regarding altered 

[48–50] and unaltered volume of distributions [51–53] with 
advanced age.

Cusack et al. investigated digoxin pharmacokinetics in the 
elderly and found that the volume of distribution was not dif-
ferent when corrected for body weight [54], which was used 
in our study. Contradictory findings were also found for the 
main metabolizing enzyme of a drug. Age was found to be 
a significant covariate for CYP2C9 only in a compact meta-
analysis looking at hepatic CYP abundance [55]. However, 
in a study investigating probe substrates, age dependency 
was detected for CYP1A2, CYP2D6 and CYP2E1, but not 
CYP2C9 [56]. In contrast, in a third study, CYP1A2 activ-
ity was reported to be independent of aging [57]. Taken 
together, the small sample sizes generally used for analy-
sis, and the high biological variability (e.g. for hepatic CYP 
abundance), prevented a meaningful investigation regarding 
the impact of drug characteristics on age-related changes 
in drug pharmacokinetics. In our compact analysis, we 
combined clinically observed data and PBPK modelling to 
demonstrate that the described drug characteristics do not 
significantly impact age-related pharmacokinetic changes.

Table 2   Results of the Pearson correlation for continuous variables to explain age-related pharmacokinetic changes in the clinical data for 52 
drugs additionally collected

AUC​ area under the curve, Cmax maximal concentration, CI confidence interval, CLF clearance, fu fraction unbound, GFR glomerular filtra-
tion rate, logP octanol-water partition coefficient, QKI renal blood flow, QLI hepatic blood flow, tmax time to Cmax, t½ elimination half-life, VdF 
apparent volume of distribution

Variable Cmax tmax AUC​ CLF VdF t½

Age
 Correlation coef-

ficient (95% CI)
0.21 (0, 0.40) 0.18 (− 0.05, 0.39) 0.35 (0.17, 0.51) − 0.31 (− 0.47, 

− 0.12)
− 0.22 (− 0.40, 

− 0.02)
0.09 (− 0.11, 0.28)

 p value 0.05 0.12 0.0003 0.002 0.03 0.39
logP
 Correlation coef-

ficient (95% CI)
0.04 (− 0.17, 0.25) − 0.04 (− 0.27, 

0.19)
− 0.10 (− 0.28, 

0.10)
0.13 (− 0.06, 0.32) 0.12 (− 0.08, 0.31) − 0.05 (− 0.24, 

0.15)
 p value 0.71 0.74 0.33 0.19 0.22 0.64

fu
 Correlation coef-

ficient (95% CI)
− 0.14 (− 0.34, 

0.07)
0 (− 0.23, 0.24) − 0.07 (− 0.26, 

0.12)
0.06 (− 0.14, 0.25) − 0.15 (− 0.34, 

0.05)
− 0.08 (− 0.27, 

0.12)
 p value 0.18 0.97 0.46 0.58 0.15 0.46

QLI
 Correlation coef-

ficient (95% CI)
− 0.32 (− 0.53, 

− 0.06)
− 0.08 (− 0.35, 

0.19)
− 0.30 (− 0.49, 

− 0.07)
0.27 (0.05, 0.47) 0.07 (− 0.17, 0.30) − 0.09 (− 0.32, 

0.14)
 p value 0.01 0.56 0.01 0.02 0.56 0.44

QKI
 Correlation coef-

ficient (95% CI)
− 0.40 (− 0.67, 

− 0.03)
0.20 (− 0.28, 0.60) − 0.56 (− 0.77, 

− 0.24)
0.60 (0.30, 0.79) 0.54 (0.21, 0.76) 0.05 (− 0.33, 0.41)

 p value 0.03 0.41 0.002 0.01 0.003 0.81
GFR
 Correlation coef-

ficient (95% CI)
− 0.38 (− 0.66, 

− 0.01)
0.23 (− 0.25, 0.62) − 0.64 (− 0.81, 

− 0.35)
0.65 (0.38, 0.82) 0.52 (0.19, 0.75) − 0.04 (− 0.41, 

0.34)
 p value 0.04 0.35 0.0002 0.001 0.004 0.83
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Blood flows were not usually measured in the clinical 
studies of the 52 drugs additionally collected and hence 
were estimated based on observed data of reduced hepatic 
and renal blood flow with advanced age [6], and thus was 
a limitation of this study. However, Vestal et al. measured 
age-related changes in propranolol clearance, a purely pas-
sively distributed drug, and determined hepatic blood flow 
alterations in the same subjects, showing a linear correlation 
and supporting the results of our study [58]. The glomerular 
filtration rate is often determined by measuring creatinine 
clearance, which is not an ideal marker in the elderly due to 
senile sarcopenia in aging subjects [59], but linear correla-
tions between the rate of glomerular filtration alterations and 
age-related changes in clearance of mainly renally excreted 
drugs were shown in numerous different studies [53, 60, 61], 
supporting the findings of the present work.

