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Abstract
Oral anticoagulants and antiplatelet drugs are commonly prescribed to lower the risk of cardiovascular diseases, such as 
venous and arterial thrombosis, which represent the leading causes of mortality worldwide. A significant percentage of 
patients taking antithrombotics will nevertheless experience bleeding or recurrent ischemic events, and this represents a 
major public health issue. Cardiovascular medicine is now questioning the one-size-fits-all policy, and more personalized 
approaches are increasingly being considered. However, the available tools are currently limited and they are only moderately 
able to predict clinical events or have a significant impact on clinical outcomes. Predicting concentrations of antithrombotics 
in blood could be an effective means of personalization as they have been associated with bleeding and recurrent ischemia. 
Target concentration interventions could take advantage of physiologically based pharmacokinetic (PBPK) and population-
based pharmacokinetic (POPPK) models, which are increasingly used in clinical settings and have attracted the interest of 
governmental regulatory agencies, to propose dosages adapted to specific population characteristics. These models have 
the benefit of combining parameters from different sources, such as experimental in vitro data and patients’ demographic, 
genetic, and physiological in vivo data, to characterize the dose–concentration relationships of compounds of interest. As 
such, they can be used to predict individual drug exposure. In the near future, these models could therefore be a valuable 
means of predicting personalized antithrombotic blood concentrations and, hopefully, of preventing clinical non-response or 
bleeding in a given patient. Existing approaches for personalization of antithrombotic prescriptions will be reviewed using 
practical examples for P2Y12 inhibitors and direct oral anticoagulants. The review will additionally focus on the existing 
PBPK and POPPK models for these two categories of drugs. Lastly, we address potential scenarios for their implementation 
in clinics, along with the main limitations and challenges.
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Key Points 

Current approaches for the personalization of antithrom-
botics (biological, genetic, and clinical approaches) have 
shown mixed results to date.

Pharmacokinetic predictive models can be a valuable 
means of predicting antithrombotic blood concentrations 
and of preventing clinical non-response or bleeding in a 
given patient.

There are important hurdles that need to be considered 
for the implementation of such models in clinical prac-
tice in the near future.
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1  Introduction

Oral anticoagulants and antiplatelet drugs are commonly 
used alone or in combination for various indications to 
reduce the risk of thrombotic events [1]. Antithrombot-
ics are required for the vast majority of cardiovascular 
diseases. Together, these diseases are the leading cause of 
mortality worldwide, with a continuous increase in their 
relative importance, not only in high- or middle-income 
countries but also in lower-middle-income countries [2]. 
Despite recent major advances in antithrombotic manage-
ment for cardiovascular patients, one challenging issue 
facing many current therapies is that their clinical effi-
cacy can vary significantly between patients for the same 
standardized dosage [3–5]. Major trials and national reg-
istries have shown that approximately 9–10% of patients 
under dual antiplatelet therapy (DAPT) and 1–3% of 
patients under direct oral anticoagulants (DOACs) still 
experienced thrombotic events after 1 year [5–14]. Some 
patients will also experience significant bleeding events, 
at rates ranging from 2% for DAPT to 4% per year for 
DOACs, according to randomized clinical trials (RCTs) 
and national registries [14, 15]. These percentages may 
be considered relatively low, but, from a population view-
point, they represent a major public health issue. The 
antiplatelet drug class of P2Y12 inhibitors and anticoagu-
lants are indeed among the most common causes of emer-
gency department visits for drug-related adverse events 
(AEs; mostly bleeding) in the US [16, 17]. Unfortunately, 
existing tools are only moderately able to predict clinical 
events or have a significant impact on clinical outcomes 
[18–21]. Clinicians thus refer to medical history, patient’s 
clinical characteristics and clinical judgment to adapt 
therapeutic strategy, which can be challenging and haz-
ardous [22]. In this context, the concept of precision (or 
personalized or individualized) medicine has been gain-
ing ground in recent years, including via support from 
new European and American governmental initiatives on 
drug personalization [23–25]. Precision medicine refers 
to a medical model using a characterization of individual 
patients’ phenotypes and genotypes to tailor the right 

adapted therapeutic strategy and find the best benefit–risk 
balance [24]. Existing approaches for personalization of 
antithrombotic prescriptions are already available and will 
be reviewed using practical examples for P2Y12 inhibitors 
and DOAC drugs. The review will additionally focus on 
the physiologically based pharmacokinetic (PBPK) and 
population-based pharmacokinetic (POPPK) models that 
are promising and emergent approaches for the person-
alization of antithrombotics. Indeed, these models could 
help in identifying the sources of variability influencing 
drug exposure and clinical response, and could also be put 
to use in tools tailoring treatments to patients according 
to experimental in vitro data and patients’ demographic, 
genetic, and physiological in vivo data. We suggest here 
the validation of these models in clinical settings could 
provide clinicians with an important and original means 
of prescribing antithrombotics more safely and efficiently.

