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Abstract

Aim The objective of this study was to develop a physio-

logically based pharmacokinetic (PBPK) model for

sinogliatin (HMS-5552, dorzagliatin) by integrating allo-

metric scaling (AS), in vitro to in vivo exploration

(IVIVE), and steady-state concentration–mean residence

time (Css-MRT) methods and to provide mechanistic

insight into its pharmacokinetic properties in humans.

Methods Human major pharmacokinetic parameters were

analyzed using AS, IVIVE, and Css-MRT methods with

available preclinical in vitro and in vivo data to understand

sinogliatin drug metabolism and pharmacokinetic (DMPK)

characteristics and underlying mechanisms. On this basis,

an initial mechanistic PBPK model of sinogliatin was

developed. The initial PBPK model was verified using

observed data from a single ascending dose (SAD) study

and further optimized with various strategies. The final

model was validated by simulating sinogliatin pharma-

cokinetics under a fed condition. The validated model was

applied to support a clinical drug–drug interaction (DDI)

study design and to evaluate the effects of intrinsic (hepatic

cirrhosis, genetic) factors on drug exposure.

Results The two-species scaling method using rat and dog

data (TS-rat,dog) was the best AS method in predicting

human systemic clearance in the central compartment

(CL). The IVIVE method confirmed that sinogliatin was

predominantly metabolized by cytochrome P450 (CYP)

3A4. The Css-MRT method suggested dog pharmacokinetic

profiles were more similar to human pharmacokinetic

profiles. The estimated CL using the AS and IVIVE

approaches was within 1.5-fold of that observed. The Css-

MRT method in dogs also provided acceptable prediction

of human pharmacokinetic characteristics. For the PBPK

approach, the 90% confidence intervals (CIs) of the simu-

lated maximum concentration (Cmax), CL, and area under

the plasma concentration–time curve (AUC) of sinogliatin

were within those observed and the 90% CI of simulated

time to Cmax (tmax) was closed to that observed for a dose

range of 5–50 mg in the SAD study. The final PBPK model

was validated by simulating sinogliatin pharmacokinetics

with food. The 90% CIs of the simulated Cmax, CL, and

AUC values for sinogliatin were within those observed and

the 90% CI of the simulated tmax was partially within that

observed for the dose range of 25–200 mg in the multiple

ascending dose (MAD) study. This PBPK model selected a

final clinical DDI study design with itraconazole from four

potential designs and also evaluated the effects of intrinsic

(hepatic cirrhosis, genetic) factors on drug exposure.

Conclusions Sinogliatin pharmacokinetic properties were

mechanistically understood by integrating all four methods

and a mechanistic PBPK model was successfully
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developed and validated using clinical data. This PBPK

model was applied to support the development of

sinogliatin.

Abbreviations

AS Allometric scaling

AUC Area under the curve

BP Blood plasma ratio

BW Body weight

CI 90% confidence interval

CL Systemic clearance in central compartment

CL/F Clearance after oral administration

CLh Hepatic clearance

CLint Intrinsic clearance

CLiv Clearance after intravenous administration

Cmax Peak concentration

CLr Renal clearance

Css-MRT Steady-state concentration- mean residence

time

DDI Drug–drug interactions

ER Excretion ratio

Fa Absorbed fraction

F Bioavailability

FASSIF Fasted state simulated intestinal fluid

FESSIF Fed state simulated intestinal fluid

FIH First in human

Fsc Scaling factor between observed and predicted

data

GK Glucokinase

GKA Glucokinase activator

H Hematocrit

HLM Human liver microsomes

IVIVE In vitro to in vivo exploration

Ka Absorption rate constant

Km Michelis–Menten constant

MPPGL mg protein per liver weight

MRT Mean residence time

M.W Molecular weight

OATP Organic anion transporting polypeptide

Obs Observed values

Papp Apparent permeability coefficient

Peff Jejunum effective permeability

P-gp P-Glycoprotein

PK Pharmacokinetics

PBPK Physiologically based pharmacokinetic

rhCYP Recombinant human cytochrome P450 enzyme

SAS Simple allometric scaling method

Sim Simulated values

SGF Simulated gastric fluid

SSS Single species scaling method

T2DM Type 2 diabetic patients

Tmax Time at the peak concentration occurs

Vc Distribution volume of central compartment

TS Two species scaling method

Vd Distribution volume of peripheral

compartment

Vmax Enzyme maximum rate of metabolite

formation

Vss Steady-state distribution volume

Key Points

1. We provide an effective physiologically based

pharmacokinetic (PBPK) modeling strategy based on

mechanistic insight into human drug metabolism and

pharmacokinetic properties from preclinical in vitro

and in vivo data using allometric scaling (AS),

in vitro to in vivo exploration (IVIVE), and steady-

state concentration–mean residence time (Css-MRT)

methods.