Importantly, the impact of age was independent of sex 
for all investigated drugs, which is in line with clinically 
observed data [34, 41, 62]. However, the pharmacokinetics 
can differ between females and males [63], and therefore 
more research is needed to investigate the impact of sex in 
combination with aging.

A clear limitation of our study is that clinical pharma-
cokinetic data for individuals older than 85 years of age are 
sparse and thus the simulation results in this age group need 
to be interpreted with caution. Furthermore, clinical data, as 
well as the virtual population used in this study, represent 
healthy elderly individuals. It is known that certain comor-
bidities, for instance renal impairment [64], liver cirrhosis 
[65] or heart disease [66], can change physiology and thus 
impact drug pharmacokinetics. Whether these physiological 
changes are more pronounced in elderly adults needs to be 
determined.

Fig. 9   Correlation between drug (logP, fup) and physiological param-
eters (Qxx, GFR) against age-related changes in VdF and CLF. Red, 
blue, and green markers show drugs primarily undergoing hepatic, 
renal, and biliary eliminations, respectively. Triangle and circles rep-
resent intravenous and oral drug administration. References of the 

studied drugs can be found in electronic supplementary Table  S-3. 
CLF clearance, fup fraction unbound in plasma, GFR glomerular fil-
tration rate, logP octanol-water partition coefficient, Qxx blood flow 
to respective organ, VdF apparent volume of distribution
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It should be emphasized that age-related changes in 
physiology and biology do not just impact pharmacokinetics 
but also modify the pharmacodynamics of drugs, resulting 
in altered drug effects. Differences in the effects of drugs 
in the elderly can be explained by changes in the number 
of receptors, the affinity of the drugs to its receptor, and 
changes in physiological and homeostatic processes with 
aging [67]. Elderly adults are more sensitive to the sedative 
effects of benzodiazepines such as midazolam. The dose of 
midazolam required to reach comparable sedation, such as 
in young adults below the age of 50 years, was shown to be 
halved in the elderly [68]. Conversely, the sensitivity to the 
β-adrenergic receptor, and therefore the pharmacodynamic 
effect of β-blockers such as metoprolol, is reduced in the 
elderly as a result of receptor downregulation or alterations 
in binding affinity [67]. Age-related differences in the anti-
hypertensive effect of lisinopril appear to not be clinically 
relevant [69]. Conversely, the decrease in systolic blood 
pressure after amlodipine administration was shown to be 
greater in the elderly compared with young patients, while 
the decrease in diastolic blood pressure was similar in both 
groups [38, 70]. Rivaroxaban has a well-established corre-
lation between plasma concentration and FXa activity and 
prothrombin time prolongation [71]. Thus, the higher plasma 
concentration in the elderly may lead to a more pronounced 
pharmacodynamic effect compared with young adults [72]. 
Statins appear to have the same pharmacodynamic effect in 
the elderly compared with young adults [73]. Taken together, 
clinical management of elderly individuals should consider 
not only age-related pharmacokinetic changes but also age-
related pharmacodynamic changes and the presence of 
comorbidities, all of which predispose elderly individuals 
to inappropriate prescribing.

5 � Conclusions

The PBPK approach demonstrated its usefulness to pre-
dict drug disposition in special populations such as elderly 
individuals. Furthermore, conducting virtual clinical trials 
across the entire adult population in combination with clini-
cally observed data in young and older subjects elucidated 
that drug elimination rather than absorption or distribution is 
likely responsible for age-related drug exposure changes in 
the elderly. When treating elderly individuals, it is assumed 
that a dose reduction of 25–50% is appropriate, independent 
of the drug [74]. This empirical rule of thumb was shown to 
be justified through the PBPK simulations and a meta-analy-
sis of existing literature data. Drug clearance decreased with 
age, with no more than a threefold difference between the 
youngest and oldest studied age group. Our PBPK model, 
in combination with the statistical analysis of the clinically 
observed pharmacokinetic data of 52 drugs additionally 

collected, showed that the age-related physiological decrease 
in hepatic and renal blood flow and glomerular filtration 
rate, rather than drug characteristics, are responsible for drug 
exposure changes in the elderly. Furthermore, age-related 
differences in drug exposure were outside of the expected 
interindividual variability (defined as the 1.25-fold interval) 
at 55 years of age compared with the youngest studied age 
group. Importantly, this finding can inform future clinical 
trials aiming to understand the pharmacokinetic differences 
in older versus younger adults. Additionally, pharmacody-
namic alterations and the presence of comorbidities should 
be considered when prescribing treatments in the elderly.
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