2 � Current Personalized Approaches 
for P2Y12 Inhibitors

2.1 � Platelet Reactivity

The guidelines from the American College of Cardiology 
Foundation/American Heart Association (ACCF/AHA, 
2016) and the European Society of Cardiology/European 
Association for Cardio-Thoracic Surgery (ESC/EACTS, 
2018) recommend starting DAPT with a P2Y12 inhibitor 
and aspirin for acute coronary syndromes (ACS) and then 
ideally continuing for up to 1 year, whether or not patients 
undergo a percutaneous coronary intervention (PCI) [8, 26]. 
Despite major improvement in ACS management, DAPT 
is associated with an increased risk of bleeding [27–29]. 
However, approved dosages by the European Medicines 
Agency (EMA) are strongly limited and cannot be reduced 
for vulnerable patients (e.g. over- or underweight patients, 
elderly, and chronic liver or kidney diseases), with the 
exception of prasugrel (5 mg once daily for patients with a 
body weight < 60 kg) but clinical data supporting its use are 
lacking (Table 1) [30–32].

Table 1   Approved dosages for 
DAPT in patients undergoing 
PCI with P2Y12 inhibitors [26, 
30–32]

DAPT dual antiplatelet therapy, PCI percutaneous coronary intervention, CAD coronary artery disease, 
ACS acute coronary syndrome, NA not approved, qd once daily, bid twice daily
a Prasugrel: < 60 kg; prasugrel is not recommended in patients aged > 75 years
b Prolonged therapy > 12 months for patients at high risk

Stable CAD ACS

Standard dosage Reduced dosage Standard dosage Reduced dosage

Clopidogrel 75 mg qd NA 75 mg qd NA
Prasugrel NA NA 10 mg qd 5 mg qda

Ticagrelor NA 60 mg bidb 90 mg bid NA
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As bleeding and ischemic events are associated with 
worse short- and long-term outcomes, attempts have been 
made to tailor antiplatelet strategy according to an indi-
vidual’s biological response to P2Y12 inhibitors [33, 34]. 
Interindividual variability of the biological response to 
P2Y12 inhibitors is well established, particularly for clopi-
dogrel, as 16–50% of patients are deemed poor responders 
to treatment (high on-treatment platelet reactivity [HTPR]), 
depending on the test used for assessing platelet reactivity 
(PR) [35]. There is a similar interindividual variability in 
PR for ticagrelor and prasugrel that is a serious concern 
for patients with a low or very low on-treatment platelet 
reactivity (LTPR) phenotype with respect to their bleeding 
risk [36, 37].

Several factors influence PR of patients treated with 
clopidogrel. The genetic variants, such as cytochrome P450 
(CYP)2C19*2 that influence clopidogrel’s bioactivation 
and lead to a loss-of-function phenotype, were found to be 
involved in HTPR [38] and associated with the risk of recur-
rent ischemic events, but not in a consistent manner across 
studies [39]. On the other hand, carriers of the CYP2C19*17 
allele more frequently have a low on-clopidogrel reactivity 
phenotype and more often develop bleeding complications 
[40, 41]. In addition, type 2 diabetes mellitus, chronic kidney 
disease, age (> 65 years), C-reactive protein, body weight, 
body mass index, and left ventricular function are some of 
the non-genetic factors that increase PR and reduce platelet 
response to clopidogrel [42–49]. Importantly, meta-analyses 
mainly based on observational studies have found a posi-
tive relationship between HTPR and subsequent thrombotic/
ischemic events, particularly in cases of ACS and/or after 
PCI [50–52]. On the contrary, LTPR increases the risk of 
bleeding events [51].

Intervention trials of antiplatelet regimens tailored to the 
biological PR phenotype have so far provided contrasting 
results and may depend on the patient’s level of cardiovas-
cular risk and the clinical setting [53–59]. To date, the ESC 
guidelines do not recommend PR-guided therapy [26].

2.2 � De‑escalation

Prasugrel and ticagrelor provide more extensive platelet 
inhibition and are less susceptible to genetic variation and 
drug–drug interactions than clopidogrel [36, 37, 60–62]. 
No genetic variants have yet been associated with a clinical 
outcome for ticagrelor or prasugrel [61–63]. Similarly to 
clopidogrel, prasugrel is a prodrug whose formation to its 
active metabolite via a two-step process initiated by plasma 
esterases and followed by a single cytochrome-dependent 
step (CYP3A4/5 and CYP2B6) is more efficient and less 
variable than clopidogrel [60, 64–66]. Ticagrelor is mainly 
metabolized by CYP3A4/5, and both parent and metabolite 
exhibit antiplatelet activity [66]. Superiority of prasugrel 

and ticagrelor on ischemic outcome over clopidogrel was 
originally established in two large, multicentric RCTs [28, 
29]. However, prasugrel and ticagrelor were associated with 
an increased risk of major bleeding and non-coronary artery 
bypass graft surgery major bleeding, respectively, compared 
with clopidogrel [7, 8].

