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Abstract The pharmacokinetics (PK) of b-lactam
antibiotics in cystic fibrosis (CF) patients has been com-

pared with that in healthy volunteers for over four dec-

ades; however, no quantitative models exist that explain

the PK differences between CF patients and healthy vol-

unteers in older and newer studies. Our aims were to

critically evaluate these studies and explain the PK dif-

ferences between CF patients and healthy volunteers. We

reviewed all 16 studies that compared the PK of b-lactams

between CF patients and healthy volunteers within the

same study. Analysis of covariance (ANCOVA) models

were developed. In four early studies that compared

adolescent, lean CF patients with adult healthy volunteers,

clearance (CL) in CF divided by that in healthy volunteers

was 1.72 ± 0.90 (average ± standard deviation); in four

additional studies comparing age-matched (primarily

adult) CF patients with healthy volunteers, this ratio was

1.46 ± 0.16. The CL ratio was 1.15 ± 0.11 in all eight

studies that compared CF patients and healthy volunteers

who were matched in age, body size and body composi-

tion, or that employed allometric scaling by lean body

mass (LBM). Volume of distribution was similar between

subject groups after scaling by body size. For highly

protein-bound b-lactams, the unbound fraction was up to

2.07-fold higher in older studies that compared presum-

ably sicker CF patients with healthy volunteers. These

protein-binding differences explained over half of the

variance for the CL ratio (p\0.0001, ANCOVA). Body

size, body composition and lower protein binding in

presumably sicker CF patients explained the PK alter-

ations in this population. Dosing CF patients according to

LBM seems suitable to achieve antibiotic target

exposures.
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Key Points

The pharmacokinetics of b-lactam antibiotics in

cystic fibrosis (CF) patients is comparable with that

in healthy volunteers after accounting for body size,

body composition and potentially altered protein

binding.

For highly protein-bound b-lactams, early studies in

presumably sicker patients reported a considerably

lower protein binding in adolescent CF patients

compared with that in adult healthy volunteers.

Dosing of b-lactam antibiotics in CF patients based

on allometric scaling according to LBM is useful to

achieve antibiotic target exposures.

1 Introduction

The pharmacokinetics (PK) of b-lactam antibiotics in

cystic fibrosis (CF) patients has been evaluated for over

four decades. During this time, extensive advances in the

overall care of CF patients have substantially improved

their life expectancy and quality of life. However, there is

considerable discordance in the PK of b-lactam antibiotics

in CF patients between older and newer studies.

Studies published before 1985 found substantially

higher clearances (CL) and volumes of distribution at

steady state (Vss) for CF patients compared with those in

healthy volunteers [1, 2]. These studies reported CL and Vss

per kilogram total body weight (WT), and therefore lin-

early scaled these PK parameters by WT; however, this

approach does not account for the leaner body composition

of CF patients compared with that of healthy volunteers.

More recent studies found smaller differences in CL and

Vss of b-lactam antibiotics between CF patients and healthy

volunteers [1, 2]; these differences could be well explained

by body size and body composition. Several of the more

recent studies used allometric scaling by body size [3] to

compare CF patients and healthy volunteers. This approach

scales Vss linearly, whereas CL increases less than linearly

with body size. Consequently, allometric scaling predicts

the elimination half-life to be shorter in smaller patients

(Fig. 1) [3, 4]. Several of these more recent studies applied

population PK modelling to additionally estimate the

between-subject variability. To translate these PK insights

into optimal dosage regimens, it is important to consider

the bacterial pathogen(s) that cause serious infections in CF

patients.

Pseudomonas aeruginosa is among the most critical

Gram-negative bacterial pathogens in CF patients. This

‘superbug’ causes substantial clinical challenges and can

become resistant during treatment with any antibiotic in

monotherapy [5–7]. Chronic lung infections by P. aerugi-

nosa in CF patients are extremely difficult to eradicate

[8–10]; therefore, achieving the targeted antibiotic expo-

sure in CF patients is paramount to cure Pseudomonas

infections.

Rationally optimized monotherapies, and especially

combination therapies with available antibiotics, present a

tangible and promising approach to combat P. aeruginosa

infections [11–19]. To optimize these antibiotic dosage

regimens, PK/pharmacodynamic (PK/PD) relationships

have been established using both in vitro and animal

infection models. These non-clinical models have been

employed for over half a century [20–25] and their insights

underpin our current approaches of how to optimally treat

bacterial infections. To leverage these insights, it is

important to know and understand potential PK alterations

in a target population such as CF patients.