2. The PBPK model of sinogliatin provides a useful

tool to predict human pharmacokinetics and to

evaluate the effects of extrinsic (e.g., drug–drug

interactions) and intrinsic (e.g., hepatic cirrhosis,

genetic) factors on drug exposure.

3. We provide a methodology for learning and

confirming preclinical and clinical data and for

obtaining insightful pharmacokinetic understanding

by integrating four methods for first-in-human

research.

1 Introduction

Diabetes mellitus (DM) is a metabolic disorder syndrome

that represents an increasing threat to public health [1].

Type 2 DM (T2DM) accounts for more than 90% of the

diabetic patient population, typically characterized by a

combination of insulin resistance and b cell dysfunction.

Although several classes of therapies for T2DM are

available for clinical use, the need for novel therapies still

remains to be met in order to improve the effectiveness of

glycemic control; so far, current therapies can control

glucose levels well in only 60% of T2DM patients [2].

Accumulating results from recent studies, including reports

from several clinical studies, have demonstrated that small-

molecule glucokinase activators (GKAs) may be able to

meet such need [3].

Glucokinase plays a key role in glucose homeostasis as

it initiates the first step. Glucokinase has also been sug-

gested to act as a ‘glucose sensor’ in a glucose-dependent
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way that facilitates glucose homeostasis in the pancreas,

liver, ventromedial hypothalamus, and gastrointestinal tract

[4]. In pancreatic b cells, glucokinase was the central rate-

limited enzyme controlling the threshold for glucose-

stimulated insulin release (GSIR). In hepatic cells, glu-

cokinase was the key enzyme for glucose uptake and

hepatic glycogen production [5]. Therefore, GKAs repre-

sented a promising opportunity for T2DM treatment.

So far, no GKAs have been marketed anywhere in the

world, although several GKAs are under preclinical or

clinical development. Sinogliatin (HMS-5552, dorzagli-

atin) is a first-in-class novel GKA discovered a decade

after the first GKA was published in 2003 [6]. Phase I

and II clinical studies were completed by 2016. The

results showed that sinogliatin can effectively control

both fasting and postprandial glucose in healthy volun-

teers as well as T2DM patients with normal hepatic and

renal function and was well-tolerated [7]. Meanwhile,

additional clinical pharmacology studies followed by

phase III studies in a broader T2DM patient population

will be carried out to further evaluate its pharmacoki-

netic and PD profiles and to guide its use in the clinic in

the future. In order to guide the study design and dose

selection of clinical pharmacology studies and to fully

understand the potential pharmacokinetic and safety

profiles of sinogliatin in the broader population during

its late-stage development, a mechanistic physiologi-

cally based pharmacokinetic (PBPK) model is required

to accurately predict sinogliatin pharmacokinetics in

different populations under various conditions.

Therefore, a mechanistic PBPK model was developed to

fulfill these requirements mentioned. First, we summarized

the sinogliatin in vitro ADME (absorption, distribution,

metabolism, and excretion) data and pharmacokinetic

profiles in rats, dogs, and monkeys (as shown in Table 1).

Allometric scaling (AS), in vitro to in vivo exploration

(IVIVE), steady-state concentration (Css)–mean residence

time (MRT) (Css-MRT) methods were used to fully

understand its drug metabolism and pharmacokinetic

(DMPK) characteristics and underlying mechanisms in

humans. Furthermore, these three methods were utilized to

ensure the data quality for PBPK model development. On

top of this, a mechanistic PBPK model was developed,

optimized with human pharmacokinetic data from a single

ascending dose (SAD) study in healthy subjects, and vali-

dated with sinogliatin pharmacokinetic data under fed

conditions from a multiple ascending dose (MAD) study in

T2DM patients.