Since PR is higher in the early phases of ACS, and gener-
ally decreases quickly within days, strategies based on strong 
antiplatelet treatment in the acute phase of ACS followed 
by de-escalation to a less potent antiplatelet drug in the 
maintenance phase have been evaluated in recent promis-
ing RCTs [67]. In the TROPICAL-ACS platelet function 
therapy (PFT)-guided de-escalation RCT, ACS patients 
(n = 2610) managed with PCI and initially treated with 
prasugrel were switched to clopidogrel after 7 days. Their 
PR was then tested and poor responders to clopidogrel were 
switched back to prasugrel, while clopidogrel was contin-
ued in good responders. The non-inferior primary endpoint 
(cardiovascular death, myocardial infarction [MI], stroke, 
or bleeding [Bleeding Academic Research Consortium ≥ 2]) 
was achieved with a similar rate of combined ischemic and 
major bleeding events after 1 year in both groups (p for non-
inferiority = 0.0004; hazard ratio 0.81, 95% confidence inter-
val 0.62–1.06; p for superiority = 0.12) [68]. The trial met 
its primary endpoint as it demonstrated non-inferiority for 
a net clinical benefit but did not show a benefit for patients 
on bleeding rates. A smaller, open-label, monocentric, and 
unguided de-escalation randomized trial showed a benefit 
in terms of bleeding event rates [69]. In addition, questions 
regarding safety remain as the study was not powered for 
ischemic events alone [70].

Another RCT has evaluated the safety and efficacy 
of PFT-guided therapy in ACS patients aged > 75 years 
(n = 877) [71]. Ischemic and bleeding rates were similar 
in the group receiving a standard dose of prasugrel (5 mg/
day) versus PFT-guided escalation (prasugrel 10 mg/day) or 
de-escalation (clopidogrel 75 mg/day) [71]. This outcome 
confirms an age effect also observed in a subgroup analy-
sis from the TROPICAL-ACS trial as the youngest patients 
(< 70 years of age) seemed to benefit the most from PFT-
guided therapy [72]. Of importance, two ongoing trials are 
aiming to assess a genotype-based guided therapy (Table 2), 
even if subgroup analysis from the TROPICAL-ACS trial 
has recently failed to show the benefit of such a strategy 
[73]. Finally, rapid de-escalation to ticagrelor monotherapy 
was recently assessed in a large, multicenter, open-label 
RCT, but the results do not support any changes in current 
practice [74].

It is too early yet to conclude about the clinical utility of 
de-escalation, but it could be considered in specific scenar-
ios, such as patients with high bleeding risk, as suggested by 
the last ESC guidelines and the results from the TROPICAL-
ACS trial [26].
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2.3 � Value of Predictive Scores in Dual Antiplatelet 
Therapy

There is debate on the duration of DAPT, which may range 
from less than 6 months to more than 12 months [75–80]. 
Several predictive scores for long-term outcome were devel-
oped in the context of a need for clinicians to find the opti-
mal duration of DAPT [19–21, 80], such as the PRECISE-
DAPT and DAPT scores [20, 21, 26]. In patients with a 
score equal or superior to 2 in the DAPT trial, a reduction 
in the risk of thrombotic events after a prolonged 30-month 
DAPT was observed [20]. The increased risk of bleed-
ing did not mitigate this reduction. The PRECISE-DAPT 
score suggests a shorter duration of DAPT (3–6 months) in 
patients at risk of bleeding (scores ≥ 25) [21]. Among these 
scores, it is of note that bleeding and thrombosis share sev-
eral risk factors, making assessment of the balance between 
ischemic and bleeding risks very challenging for clinicians. 
The resulting C-statistics are only moderately able to predict 
clinical events depending on the externally validated cohort 
(from 0.64 to 0.70) [19–21]. C-statistic corresponds to the 
area under the receiver operating curves for diagnostic or 
prognostic tests and is a measure of discrimination, ranging 
from perfect (1 or 100%) to no better than chance (≤ 0.5 or 
50%) [81]. Consequently, the C-statistic can be interpreted 
as the probability that a randomly chosen subject from the 
disease group has a higher predicted probability of hav-
ing the disease than a randomly chosen subject from the 
disease-free group [81]. In addition, the clinical impacts of 
these risk-prediction models have never been assessed as 
part of a clinical decision-making strategy in a prospective 
RCT [7]. Their value in improving patient outcomes remains 
unproven.