This review aimed to compare the PK of b-lactam
antibiotics in CF patients with that in healthy volunteers,

and to explain the observed differences between both

subject groups. These PK insights allow us to design

dosage regimens that more precisely achieve the targeted

exposure of b-lactam antibiotics in CF patients. We discuss

these PK considerations in the context of P. aeruginosa

infections and their mechanisms of resistance to b-lactam
antibiotics. Moreover, this review provides a future

Fig. 1 Comparison of linear scaling for volume of distribution and

allometric scaling for clearance in subjects of different body size.

Volume of distribution is predicted to be 50% lower in a 35 kg patient

compared with a 70 kg patient; however, clearance is only approx-

imately 41% lower in a 35 kg patient. Therefore, allometric scaling

predicts a slightly shorter elimination half-life in smaller patients. For

this illustration, body size is represented as total body weight. To

account for body composition in addition to body size, other body size

descriptors such as lean body mass have been used for cystic fibrosis

patients
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perspective on recent approaches to rationally optimize

antibiotic monotherapies and combination therapies that

may benefit CF patients.

2 Review of Pharmacokinetic (PK) Data

2.1 PK of b-Lactam Antibiotics in Cystic Fibrosis

Patients

We reviewed the literature for studies that compared the

PK of b-lactam antibiotics in CF patients with that in

healthy volunteers within the same study. For intra-

venously administered b-lactams, we compared total CL;

renal CL was compared for orally administered b-lactams

(such as dicloxacillin). In contrast to the apparent total CL

after oral dosing, renal CL is not affected by potential

differences in oral bioavailability between CF patients and

healthy volunteers. Our search included not only MED-

LINE but also studies cited in prior reviews [1, 2, 26, 27],

using the keywords ‘cystic fibrosis’, ‘pharmacokinetic*’,

and (clearance OR half-life OR volume of distribution).

2.2 Comparison of Clearance and Volume

of Distribution

To compare volume of distribution between both subject

groups, we divided the average Vss in CF patients by Vss in

healthy volunteers after accounting for body size. The

latter was achieved via scaling Vss linearly by WT or lean

body mass (LBM). This Vss ratio was used for statistical

analysis. As the unbound fraction (fu) differed between

both subject groups, we additionally calculated Vss based

on unbound drug (Vss,u = Vss/fu) [28]. The resulting ratio of

Vss,u in both subject groups (Vss,u,CF/Vss,u,HV) was calcu-

lated by dividing the Vss,CF/Vss,HV for total drug by the ratio

of unbound fractions (fuCF/fuHV).

Similarly, we divided the average CL in CF patients by

that in healthy volunteers. This CL ratio based on total drug

concentrations (i.e. CLCF/CLHV) is useful for b-lactams

with low protein binding; however, it is affected by dif-

ferences in protein binding between CF patients and heal-

thy volunteers. We therefore utilized two methods to

account for protein binding. The first approach calculated

CL of unbound drug (CLu) by dividing CL for total drug by

fu in the respective subject group (i.e. CLu = CL/fu). This

approach is applicable for b-lactams with low or interme-

diate plasma protein binding and a total CL of less than

approximately 30% of renal blood flow (i.e. for b-lactams

with a low renal extraction ratio) [29].

The second approach is most suitable for b-lactams with

high protein binding and high CL (i.e. dicloxacillin, clox-

acillin and methicillin), and assumed a well-stirred

elimination model [29–31]. For these drugs, extensive

renal tubular secretion contributes substantially to total CL.

In the well-stirred model, the intrinsic CL (CLint) repre-

sents a transporter-mediated secretion process and can be

very large. However, the observed overall secretion CL

(CLsec) is limited by renal blood flow (Q), since CLsec-

= (Q�CLint�fu)/(Q ? CLint�fu) [29–31]. Prior studies

showed that Q is similar in CF patients and healthy vol-

unteers [32]; we set Q to 63.9 L/h for subjects with 1.73 m2

body surface area (BSA).