2 Methods

2.1 Overall Strategy

The overall strategy of the mechanistic understanding

process and PBPK model construction is illustrated in

Fig. 1. AS, IVIVE, and Css-MRT methods provided an

understanding of sinogliatin DMPK characteristics based

on preclinical in vitro and in vivo data. A PBPK model was

developed using SimCYP� software (version 16.0; Certara,

Sheffield, UK) by integrating the substrate-specific and

system-specific parameters. The model was optimized with

various methods based on human pharmacokinetic data

from the SAD study in healthy subjects, and was validated

by simulating human pharmacokinetic data under fed

conditions from the MAD study in T2DM patients. Finally,

the validated PBPK model provided verification of input

data and understandings and evaluated the effect of

extrinsic (drug–drug interactions [DDIs]) and intrinsic

(hepatic cirrhosis, genetic) factors on drug exposure.

2.2 Preclinical and Clinical Data Sources

Preclinical data used in this study were from the sinogliatin

preclinical pharmacokinetics report no. 27; clinical data

used in this study were from reports HMS0101-No.32,

CPRCL-192-HMS5552/ PKR-PI [7].

2.2.1 Preclinical In Vitro Data

For absorption, dissolution profiles were collected from

phosphate buffer of pH 1.2, 4.5, and 6.8; apparent perme-

ability (Papp) was measured in the MDCK (Madin-Darby

canine kidney)-2 cell line system. For distribution, the

blood-to-plasma ratio (B/P) and unbound fraction in

plasma (fu,p) in rat, dog, and humans were determined. For

metabolism, the metabolic stability of sinogliatin in both

the microsomal system (human and animal microsomes

were purchased from XenoTech, LLC, Lenexa, KS, USA)

and human recombinant cytochrome P450 (CYP) 3A4

(rhCYP3A4) enzyme system (BD Biosciences, Woburn,

MA, USA) were determined. The values obtained from

these in vitro studies are summarized in Table 2. For

transporters, the efflux effect of P-glycoprotein (P-gp) on

sinogliatin and the inhibition effects of sinogliatin on

organic anion transporting polypeptide (OATP) 1B1and

OATP1B3 were determined; the results are summarized in

Electronic Supplementary Material Table 1.
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2.2.2 Preclinical In Vivo Data

Pharmacokinetic parameters of sinogliatin in rat, dog, and

monkey after single intravenous and oral dose adminis-

tration are shown in Table 1. The plasma/tissue partition

coefficient (Kp) of various tissues were determined in rat at

2, 6, 12, and 36 h post a single oral dose. The sinogliatin

mass balance was assessed in rat after single intravenous

and oral dose administration of 14C-sinogliatin; plasma,

bile, urine, and fecal samples were collected to determine

the recovery of total radioactivity and the elimination

pathway.

2.2.3 Clinical Pharmacokinetic Study

In the SAD study, 60 healthy subjects were randomly

assigned to one of six sinogliatin dose cohorts (5, 10, 15,

25, 35, and 50 mg) or placebo with a sinogliatin:placebo

ratio of 4:1. Sinogliatin was administered under a fasted

state and plasma samples were collected up to 72 h post-

dose. The primary pharmacokinetic parameters and the

time–concentration profiles are shown in Table 3 and

Fig. 2a, respectively.

In the MAD study, 53 Chinese T2DM patients with

fasting plasma glucose in the range of 7.0–11.1 mmol/L

and with normal liver and kidney function were randomly

assigned to one of five sinogliatin dose cohorts (25, 50,

100, 150, and 200 mg) or placebo with a sinogliatin:-

placebo ratio of 4:1. The effect of a standard T2DM diet on

sinogliatin pharmacokinetics was measured after both sin-

gle-dose administration and under steady state. Plasma

samples were collected up to 72 h post-dose. The primary

pharmacokinetic parameters and the time–concentration

profiles are shown in Table 3 and Fig. 2b, respectively.