2.4 � Drug Monitoring

Data on the relationship between drug exposure-efficacy 
and safety events are scarce for P2Y12 inhibitors. Indeed, 
direct serum concentrations are not routinely used due to 
technical reasons [1]. Instead, vasodilator-stimulated phos-
phoprotein (VASP) assay or platelet-mediated aggregation 
of fibrinogen-coated polystyrene beads (VerifyNow®) are 
used to test PR, and correlate well with drug concentrations 
[82]. Among the few studies on the association between drug 
exposure and clinical events, a population pharmacokinetic/
pharmacodynamic (PK/PD) study of 4426 patients treated 
with ticagrelor (within the PEGASUS-TIMI 54 trial) showed 
that the predicted risk of cardiovascular death/MI/stroke 
decreased with increasing ticagrelor exposure [83]. How-
ever, the relationship was relatively flat, indicating that a 
near-maximal response had already been achieved within 
the lower exposure range studied. Similarly, the predicted 
risk of major bleeding increased with increasing ticagrelor 
exposure, but again the relationship was relatively flat [83]. 
Limitations of this study included that blood samples were 
only collected from approximately one-third of patients and 
that average steady-state concentrations of ticagrelor were 
unavailable at low concentrations. Extrapolations outside the 
predicted exposure range should be interpreted with caution 
[83].

In conclusion, the different biological, clinical, and 
genetic approaches to personalizing P2Y12 inhibitors have 
shown mixed results to date (summarized in Table 3). No 
single factor can explain the observed biological variabil-
ity in antiplatelet response, and predictive scores based on 
clinical data alone are only moderately able to predict clini-
cal events since the risk factors for bleeding and ischemic 
events overlap. There is thus a need for further research to 

Table 3   Potential individualized approaches for P2Y12 inhibitors

CYP cytochrome P450, DAPT dual antiplatelet therapy, VASP vasodilator-stimulated phosphoprotein, RCT​ randomized clinical trial

Tools Examples Advantages Disadvantages

Laboratory assays for on-treat-
ment platelet reactivity

VerifyNow®, Multiplate®, VASP 
assay, etc.

Some are point-of-care assays 
with a quick turnaround time

Do not improve clinical outcome in 
large RCTs

De-escalation Switch from potent P2Y12 inhibi-
tors to clopidogrel

Cost effective
Supposed to reduce bleeding 

without impacting safety

Do not improve clinical outcome in 
large RCTs

DAPT duration according to 
predictive scores

DAPT score
PRECISE-DAPT score
Score based on the REACH and 

PARIS registries

User-friendly; internally and 
externally validated in a large 
cohort

Moderately able to predict clinical 
events; overlapping predictive 
factors between ischemic and 
bleeding scores; not prospectively 
tested in RCTs

Genetics CYP2C19 polymorphism for 
clopidogrel-treated patients

Point-of-care assay available Are not consistently associated with 
clinical outcome

Pharmacokinetic monitoring Ticagrelor blood concentration Relationship between drug expo-
sure and clinical events

Labor-intensive (mass spectrom-
etry)

Not yet validated
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find other relevant co-factors and then build models, ide-
ally, combining different genetic, clinical, and biological 
approaches.

3 � Current Personalized Approaches 
Involving Direct Oral Anticoagulants

3.1 � Dosage Adaptation According to Patients’ 
Clinical Characteristics

Unlike vitamin K antagonists (VKAs), DOACs have specific 
targets: rivaroxaban, apixaban, and edoxaban directly and 
specifically inhibit factor Xa, whereas dabigatran directly 
inhibits thrombin [84]. Based on large RCTs of patients 
with non-valvular atrial fibrillation (AF), DOACs were 
associated with similar or lower rates of ischemic stroke 
and major bleeding as warfarin [6]. Thus, European and 
American guidelines now recommend DOACs over VKAs 
in the vast majority of patients with non-valvular AF [85, 
86]. The efficacy and safety of DOACs for the treatment of 
deep vein thrombosis and pulmonary embolism were com-
pared with VKAs in six, large, phase III trials that consist-
ently showed the non-inferiority of DOACs with regard to 
recurrent venous thromboembolism (VTE) and a lower risk 
of clinically relevant bleeding [87]. DOACs are therefore 
also recommended as the first-line anticoagulant treatment 
for VTE [88].

Different dosages of DOACs have been approved by 
the EMA and can be adapted according to clinical char-
acteristics, such as renal clearance, age, body weight, and 
drug–drug interaction (DDI) (Table 4) [89–92]. In real-life 
situations, a patient can cumulate several comorbidities and 
medication, and it is thus currently difficult for clinicians 
to adjust the dosage accordingly or decide whether to start 

anticoagulant therapy. The recent results from the ORBIT-
AF II registry highlights this difficulty since half of the 
patients receiving a reduced off-label dosage of DOACs have 
a tendency (not statistically significant) for an unfavorable 
clinical outcome [22].

In addition, there is a lack of robust clinical data to 
support DOAC prescribing in some categories of patients 
excluded from clinical trials, such patients at extremes of 
body weights [93], and patients with advanced chronic 
hepatic or kidney disease [94, 95]. Moreover, DOACs are 
associated with a higher risk profile of abnormal uterine 
bleeding in VTE patients (in particular Xa inhibitors, but not 
dabigatran) [96] and gastrointestinal bleeding (for rivaroxa-
ban, high-dose dabigatran and edoxaban) [97]. Altogether, 
these evidences suggest that the current standardized dos-
ages for DOACs do not fit all categories of patients.