The glomerular filtration rate (GFR) was set to 7.0 L/h

(equivalent to 11% of renal blood flow). Glomerular fil-

tration CL was calculated as fu�GFR and was subtracted

from the observed total CL; the remainder was attributed to

CLsec. Rearranging for CLsec yields CLint = (Q�CLsec)/

[fu�(Q-CLsec)]. For three b-lactams (i.e. dicloxacillin,

cloxacillin and methicillin), we reported the ratio of CLint

between CF patients and healthy volunteers (CLint CF/

CLint HV) and used it for statistical analyses. This second

approach considers that protein binding affects the

glomerular filtration CL, but not renal tubular secretion.

2.3 Analysis of Covariance Statistics

We performed an analysis of covariance (ANCOVA) on log-

scale to identify factors that influenced the ratio of CL and Vss

between CF patients and healthy volunteers, using the

XLSTAT software (version 19.02). The ratio of the unbound

fractions (fuCF/fuHV) in both subject groups was included as a

potential predictor for the CL and Vss ratios. Supported by the

results for cefsulodin and ceftazidime (Table 2), we assumed

that protein binding in CF patients and healthy volunteers did

not differ (i.e. fuCF/fuHV = 1) for b-lactams with low protein

binding (fu C 70%, i.e. cefepime, meropenem, piperacillin,

carumonam and cefpirome) (Table 1).

For b-lactams with intermediate protein binding (i.e.

methicillin, and ticarcillin), we either assumed the same

protein binding in both subject groups or used a nearest-

neighbour imputation algorithm (as implemented in

XLSTAT) for missing data during ANCOVA. As both

approaches yielded near-identical or identical results,

results for the latter approach are not shown. The second

study on dicloxacillin [33] was not included in the

ANCOVA since it did not report protein binding and its PK

results differed substantially from those of an earlier study

that reported protein binding in CF patients and healthy

volunteers for dicloxacillin [34].

The demographic differences between the studied sub-

ject groups was included as an additional categorical pre-

dictor in the ANCOVA model (Table 2). We categorized

the PK studies into three groups. The first group included

studies that compared the PK in primarily adolescent CF

patients with that in adult healthy volunteers. On average,

Pharmacokinetics of b-Lactam Antibiotics in Cystic Fibrosis 145



CF patients were more than 35% younger than their healthy

volunteer control groups, and, as expected, WT, LBM and

BSA differed substantially between subject groups in these

four studies (Table 2, Fig. 2) [34–37].

Study group 2 primarily compared adult CF patients

with adult healthy volunteers [33, 38, 39], or used age-

matched subjects of various ages [40]. In this group, while

mean age differed by 12% or less, WT and LBM were

24–28% and 23% smaller, respectively, in CF patients

compared with healthy volunteers (Table 2, Fig. 2). These

studies scaled CL and V linearly by either BSA or WT, and

thus did not account for differences in body composition.

The third group included eight PK studies [41–48]

where CF patients and healthy volunteers were matched in

body size (LBM within ± 10%), or allometric scaling by

LBM was employed in a population PK modelling analysis

(Table 2, Fig. 2). This modelling approach accounted for

both body size and body composition when comparing the

PK in CF patients with that in healthy volunteers. Popu-

lation modelling is particularly suitable to account for

differences in body size and body composition while

considering between-subject variability [49].

3 Comparison of Pharmacokinetic Properties
between both Subject Groups

3.1 Lower Protein Binding in CF Patients

For highly protein-bound b-lactams such as dicloxacillin,

considerably higher (2.07-fold) unbound fractions (i.e.

lower protein binding) were reported in CF patients com-

pared with healthy volunteers [34] (Table 1). The fuCF/

fuHV ratio was 1.37-fold for cloxacillin and 1.19-fold in a

more recent study on aztreonam [37, 44]. In contrast,

protein binding was well comparable for less protein-bound

b-lactams such as cefsulodin and ceftazidime.