2.3 Understanding Preclinical Data Using

Allometric Scaling (AS), In Vitro to In Vivo

Exploration (IVIVE), and Steady-State

Concentration–Mean Residence Time (Css-

MRT) Methods

In this study, AS, IVIVE, and Css-MRT methods were uti-

lized to estimate human pharmacokinetics based on preclin-

ical in vitro and in vivo data. The purpose of this was to aid

understanding of the DMPK properties and underlying

mechanisms of sinogliatin, and also for ensuring the quality of

the data that will be used in later PBPK model development.

2.3.1 AS Calculation of Sinogliatin Human Systemic

Clearance in the Central Compartment (CL)

and Steady-State Distribution Volume

The intravenous systemic clearance in the central com-

partment (CL) (CLiv), body weight (BW) and fu,p of rat and

dog were used to predict human CL using various AS

methods. Equations for the AS methods are summarized in

Table 4 and Electronic Supplementary Material Table 2.

The Øie–Tozer method was selected to estimate the

sinogliatin steady-state distribution volume (Vss) in humans

[8] and the equations for this method are listed in Table 4.

2.3.2 IVIVE Prediction of Sinogliatin Human CL

An in vitro metabolic experiment showed that sinogliatin

was predominantly metabolized by CYP3A4 and keto-

conazole can 100% inhibit sinogliatin metabolism in

human microsomes. Therefore, IVIVE extrapolation of

human hepatic CL (CLh) from intrinsic CL (CLint) in the

rhCYP3A4 enzyme system (CLint,rhCYP3A4) and

Table 1 Preclinical pharmacokinetics data of sinogliatin

Species Route Dose (mg/kg) AUC (mg�h/L) CL (L/h) V (L) t� (h) F (%) B/P fu,p Hematocrit ERa

Rat (0.25 kg) iv 10 5.31b 0.478 0.460 1.26 0.75 0.096 0.46 0.57

po 30 6.33b 0.470c 1.70c 2.5 39.7

po 50 11.9d 0.468c 44.6

Dog (5 kg) iv 5 17.8b 1.44 9.35 9.67 – 0.63 0.038 0.42 0.13

po 30 94.1b 1.43c 12.9c 6.28 89.4

Monkey (3 kg) iv 2.5 3.66b 2.11 3.78 1.77

po 12.5 4.6b 2.01c 19.6c 6.78 24.6

AUC area under the plasma concentration–time curve, AUC? AUC from time zero to infinity, AUCt AUC from time zero to time t, B/P blood to

plasma ratio, CL systemic clearance in central compartment, ER excretion ratio, F bioavailability, fu,p unbound fraction in plasma, iv intravenous,

po oral, t� elimination half-life, V volume of distribution
aHepatic excretion fraction
bAUC?
cCalculated by CL = Dose 9 F/AUC
dAUCt

eCalculated by V = CL 9 t�/0.693
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Fig. 1 Overall strategy of mechanistic understanding process and

physiologically based pharmacokinetic model development. *The Css-

MRT approach has an insignificant contribution to sinogliatin PBPK

development. AS allometric scaling, CL systemic clearance in central

compartment, CLiv clearance after intravenous administration, Css-

MRT steady-state concentration–mean residence time, DDI drug–drug

interaction, fm metabolism fraction, IVIVE in vitro to in vivo

exploration, MAD multiple ascending dose, PBPK physiologically

based pharmacokinetic, PK pharmacokinetic, SAD single ascending

dose, Vss steady-state distribution volume

Development of PBPK model for Sinogliatin and Mechanistic Understanding of its Pharmacokinetics 1311



microsomal system (CLint,microsome) was performed.

Hepatic intrinsic CLint (CLint,hepatic) was scaled from

rhCYP3A4 enzyme system using Eq. 1:

CLint;hepatic ¼ CLint;rhCYP3A4 � CYP3A4 abundance

� ISEF � MPPGL � Liver weight ð1Þ

where MPPGL is mg protein per liver weight.

The parameters and source data used for extrapolation are

summarized in Table 2. CLint,hepatic was extrapolated from

microsomal experiments of rat, dog, and humans using Eq. 2:

CLint;hepatic ¼ CLint;microsome � MPPGL � Liver weight

ð2Þ

The parameters used and the source or calculating

equations are summarized in Electronic Supplementary

Material Table 3.