3.2 � Drug Monitoring

Contrary to VKAs such as warfarin, DOACs do not rou-
tinely require dose adjustment and monitoring because of 
their more favorable PK profile and a larger therapeutic win-
dow [98]. However, significant interindividual variability in 
DOAC concentrations has been observed in both RCTs and 
real-life settings [99]. In a multicenter study including 330 
patients, drug concentrations varied by more than 20-fold 
among patients treated with dabigatran, by nearly 15-fold 
with rivaroxaban, and by 7-fold with apixaban [100]. Several 
clinical factors can explain this variability, such as renal and 
hepatic impairment, body weight, age, ethnicity, DDI involv-
ing P-glycoprotein, and CYP3A4/5 induction or inhibition 
[99]. Genetic variations may also be a factor but this has 
scarcely been investigated [101–103].

Table 4   Approved dosages for DOACs [89–92]

Reduced dosage:
Rivaroxaban: if CrCl C-G 30–49 ml/min (“caution” if 15–29 ml/min)
Dabigatran: “at risk patients”, CrCl C-G 30–49 ml/min.
Apixaban: age > 80 years, body weight <60 kg, creatinine > 133 mmol/l (two of three)
Edoxaban: body weight ≤ 60 kg and/or strong inhibitors of P-gp
AC anticoagulant, DVT deep venous thrombosis, PE pulmonary embolism, AF atrial fibrillation, CrCl C-G creatinine clearance according to 
Cockroft–Gault, P-gp p-glycoprotein, DOACs direct oral anticoagulants, bid twice daily, qd once daily

DVT/PE AF

Standard dosage Reduced dosage Standard dosage Reduced dosage

Rivaroxaban 15 mg bid (3 weeks), then 20 mg qd – 20 mg qd 15 mg qd
Dabigatran ≥ 5 days parenteral AC, then 150 mg bid – 150 mg bid 110 mg bid
Apixaban 10 mg bid (7 days), then 5 mg bid – 5 mg bid 2.5 mg bid
Edoxaban ≥ 5 days parenteral AC, then 60 mg qd ≥ 5 days parenteral AC, 

then 30 mg qd
60 mg qd 30 mg qd
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DOAC blood concentration is thus increasingly consid-
ered interesting since it could help to discriminate between 
ischemic and bleeding risk events due to this larger-than-
expected variability in drug concentrations in real-life set-
tings [104]. In addition, there is accumulating evidence that 
blood concentrations of DOACs are associated with major 
or life-threatening bleeding, as well as ischemic stroke or 
systemic embolism [104]. This has been shown in secondary 
analyses of major RCTs. Some evidence has been published, 
such as for dabigatran, but, for other DOACs, most of the 
data are only found in drug registration documents provided 
to the US FDA by pharmaceutical companies [105–108]. For 
instance, across the 10th to 90th percentile range of steady-
state trough plasma concentrations, achieved with a twice-
daily dose of dabigatran 150 mg, the overall risk of major 
bleeding during the trial ranged from approximately 2–7% 
for a typical 72-year-old AF patient known to have prior 
stroke and diabetes; this was a clinically relevant variability 
[108]. An inverse relationship also exists for thromboem-
bolic events, but it is less pronounced [108]. Edoxaban also 
exhibits robust concentration-dependent relationships with 
both ischemic stroke and life-threatening/fatal bleeds [105]. 
An exposure–efficacy relationship was studied in a subset of 
patients treated with apixaban (n = 2932) whose exposure 
data were available in the ARISTOTLE trial. As opposed to 
dabigatran and edoxaban, the probability of ischemic stroke 
was independent of exposure to apixaban at the dose level 
studied. This lack of association may yet be limited by the 
narrow exposure range and the small number of ischemic 
stroke events in the PK subset (n = 27). The probability of 
major bleeding was found to increase with increased expo-
sure to apixaban. In patients treated with apixaban 5 mg 
twice daily, a twofold increase in drug exposure increased 
the probability of major bleeding within 1 year, from 1.79 
to 3.11% [107]. The relationship between drug exposure and 
clinical events has not been analyzed for rivaroxaban, but 
prothrombin time (PT) has been used instead [106] since 
it is correlated to rivaroxaban blood concentrations. As for 
apixaban, PT data from 7008 patients in the ROCKET per-
protocol analysis dataset demonstrated that the occurrence 
of ischemic stroke was independent of PT in the 10–30 s 
range [106]; however, the risk of major bleeding increased 
with PT. Interestingly, the relationship between prolonged 
PT and major bleeding was clearly exacerbated (by at least 
50%) in patients taking concomitant aspirin [106]. A recent 
paper including 565 patients with AF (the START laboratory 
registry) also showed a relationship between DOAC concen-
trations and clinical events in real-life settings [109]. During 
the 1-year follow-up, all the thromboembolic complications 
occurred in patients whose minimal drug concentrations 
were in the lowest quartile interval calculated for each drug. 
This study’s size was limited and will have to be confirmed 
in future larger-scale studies.