3.2 PK Comparison for Studies Not Matched

in Body Size and Body Composition

A comparison of the demographic properties of subjects in

the three groups of PK studies revealed important differ-

ences (Fig. 2). The first group was comprised of presum-

ably sicker CF patients who were studied in the 1970s and

early 1980s. These CF patients were substantially younger

and leaner than their healthy volunteer control groups

(Table 2). In these four studies, CL of total drug (reported

in L/h/1.73 m2) in CF patients, divided by CL in healthy

volunteers, was 1.72 ± 0.90 (Table 3). After accounting

for the reported differences in protein binding, this ratio

had a mean of 1.42 ± 0.34. For Vss, this ratio was

1.13 ± 0.42, expressed as L/kg, and 1.01 ± 0.35 after

accounting for protein binding. Of note, the studies in

group 1 contained highly protein-bound b-lactams (i.e.

dicloxacillin and cloxacillin), which are active against

Staphylococcus aureus but not P. aeruginosa.

The CF patients in the second group had either similar

mean age compared with their healthy volunteer control

groups, or were age-matched (Table 2, Fig. 2); however,

CF patients had a 24–28% lower WT compared with their

healthy volunteer control groups. In these four studies, the

CL ratio in CF patients compared with healthy volunteers

was 1.46 ± 0.16 based on total drug, and 1.29 ± 0.48 after

accounting for protein binding. CL was linearly scaled by

WT or BSA, and thus the CL comparison did not account

Table 1 Comparison of

fraction of drug bound in

plasma

Antibiotic Fraction bound in plasma Fraction unbound (fu) in plasma Ratio

CF patients HVs CF patients HVs fuCF/ fuHV

Dicloxacillin [34] 88.4 ± 7.7% 94.4 ± 1.9% 11.6 ± 7.7% 5.6 ± 1.9% 2.07

Methicillin [93] 49.3% 50.7%

Cefsulodin [36] 17% 15% 83% 85% 0.98

Cloxacillin [37] 94.8 ± 5.1% 96.2 ± 2.1% 5.2 ± 5.1% 3.8 ± 2.1% 1.37

Ceftazidime [38] 3.1 ± 6.1% 2.0 ± 5.6% 96.9 ± 6.1% 98.0 ± 5.6% 0.99

Ticarcillin [39, 94, 95] 45 to 65% 35–55%

Cefepime [96] 10% 90%

Meropenem [56, 97] \2% [98%

Aztreonam [44] 42.1 ± 2.7% 51.5 ± 3.1% 57.9 ± 2.7% 48.5 ± 3.1% 1.19

Piperacillin [45, 98] 30% 70%

Carumonam [46, 99] 23% 77%

Cefpirome [48, 100] 10% 90%

Empty cells indicate no data

CF cystic fibrosis, HVs healthy volunteers, fuCF fraction of drug unbound in plasma in CF patients, fuHV
fraction of drug unbound in plasma in HVs
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for body composition. Interestingly, the dicloxacillin study

in group 2 only found a 27% higher CL in CF patients

compared with healthy volunteers. The ratio for Vss (re-

ported as L/kg) was 1.27 ± 0.12 based on total drug, and

1.11 ± 0.35 for unbound drug (Table 3).

3.3 PK Comparison While Accounting for Body

Size and Composition

All eight studies in group 3 accounted for body size and

body composition, and primarily compared adult CF

patients with healthy volunteers. Subject groups were

matched within 8% of LBM or WT, or body size and body

composition were accounted for via allometric scaling by

LBM within a population PK modelling analysis. The CL

ratio based on total drug was within 1.00 and 1.31 for all

eight studies, with an average ± standard deviation of

1.15 ± 0.11. After accounting for protein binding, this

value was 1.13 ± 0.10 (range 1.00–1.27) (Table 3). The

CF patients in group 3 had similar Vss compared with the

healthy volunteers (Vss ratio: 1.00 ± 0.10).

The ANCOVA showed that differences in fu (i.e. fuCF/

fuHV) and the study group were significant predictors

(p B0.004) for the CL and Vss ratios, based on total drug

concentrations (Table 4). These two factors explained 89%

of the total variance for the CL ratio and 70% for the Vss

ratio (Fig. 3).

4 Clinical Implications and Future Perspectives

4.1 Greatly Improved Life Expectancy of CF

Patients

The life expectancy of CF patients increased from a few

months in the 1930s to 14 years in 1969 [1]. In the US, life

expectancy was 31.3 years in 1996 [50] and 49.7 years in

2012 [51], while in Denmark, CF patients had a probability

of living to at least 40 years that was as high as 83.3% in

1995 [52]. These improvements reflect impressive advan-

ces in the overall management and treatment of CF. In

turn, this entails that CF patients in the earlier studies in the

1970s and early 1980s were, on average, sicker and leaner

than CF patients studied in the 1990s and later (Fig. 2).

