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1  Introduction

The standard dose regimen for active pulmonary tuberculosis 
(TB) consists of an initial 2-month intensive treatment phase 
with rifampicin, isoniazid, pyrazinamide, and ethambutol, fol-
lowed by a 4-month continuation phase with rifampicin, iso-
niazid, and ethambutol [1]. Despite the use of standard dose 
regimens, weight-banding, and directly observed treatment, 
the pharmacokinetics (PK) of rifampicin show very high 
interindividual variability, which may be explained by various 
factors, including variable oral absorption, pharmacogenetic 
differences in drug-metabolizing/transporter activities, nutri-
tional status, sex differences, drug–drug interactions, comor-
bidities such as diabetes, and HIV co-infection [2–4]. The 
high interindividual variability in the PK of rifampicin leads 
to highly variable systemic exposure, with supratherapeutic 
plasma concentrations potentially leading to adverse reactions 
such as liver toxicity, and subtherapeutic plasma concentra-
tions resulting in slow response to treatment and develop-
ment of drug resistance [5, 6]. Consequently, therapeutic drug 
monitoring of first-line anti-TB drugs has been proposed to 
improve treatment outcomes in certain patient groups, such as 
slow responders, patients with diabetes, and those with HIV 
co-infection [7, 8]. This commentary focuses on the potential 
consequences of interpatient variability in plasma binding of 
rifampicin on its PK and pharmacodynamics (PD).

2 � Plasma Protein Binding of Rifampicin: 
What is Known?

Earlier studies on the plasma binding of rifampicin reported 
an abnormally wide range of binding values (4–91%) 
when equilibrium dialysis was used, probably related to 

methodological problems [9–12]. In recent studies, the 
binding of rifampicin to plasma from TB patients receiv-
ing the four first-line anti-TB drugs, as measured by ultra-
filtration and taking nonspecific binding to the ultrafiltra-
tion device into account, was very similar and ranged from 
approximately 72 to 92% [13–15]. Unlike rifampicin, the 
other first-line anti-TB drugs display a much lower plasma 
protein binding, and the reported values, although very dif-
ferent between studies, do not exceed 40% [14]. At such 
low plasma binding, interpatient variability will have only 
limited consequences for the drug’s PK and PD. Indeed, 
only for drugs with a relatively high plasma binding, such 
as rifampicin, can a realistic interpatient variability in bind-
ing lead to an important change in the fraction unbound (fu), 
which could then significantly contribute to the variability 
in the drug’s PK/PD (Table 1).

Surprisingly, some fundamental aspects of the plasma 
protein binding of rifampicin have not yet been resolved. 
For example, it is not clear to what extent the various protein 
fractions in plasma contribute to the binding of rifampicin. 
By using electrophoresis, a higher binding of rifampicin to 
the γ-globulin compared with the albumin fraction was dem-
onstrated in plasma from TB patients [11, 16]. In another 
study, the degree of binding of rifampicin was similar in 
whole plasma compared with aqueous solutions at physi-
ological concentrations of albumin and α1-acid glycoprotein 
[12]. Using fluorescence spectroscopy, a well-established 
technique to study drug–protein interactions, it was shown 
that binding of rifampicin to α1-acid glycoprotein was neg-
ligible at therapeutic rifampicin plasma concentrations, but 
increased at higher concentrations [17]. Therefore, it is still 
not clear whether only albumin or other plasma proteins sig-
nificantly contribute to the binding of rifampicin. In addi-
tion, conflicting results have been published on the effect of 
increasing plasma concentrations of rifampicin on its plasma 
binding [9, 12–15, 17].

Albumin and α1-acid glycoprotein are the most important 
drug-binding proteins in plasma [18]. α1-Acid glycoprotein 
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is an acute-phase plasma protein that has a high affinity for 
basic drugs, but it may also bind to neutral lipophilic mol-
ecules and to acidic drugs [19]. Whereas albumin plasma 
concentrations may be low in TB patients due to malnutri-
tion, α1-acid glycoprotein plasma concentrations have been 
shown to be abnormally high in TB patients, and to decrease 
during treatment with first-line anti-TB drugs [20]. Depend-
ing on which protein fractions are important, the plasma 
binding of rifampicin may not be stable in TB patients dur-
ing treatment with first-line anti-TB drugs, thus potentially 
contributing to the inter- and intrapatient variability of the 
PK and PD of rifampicin.