To date, no trial has compared the results of DOAC ther-
apy with or without drug monitoring, and there are no guide-
lines on the steps to follow to improve the quality of anti-
coagulation therapy [98]. Current recommendations from 
the International Society on Thrombosis and Haemostasis 
on measuring the anticoagulant effects of DOACs include 
specific scenarios such as bleeding or before an unplanned 
surgery or invasive procedure [98].

3.3 � Value of Predictive Scores for Anticoagulants

Balancing the individual risk of thrombotic events and bleed-
ing has always been, and remains, challenging. Scores for 
evaluating the risk of cardiac embolism in AF patients have 
been developed to help clinicians decide whether to initiate 
oral anticoagulation therapy. Since anticoagulation is asso-
ciated with a bleeding risk, the benefit of anticoagulation 
should exceed this risk. The CHA2DS2-VASc and CHADS2 
scores are the most frequently used risk models, and they 
consider various recognized predictors such as hyperten-
sion, diabetes, age, sex, history of stroke, vasculopathy, and 
cardiac insufficiency [110, 111]. The CHA2DS2-VASc score 
is preferred for its ability to recategorize low-risk patients 
into a risk group for which anticoagulation is recommended 
[112]. It is important to note that these models have a 
limited ability to predict risk since the C-statistics are, at 
best, 0.67 and 0.69 for the CHA2DS2-VASc and CHADS2 
scores, respectively [18]. Part of the risk spectrum is thus 
not covered by the score. The recent P2-CHA2DS2-VASc 
score, which includes abnormal p-wave axis, has shown a 
significant improvement in ischemic stroke prediction in AF 
but has not yet been implemented in clinical routine [113]. 
The risk of bleeding for AF patients is assessed using three 
main scores, among which the HAS-BLED is the most popu-
lar [114–116]. Unfortunately, and as is the case for platelet 
inhibitors, the individual components of these scores are 
similar to the individual components of the CHA2DS2-VASc 
and CHADS2 scores (hypertension, age, previous stroke, 
diabetes). It is thus not surprising that higher bleeding risk 
is found among patients with higher thrombotic risks [117]. 
This overlap makes clinical decisions harder since patients 
with a high risk of AF are often also at a high risk of bleed-
ing. Most of these scores have been derived and/or validated 
in patients taking VKAs, but not DOACs. The real-world 
performance of these scores for DOACs is low since C-sta-
tistics at 1-year follow-up for ATRIA and HAS-BLED are 
approximately 0.59 [118]. Highlighting these limitations, the 
ESC does not recommend a particular bleeding score [85].

As observed for antiplatelet drugs, there are only lim-
ited approaches for personalizing DOACs (summarized in 
Table 5). In addition, the approved dosages do not cover 
some categories of patients. An individualized prediction 
of DOAC exposure could represent an interesting option to 
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better identify these higher-risk patients as it appears to be 
a reliable means of predicting the probabilities of clinical 
events.

4 � Are Pharmacokinetic (PK) Modeling 
Approaches Promising for Antithrombotic 
Personalization?

As discussed above, there is currently no reliable tool to help 
clinicians predict whether a given patient, in a given clini-
cal setting, is receiving the drug and/or dose that will opti-
mally manage the risk of under- or overdosing dependent on 
that individual’s risk profile. Because antithrombotic blood 
concentrations have been associated with clinical events, 
predicting their concentrations would represent a conveni-
ent means of identifying probable non-responder patients 
or patients at high risk of bleeding, but without the need for 
blood sampling and monitoring.

Blood concentration prediction could be achieved by tak-
ing advantage of PK modeling such as POPPK approaches 
and recent advances in PBPK modeling [119].

4.1 � Population‑Based PK Models

POPPK allows for identifying and quantifying factors affect-
ing drug disposition, such as demographic, pathophysiolog-
ical, environmental, or genetic factors. POPPK is widely 
used for dosage optimization and constitutes the basis of 
Bayesian-based therapeutic drug monitoring [120–123]. 
POPPK is now increasingly use for drug optimization in 
various areas, including infectious disease [124], and has 
been prospectively validated to optimize peak and trough 
concentrations of amikacin in neonates [125]. Several stud-
ies have demonstrated the population approach’s potential 
for optimizing VKA dosing based on concentrations or bio-
marker monitoring tools [126, 127]. A mechanism-based 
decision support tool was proposed for warfarin dose adjust-
ment before starting therapy by predicting the most probable 
warfarin dose to reach an optimal international normalized 
ratio (INR), or during treatment to guide dose adjustment 
[126]. This population PK/PD (POPPK/PD)-based tool per-
formed well in both adults and children by predicting dose 
per day and per week, as well as the corresponding INR 
prediction. In another POPPK/PD-based study, a nomogram 
was developed for warfarin dose adjustment at the initiation 
phase based on CYP2C9 and VKORC1 polymorphisms, at 
a maintenance phase based on genetic and clinical factors, 
and previous INR data [127]. Using in silico clinical trial 
simulations with this model, a therapeutic INR was reached 
in a population of diverse ethnic and genetic groups within 
1 week. These two studies showed that by shortening the 
period to reach a stable INR with warfarin, and by reducing Ta
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the interindividual variability, these models could participate 
in improving patients’ clinical outcomes, but this remains 
to be challenged in prospective studies. POPPK models 
have been used to characterize the PK profile of all DOACs 
marketed to date in different populations [128–134]. These 
POPPK models have been used for various purposes: to 
describe renal influence on PKs; to quantify bleeding risk 
using exposure–response analysis; and, more recently, for 
dosage optimization. Nonetheless, validated POPPK models 
for P2Y12 inhibitors are needed [135]. Indeed, the lack of 
information on blood concentrations for this class of drug is 
a limitation for model-based dosage optimization.