4.2 First Quantitative Model to Explain PK

Alterations of b-Lactams in CF Patients

This review is the first to develop a quantitative model that

compares the PK of b-lactams in CF patients with that in

healthy volunteers from older and newer studies,

accounting for differences in protein binding and demo-

graphic characteristics. We focused on the 16 studies thatT
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compared the PK between CF patients and healthy volun-

teers within the same trial; these studies assessed 12 b-
lactams, including at least one member of each b-lactam
class (Table 1). This supported a within-study PK com-

parison based on the same clinical and bioanalytical pro-

cedures for each drug.

Highly protein-bound b-lactams (i.e. dicloxacillin and

cloxacillin) were found to have a considerably higher fu in

CF patients compared with that in healthy volunteers

(Table 1) [34, 37]. Even if CLu was identical between both

subject groups, a higher fu will entail a higher CL of total

drug. This is highlighted by the highest reported CL ratio

of 2.97 for dicloxacillin (Table 3) in a study from 1975 in

presumably rather sick CF patients [34]. After accounting

for the 2.07-fold higher fu in CF patients (Table 2), the

CLint ratio between CF patients and healthy volunteers was

1.79, based on a well-stirred elimination model. For clox-

acillin, the CL ratio for total drug was 1.78 (Table 3) and

the CLint ratio was 1.49 after accounting for the difference

in protein binding (Table 2) [37].

In 2008, Beringer et al. [33] reported a CL ratio of 1.27

for total drug of dicloxacillin, which was substantially

lower than the CL ratio of 2.97 reported for dicloxacillin in

1975 [34]. Presumably, CF patients in the older study were,

on average, sicker and may have had more hepatic

impairment. Hypoalbuminaemia is well-documented in CF

patients and can be caused by extensive liver cirrhosis [53]

and an enlarged plasma volume that dilutes albumin during

pulmonary hypertension [54, 55].

The less-effective nutrition of CF patients in older

studies may have led to lower albumin concentrations and

thus less protein binding of b-lactams in CF patients

compared with those in healthy volunteers in older studies

(Table 1). These protein-binding results arise from the

same CF patients and healthy volunteers as those included

in the respective PK study. Some of these studies used

ultrafiltration [36, 44], whereas others employed equilib-

rium dialysis [37, 38], to measure protein binding;

dicloxacillin was evaluated by both methods [34]. While

different methods may have affected the protein binding

comparison between various b-lactams, CF patients and

healthy volunteers were compared using the same method

for the respective drug.

More recently, a 19% higher fu in CF patients (57.9%)

compared with that in healthy volunteers (48.5%) has been

reported for aztreonam (Table 2) [44]. While the CL ratio

based on total drug was 1.31, after accounting for protein

binding the ratio of unbound CL was 1.10 (Table 3). This

suggests that unbound CL of aztreonam was comparable in

these presumably healthier CF patients who were matched

in body size, body composition and age with their healthy

volunteer control group.

4.3 Impact of Body Size, Body Composition

and Severity of Disease

The demographic characteristics differed between study

groups (Fig. 2). Studies in group 1 were found to have the

highest CL ratios, most likely since rather sick, adolescent

CF patients were compared with adult healthy volunteers.

The CL ratios were especially high when based on total

drug concentrations, but were also elevated after account-

ing for protein binding, suggesting that more severe disease

may have caused elevated CLs. While the studies in group

Fig. 2 Comparison of CF patients (left) and HVs (right) from the

three groups of PK studies. In group 1, CF patients were considerably

younger and leaner compared with HVs, while CF patients in the

1970s and 1980s were likely, on average, to be sicker. CF patients in

group 2 were age-matched to HVs, but were smaller and leaner than

their control groups. CF patients in group 3 were matched in age,

body size and body composition, or allometric scaling based on LBM

was used to account for differences in body size and body

composition. These CF patients were, on average, healthier due to

the improvement of CF care. CF cystic fibrosis, HVs healthy

volunteers, PK pharmacokinetic, LBM lean body mass
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2 matched age between both subject groups, they matched

neither body size nor body composition (Table 2) and

scaled CL and Vss linearly by WT. This likely contributed

to CL ratios above 1.0 for the studies in group 2. The

ANCOVA showed that protein-binding differences and

study group explained 89% of the total variance for the CL

ratio and 70% for the Vss ratio when these PK parameters

were calculated based on total drug (Table 4, Fig. 3).