3 � Variability in Plasma Protein Binding 
and Pharmacokinetics of Rifampicin

Rifampicin is primarily eliminated by metabolism, presum-
ably in the liver [10, 11]. The main metabolite, 25-desacetyl-
rifampicin, which has been shown to retain approximately 
50–100% of the antimicrobial activity of rifampicin against 
clinical isolates of Mycobacterium tuberculosis, is pre-
dominantly eliminated via biliary excretion [21, 22]. Renal 
excretion of unchanged rifampicin is a relatively unimpor-
tant route of elimination; following single-dose administra-
tion, the urinary excretion of rifampicin plus 25-desacetyl-
rifampicin is < 20%, and decreases following multiple 
daily dose administration due to enzyme induction [11, 
23]. Moreover, renal clearance (CLr) of rifampicin is only 
approximately 12% of the glomerular filtration rate, indicat-
ing that filtration at the glomerulus, which is restricted to 
the unbound fraction of rifampicin in plasma, is very likely 
the main mechanism of renal excretion [10]. In addition, 
rifampicin seems to have a relatively low hepatic extrac-
tion coefficient, even after chronic administration, when the 
enzymes involved in its metabolism are auto-induced [24]. 
For all drugs that are nearly completely absorbed into the gut 
wall following oral administration, and are partly eliminated 
by the liver, the unbound plasma fraction (fu) and hepatic 

intrinsic clearance (CLh,int) are the driving forces for the 
hepatic contribution (CLh) to the drug’s plasma clearance 
(CL) [25, 26]:

Consequently, it is reasonable to assume that rifampic-
in’s overall plasma CL (CL = CLh + CLr), i.e. both the 
hepatic and renal component, will be directly related to the 
unbound fraction of rifampicin in plasma. The plasma CL 
of rifampicin will therefore be approximately three times 
higher in a patient having a rifampicin plasma binding of 
70% (fu = 0.3) compared with another patient with a plasma 
binding of 90% (fu = 0.1) (Table 1). As a result, the former 
patient will have total plasma concentrations that will only 
be approximately one-third of those in the latter patient, 
whereas the unbound plasma concentrations will be similar 
in both patients [26]. In such a situation, PK/PD analysis 
based on total plasma concentrations of rifampicin will be 
clearly misleading (see below).

In a recent systematic review, it was shown that based 
on a total of 21 publications that assessed the effect of HIV 
co-infection on the PK of rifampicin, most patient groups, 
both HIV-negative and HIV-positive, did not achieve the 
generally accepted threshold maximum concentration (Cmax) 
for rifampicin of 8 μg/ml [3, 27]. In these studies, factors 
such as sex, age, severity of HIV infection (e.g. CD4 count), 
nutritional status and supplementation, diarrhea, antiretrovi-
ral treatment, and others were assessed for correlation with 
rifampicin systemic exposure measures (Cmax, area under the 
plasma concentration–time curve [AUC]). Plasma protein 
binding of rifampicin was not measured in any of the studies. 
Serum albumin and α1-acid glycoprotein levels were men-
tioned in only six and none of the 21 studies, respectively. In 
some studies, the serum albumin levels were normal in the 
patient groups investigated, whereas in others, some of the 
patients had hypoalbuminemia [28–31]. In two of the stud-
ies, rifampicin plasma levels (Cmax, AUC) were substantially 
lower in patients with low serum albumin levels [32, 33]. 
The authors of this systematic literature review concluded 
that the heterogeneity in the systemic exposure to rifampicin 
remains largely unexplained. In our opinion, it is likely that 
the variability in plasma binding of rifampicin may have 
been a contributing factor that deserves more attention in 
future studies.

In an older study in undernourished TB patients with 
hypoalbuminemia on rifampicin therapy, the unbound 
plasma fraction of rifampicin (fu = 0.57) was 2.6-fold higher 
and the AUC was 2.5-fold lower than in well-nourished 
control subjects (fu = 0.22) [34]. The urinary recovery of 
rifampicin was also significantly reduced in undernour-
ished patients, but it was not mentioned by how much. The 
reduced plasma protein binding of rifampicin and/or the 

CLh = fu ⋅ CLh,int.

Table 1   The effect of interpatient variability in percentage plasma 
binding of isoniazid (low binding) and rifampicin (high binding) on 
the unbound fraction in plasma

Variability is based on the plasma binding extremes found in 22 TB 
patients being treated with the four first-line anti-TB drugs [14]
TB tuberculosis, fu unbound fraction in plasma

Drug Interpatient 
variability

Binding (%) fu fu (fold change)

Isoniazid Patient 1 0 1.00 1.3
Patient 2 34 0.76

Rifampicin Patient 1 72 0.28 3.1
Patient 2 91 0.09
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decrease in the oral absorption of rifampicin could explain 
the significantly reduced total plasma concentrations.