4.2 � Physiologically‑Based PK Models

PBPK models rely on a physiologically realistic compart-
mental structure into which input parameters from differ-
ent sources (e.g. in vitro studies, intrinsic properties of the 
compound of interest, and demographic data such as eth-
nicity, age, clearance organ function, body weight or body 
mass index, polymedication, and genetics) are combined to 
predict plasma concentration–time profiles [136, 137]. This 
so-called bottom–up approach—the model is built from first 
principles, literature, or in vitro data—is classically oppo-
site to the top–down approach, where all parameters are 
estimated from in vivo data [138]. PBPK does not exclude 

the use of in vivo data via a top–down approach, such as 
POPPK, and both approaches are increasingly seen as com-
plementary [139]. PBPK models successfully predicted 
relevant DDI or PK profiles in populations at risk, such as 
patients with renal insufficiencies or children [136, 140]. 
At least 20 approved drugs have used PBPK simulations 
in regulatory agency submissions, including submissions 
to the FDA [136, 140]. A recent review in Europe showed 
that pharmaceutical companies had submitted 67 procedures 
including one or more PBPK models to the EMA [141]. The 
growing trend of using PBPK models in drug submissions to 
regulators, for a variety of purposes, led the EMA and FDA 
to publish specific guidelines in 2017 for their use in support 
of regulatory approval [142, 143].

PBPK models have already been built for antithrombot-
ics but few have been clinically validated. For instance, a 
PBPK model for ticagrelor has been clinically validated in 
a DDI context involving HIV patients taking antiretroviral 
drugs boosted with ritonavir or cobicistat. Using a simu-
lated interaction between ticagrelor 180 mg and ritonavir 
100 mg, a lower dose (25% of the regular dose) of ticagrelor 
was predicted to obtain the same PK and platelet inhibition 
as ticagrelor administered alone in human volunteers. This 
PBPK model could be used prospectively to broaden the 
use of ticagrelor in patients with HIV treated using ritona-
vir, regardless of the CYP3A4/5 inhibition (Fig. 1) [144]. 

Fig. 1   A practical example of the successful development and valida-
tion of a PBPK model in healthy volunteers. Development of a PBPK 
model requires a bottom-up procedure relying on a physiologically 
realistic compartmental structure into which input parameters from 
different sources are combined to predict plasma concentration–time 
profiles. System component includes parameters related to human 
physiology; drug-dependent parameters include properties related to 
the drug itself; extrinsic factors include environmental parameters 
such as DDI and toxic exposure; and intrinsic factors include genet-
ics, sex, or disease. Marsousi et  al. [144] created a model like this 

to simulate the interaction between ticagrelor 180  mg and ritonavir 
100 mg. In doing so, it was calculated that a lower dose of ticagre-
lor, when coadministered with ritonavir, could result in the same PK 
and platelet inhibition as ticagrelor administered alone. A clinical 
study was then conducted in healthy volunteers. The model success-
fully predicted the observed PK profiles of ticagrelor and its active 
metabolite. Adapted from Zhao et al. [136], Marsousi et al. [144] and 
Darwich et  al. [148]. PBPK physiologically based pharmacokinetic, 
DDI drug–drug interaction, PK pharmacokinetics
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Another recent PBPK absorption model was able to predict 
the PK profile of prasugrel’s active metabolite in the pres-
ence of a proton pump inhibitor [145]. For DOACs, exist-
ing models are related to rivaroxaban. For instance, a DDI 
model of patients with various degrees of renal impairment 
and who were receiving a regimen of rivaroxaban with CYP/
efflux transporter inhibitors was constructed using a PBPK 
model. This model predicted a clinically significant increase 
in rivaroxaban exposure, such that FDA reviewers recog-
nized the potential effects of concurrent renal impairment 
and the use of a moderate/strong CYP3A4/5 inhibitor on 
rivaroxaban exposure that had not been evaluated by the 
applicant [136]. Another PBPK model was successfully 
developed to predict rivaroxaban’s PK profile at differ-
ent doses in healthy subjects and patients with hepatic or 
renal dysfunction [146]. Promising results outside the field 
of antithrombotics have shown, as a proof of concept, that 
a PBPK model works in a real-life setting [147]. Polasek 
et al. successfully predicted olanzapine drug exposure in 14 
patients using a PBPK approach. This result, obtained from 
standardized conditions of clinical trials, is really encourag-
ing to test PBPK models in real conditions.