In group 3, CL and Vss were comparable between CF

patients and healthy volunteers (Table 3, Fig. 2) after

matching or accounting for body size and body composi-

tion via allometric scaling by LBM [45–48]. Two b-lac-
tams in group 3—piperacillin and meropenem—are subject

to considerable tubular secretion. While meropenem fol-

lows linear PK [43, 56], several studies reported saturable

elimination of piperacillin [57–59]. Saturation of renal CL

at high piperacillin doses may have affected the PK com-

parison between CF patients and healthy volunteers [60],

although the plasma PK of piperacillin in CF patients was

adequately described by a linear population PK model [45].

Overall, the eight studies in group 3 demonstrated that CL

in CF patients is predictable based on LBM, and suggests

that LBM can be used for dose selection to achieve the

target drug exposure in CF patients.

4.4 PK Considerations for Dosing of CF Patients

To achieve similar average unbound concentrations at steady

state, CF patients in the 1970s would have, on average,

required approximately 42% higher doses compared with

those in healthy volunteers (Table 3). Nowadays, CF patients

are healthier and thus may have less pronounced differences

in protein binding (Table 2). Moreover, all b-lactams with

clinically useful activity against P. aeruginosa have a rather

low protein binding (i.e. B 30%; 50% for aztreonam). Thus,

protein binding differences unlikely play a major role in b-
lactam dose selection against P. aeruginosa.

The eight studies in group 3 suggested that only 13%

higher doses (range 0–27%) are required in CF patients,

compared with those in healthy volunteers, to achieve

similar average unbound drug concentrations at steady

state (Table 3). This may not be clinically significant for

less-severe infections; however, these differences may

require slightly shorter dosing intervals or slightly longer

durations of infusion for b-lactams in CF patients to

achieve similar times of the unbound drug concentration

above the minimal inhibitory concentration [44–48].

4.5 Pharmacodynamic Rationale to Treat Severe

Infections

From a PD perspective, higher doses are likely required to

treat more severe and chronic lung infections by P.T
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aeruginosa [52]. Lung infections with a high bacterial

burden are common in CF patients and likely harbour pre-

existing resistant bacterial mutants. Similarly, these

infections carry a higher risk for the emergence of high-

level resistance during therapy as bacteria have more time

to develop resistance [10].

Pseudomonas aeruginosa isolates from CF patients

often have a substantially ([ 100-fold) higher mutation

rate due to an impairment in the DNA replication proof-

reading machinery [61]. Infections by such hypermutators

likely benefit from combination antibiotic therapy

[15, 62, 63]. Furthermore, the phenotype of P. aeruginosa

substantially differs in biofilm infections compared with

planktonic growth. While outside the scope of this review,

phenotypic changes of bacteria growing in biofilm mode

often occur during chronic lung infections by P. aerugi-

nosa in CF patients and should be considered for optimal

antibiotic dosage regimens [64–66].

4.6 Innovative, Front-Loaded Dosage Regimens

to Minimize Resistance Emergence

Increasing the dose of an antibiotic in monotherapy would

seem the simplest option, however this is often not viable

since antibiotic doses that can suppress resistance would

lead to dose-limiting, antibiotic-related toxicity, not only

for polymyxins but also aminoglycosides [67–69]. Front-

loaded dosage regimens have been evaluated in non-clini-

cal models and clinical trials [70–76]. These regimens

utilize a higher dose during the first day(s) of therapy to

maximize bacterial killing, kill resistant mutants, or sup-

press their growth. Front-loaded regimens also provide

more time for the immune system to eradicate the bacteria

that survive initial high-dose therapy. Thereafter, lower

maintenance doses are used to optimize safety.