4 � Variability in Plasma Protein Binding 
and Pharmacodynamics of Rifampicin

The antimicrobial activity of rifampicin is concentration-
dependent and AUC/minimum inhibitory concentration 
(MIC) and Cmax/MIC are the PK/PD indices closely related 
to long-term clinical outcome and the suppression of resist-
ance, respectively [35, 36]. Since only the unbound drug 
is pharmacologically active, these indices should ideally 
be expressed in terms of unbound drug exposure, i.e. AUC​
u/MIC and Cmax,u/MIC [37]. In three recent studies, the 
unbound fraction of rifampicin in plasma of TB patients 
receiving the four first-line anti-TB drugs was found to vary 
approximately two to threefold [13–15]. In one of the stud-
ies, patients with TB were treated with either rifampicin 
10 mg/kg or rifampicin 35 mg/kg combined with standard 
doses of isoniazid, pyrazinamide, and ethambutol [13]. AUC​
u and Cmax,u of rifampicin showed a 3.6- and 6.4-fold varia-
tion, respectively, for the 10 mg/kg dose, and 2.4- and 1.9-
fold variation for the 35 mg/kg dose. Because of this large 
interpatient variability in the systemic exposure to unbound 
rifampicin, it is important to express the target PD indices 
as AUC​u/MIC and Cmax,u/MIC rather than AUC/MIC and 
Cmax/MIC [37]. This concept was recently proposed to select 
the appropriate vancomycin dose in neonates in whom the 
unbound fraction of vancomycin (median 0.9) is 1.5-fold 
higher compared with that in adults (median 0.6) [38].

Finally, from a PK/PD standpoint, it is also important 
to consider the possible contribution of 25-desacetyl-
rifampicin to the in vivo antimicrobial activity following 
treatment with rifampicin. The plasma concentrations 
of 25-desacetyl-rifampicin are much lower than those 
of rifampicin in patients treated with the four first-line 
anti-TB drugs. For example, Ruslami et al. found mean 
25-desacetyl-rifampicin/rifampicin ratios for Cmax and 
AUC of 0.16 and 0.13, respectively [39]. However, the 
microbially active part of the total plasma concentrations 
of 5-desacetyl-rifampicin and rifampicin is the fraction 
not bound to plasma proteins. No information was found 
in the literature regarding the plasma protein binding of 
25-desacetyl-rifampicin. The plasma protein binding of 
a drug metabolite is usually lower than that of the parent 
compound, e.g. the plasma binding of the 25-desacetyl 
metabolite of rifapentine is 93%, compared with 98% for 
rifapentine [40]. Consequently, without any information on 
the plasma protein binding of 25-desacetyl-rifampicin, it is 
not possible to predict whether it is imperative to measure 
only rifampicin or rifampicin plus 25-desacetyl-rifampicin 
plasma levels for PK/PD analysis.

5 � Conclusions

To unravel the contribution of plasma protein binding of 
rifampicin to interpatient variability in the PK and PD of 
this important first-line anti-TB drug, the following approach 
is proposed:

1.	 A standard, validated method should be used to measure 
the plasma protein binding of rifampicin in TB patients 
to make a comparison between the results obtained by 
different laboratories possible. Ultrafiltration may be the 
best choice because plasma binding of rifampicin based 
on equilibrium dialysis has shown extreme variability 
between studies.

2.	 In view of the fact that the antimicrobial activity of 
25-desacetyl-rifampicin against clinical isolates of M. 
tuberculosis is similar to that of rifampicin, the plasma 
protein binding of this metabolite should be investigated 
to decide whether 25-desacetyl-rifampicin significantly 
contributes to the antimicrobial activity.

3.	 It is of utmost importance to establish the relative con-
tribution of albumin, α1-acid glycoprotein, and other 
plasma protein fractions such as lipoproteins to the 
plasma binding of rifampicin (and possibly 25-desa-
cetyl-rifampicin).

4.	 When studying the PK of rifampicin, its unbound frac-
tion in plasma should be measured, together with the 
serum levels of the proteins important for its binding, to 
prove (or disprove) the effect of plasma protein binding 
and fluctuations in their serum concentrations on the PK 
of rifampicin. The association between plasma protein 
concentrations (albumin, α1-acid glycoprotein, etc.) and 
systemic rifampicin exposure (Cmax, AUC) should be 
systematically explored.

5.	 In view of the large interpatient variability in the frac-
tion of unbound rifampicin, the PK/PD target should 
be based on unbound rifampicin plasma concentrations 
(or possibly the unbound plasma concentrations of 
rifampicin + 25-desacetyl-rifampicin).

“I do not care about protein binding because I always 
measure free, unbound concentrations”. Nicholas Holford 
(at the World Conference on Dosing of Antiinfectives: Cel-
ebrating the 150th Birthday of Paul Ehrlich, 9–11 September 
2004, Nürnberg, Germany).
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