4.3 � Limitations of PK Models

There remain important limitations to the implementation 
of such models. The first is the lack of available models for 
some compounds and the need to obtain the critical, but not 
necessarily easily available, data from several (academic and 
industrial) sources in order to build the models. In addition, 
models must be externally validated since there is little evi-
dence of their use and impact on a large scale in clinical care 
settings [147, 148]. Evidence-based efficacy and cost-benefit 
analyses are also pivotal to seeing broader implementation 
[148]. Finally, PBPK and POPPK modeling requires strong 
interdisciplinary coordination between clinical pharmacolo-
gists, physicians, academic and industrial researchers, and 
patient groups, which does not occur widely [148].

The challenge is especially great in cardiovascular medi-
cine since patients often have multiple comorbidities and 
comedications, which increase a model’s complexity. How-
ever, as discussed above, very few options offer the possibil-
ity of integrating so many parameters from different sources 
at the same time. An ideal model would be based on all the 
available information about the patient and the disease they 
are being treated for, comorbid diseases, medication they 
are receiving, and cytochrome genotyping and phenotyping 
as these become increasingly available [148]. In the future, 
an ideal tool could help clinicians prospectively manage and 
identify patients at risk of bleeding or thrombosis, and it 
could be implemented on individual electronic patient record 
systems. However, dose adjustment seems to be more chal-
lenging since dosages are limited to those tested in clinical 

trials and provided by pharmaceutical companies, and are 
based on clinical characteristics (body weight, age, and 
renal clearance), not drug concentrations [104]. However, 
this could represent an interesting option, as a recent model 
suggested that a dose reduction of rivaroxaban could reduce 
bleeding-associated events and mortality [134].

In the meantime, another approach would be to allow 
the identification of antithrombotics that are associated 
with unacceptably high rates of patient bleeding or stroke 
(e.g. 90th or 10th percentile of the drug exposure distribu-
tion), while considering the available population data for 
antithrombotic blood concentrations (Fig. 2); the clinician 
would then select the antithrombotic with the best effi-
cacy–safety profile for a given patient. Given that the costs 
for CYP phenotyping and genotyping are decreasing very 
fast and would require no more than the available informa-
tion of individual patients (e.g. standard laboratory data, 
drug information from admission notes), the cost of this 
informed antithrombotic selection approach is expected to 
be low. Ideally, the model would need to be dynamic and 
improvable over time, with permanent feedback between 
predicted and observed results.

5 � Complementary Approaches: Clinical 
Decision Support and Alerts

Other complementary approaches to the risk management 
of antithrombotic AEs based on clinical decision support 
systems have been developed [149, 150] and implemented 
within hospital information systems [151, 152]. Automated 
detection of potential AEs may prove useful and is less labor-
intensive and faster [150]. However, automated detection of 
AEs generates many false-positive alerts, targets inappro-
priate prescriptions instead of clinically relevant AEs, and 
considers neither the type of hospital or unit (e.g. medical, 
surgical) nor the patients’ medical characteristics [149, 150]. 
Owing to their limitations and to the amount of structured 
and unstructured information contained in electronic medi-
cal records, new AE detection and monitoring systems are 
currently being developed based on multiple data sources 
and methods involving structured data mining and natural 
language processing [153–156], which, in the latter case, 
although being strongly language dependent, has demon-
strated its power to support AE detection. The specificity of 
alerts will soon improve; notifications will be prioritized and 
will offer detailed advice. These decision support systems 
are heading towards patient-centered decision support, but 
the most important research question remains as to whether 
they will be able to improve patient outcomes rather than 
just processes [151].
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6 � Conclusions

Despite the recent advances of cardiovascular medicine in 
reducing the risk of bleeding and thrombosis, and thanks 
to the development of new compounds such as DOACs 
and P2Y12 inhibitors, some individuals still cannot ben-
efit from these agents because these individuals do not 
fit the standardized patient profiles. The absence of clini-
cal response or the AEs associated with this category of 
patients represents a challenging public health issue. Cur-
rent approaches for the personalization of antithrombotics 
(biological, genetic, and clinical approaches) have shown 
mixed results to date. In parallel with the real need to 
improve our knowledge regarding the different co-factors 
influencing treatment response, PK predictive models rep-
resent a new approach to antithrombotic therapies that is 
ready to be tested in clinical settings. Successfully imple-
menting such models would help clinicians and patients 
to share clinical decision making thanks to reliable infor-
mation on the benefits and risks of various personalized 
treatment strategies.
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