The emergence of P. aeruginosa resistance typically

occurs at different times, depending on the mechanism. For

polymyxins, resistance can emerge rapidly (within 1 day,

or even more rapidly) [77, 78]. Efflux pumps and hyper-

mutation can be upregulated within 1 h in vivo [19, 61];

subsequently, the most efficient pump gets selected over

1–2 days. Adaptive efflux-related resistance to

Table 4 Summary of ANCOVA results for factors influencing the natural logarithm of the ratio of clearance and volume of distribution at

steady state when based on total drug concentrations

Factor Clearance ratio (CLCF/

CLHV)

Volume of distribution ratio (VCF/VHV)

Protein binding difference between CF patients and HVs; ln(fuCF/fuHV) p\ 0.0001 p = 0.001

Study group p = 0.004 p = 0.004

r2 0.89 0.70

CLCF and CLHV clearance (calculated based on total drug concentrations) in CF patients and HVs, respectively, VCF and VHV volume of

distribution (calculated based on total drug concentrations) in CF patients and HVs, respectively, fuCF fraction of drug unbound in plasma in CF

patients, fuHV fraction of drug unbound in plasma in HVs, CF cystic fibrosis, HV health volunteers, ANCOVA analysis of covariance

Fig. 3 Observed vs. ANCOVA-predicted ratios of a clearance and

b volume of distribution between cystic fibrosis patients and healthy

volunteers. ANCOVA analysis of covariance
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aminoglycosides can occur within 2 h, and continues to

rise thereafter [62, 79–83]. Overall, this time-course of

resistance favours front-loaded and once-daily aminogly-

coside dosage regimens [79].

While resistant mutants with a modified outer membrane

are often present in the initial inoculum, such mutations

can also occur during the first day in in vitro models

[77, 84, 85]. Similarly, P. aeruginosa can lose the outer

membrane porin OprD that confers resistance to car-

bapenems (especially imipenem); OprD loss is a common

and clinically relevant resistance mechanism and often

occurs after approximately 1–5 days of therapy [86–88].

Given the time course of these resistance mechanisms, it is

imperative to ‘hit’ P. aeruginosa infections hard at initia-

tion of antibiotic therapy.

4.7 Synergy Mechanisms for Rationally Optimized

Combination Dosing Strategies

Rationally optimized combination therapy is likely most

beneficial for the treatment of severe infections [10]. Tar-

geting the outer bacterial membrane, which presents a

formidable penetration barrier in P. aeruginosa [89], offers

the opportunity to achieve synergistic bacterial killing. If

one antibiotic (e.g. an aminoglycoside or a polymyxin)

disrupts and permeabilizes the outer membrane, the target

site concentrations of a second antibiotic (e.g. a b-lactam)

can be enhanced. We recently showed this synergy

mechanism for aminoglycoside plus carbapenem combi-

nations [15–17, 63, 90].

A second approach is to use one antibiotic to kill the

bacterial population resistant to the other antibiotic, and

vice versa [10, 12]. This subpopulation synergy strategy

works best if two antibiotics with different resistance

mechanisms are combined. Third, one drug (e.g. a b-lac-
tamase inhibitor) can directly inhibit a resistance mecha-

nism to the other antibiotic (e.g. a b-lactam). Finally, an

antibiotic that inhibits protein synthesis (such as an

aminoglycoside) can minimize the expression of b-lacta-
mase enzymes and thereby decrease inactivation of the b-
lactam antibiotic used in combination [10, 11, 91, 92].

Overall, rationally optimized combination dosing strategies

hold great promise to target severe P. aeruginosa

infections.

5 Conclusions

This review presents the first quantitative model that

explains the observed PK differences of b-lactam antibi-

otics between CF patients and healthy volunteers from 16

studies over the last four decades. All eight studies that

compared the PK of b-lactam antibiotics in CF patients

who were matched in body size, body composition and age

to their healthy volunteer control groups consistently

showed only slightly higher (average 13%) CLs in CF, as

well as similar volumes of distribution in both subject

groups. These results support dosing of CF patients based

on LBM. To achieve the same average unbound concen-

trations at steady state, approximately 13% higher doses

are required in CF patients from a PK perspective. Alter-

natively, slightly shorter dosing intervals, or slightly longer

durations of infusion, may be used to achieve similar times

of unbound b-lactam concentrations above the minimal

inhibitory concentration. However, for severe or chronic

lung infections by P. aeruginosa, considerably higher

doses and rationally optimized dosing strategies are likely

required. Future studies are warranted to investigate these

dosage regimens.
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