The well-stirred model [9] was applied to calculate CLh

(Eq. 3):

CLh ¼ Qliver � fu;b � CLuint

Qliver þ fu;b � CLuint

ð3Þ

where Qliver is the blood flow of the liver.

The parameters and source data are summarized in Table 2

and Electronic Supplementary Material Tables 3 and 4. For

both the rhCYP3A4 and microsomal systems, human total

CLiv was obtained by adding observed human renal CL.

Table 2 Parameters of in vitro to in vivo exploration method using recombinant human cytochrome P450 3A4 enzyme (rhCYP3A4) data and

physiologically based pharmacokinetic model development

Method Parameter Description Values

IVIVE CYP3A4 abundance (pmol CYP

enzyme/mg mic protein)

CYP abundance per gram protein 120

[32]

MPPGL (mg/g) mg protein per liver weight 39.8a

BW (kg) Body weight 60b

PL (%) Percentage liver weight 2.57

[34]

Qliver (L/h) Blood flow of liver 77.5

[35]c

F Bioavailability (observed data of dog) 0.89b

Both CLrhCYP3A4 (uL/min/pmol isoform) Clearance of sinogliatin in rhCYP3A4 incubation system 0.589d

ISEF Inter-system extrapolation factor for scaling the differences in CYP3A4 abundance

between reported and experimental data

1.33e

[33]

fu,p Unbound fraction in plasma 0.067b

B/P Blood:plasma ratio 0.71b

fu,b Unbound fraction in blood 0.048f

fumic Fraction of unbound drug in microsomal incubation 0.749g

CLr (L/h) Renal clearance 0.96h

PBPK MW (g/mol) Molecular weight 462.9b

Log Po:w Partition coefficient 2.4b

Papp (10-6 cm/s) Apartment permeability 11.64b

CLiv (L/h) Intravenous clearance 10.4i

VmaxrhCYP3A4 (pmol/min/pmol of

isoform)

Maximum rate of metabolite formation in rhCYP3A4 incubation 1.977b

KmrhCYP3A4 (lM) Michelis–Menten constant in rhCYP3A4 incubation 3.27b

CYP cytochrome P450, IVIVE in vitro to in vivo exploration, PBPK physiologically based pharmacokinetic
aSimCYP� data
bExperimentally measured data
cCorrected with body weight using allometric scaling method, b = 0.75
dCalculated using observed data in experiment and equation CLrhCYP3A4 = ke,in vitro 9 volume of incubation/protein per incubation
eCalculated using ISEF = CLint,HLM, testosterone/CLint,rhCYP3A4, testosterone/CYP3A4abundance,reported, where the measured CLint,HLM and

CLint,rhCYP3A4 of testosterone was 103 uL/min/mg and 0.643 uL/min/pmol CYP and the reported CYP abundance was 120 pmol CYP/mg
fCalculated using fu,b = fu,p 9 BP
gPredicted using the prediction toolbox in SimCYP�

hCLr input was human observed data of 0.96 L/h
iPredicted using the allometric scaling method
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2.3.3 Estimation of Oral Plasma Concentration–Time

Profiles Using the Css-MRT Method

The Css-MRT method [10] was used to estimate human

oral plasma pharmacokinetic profiles by normalizing

in vivo pharmacokinetic profiles of rat, dog, and monkey.

Superimposition of the pharmacokinetic profile of each

species was obtained by dividing the plasma concentration

by the Css (y-axis) and time divided by its corresponding

MRT (x-axis). The normalized curves of various species

were plotted together to fit the best pharmacokinetic model

using ADAPT 5 package [31]. The human Css and MRT

was multiplied by the y-axis and x-axis of the best-fitted

normalized curve, we obtained human intravenous phar-

macokinetic profiles and estimated human intravenous

pharmacokinetic parameters. We then developed the oral

pharmacokinetic model of animals to estimate the

absorption parameters (absorption rate constant [ka] and

absorbed fraction [Fa]). Human absorption parameters

were assumed as average fitted values of animal absorption

parameters. Finally, the full set of estimated human oral

pharmacokinetic parameters was used to predict human

oral pharmacokinetic profiles.

2.4 Sinogliatin Human Physiologically Based

Pharmacokinetic (PBPK) Model Development

2.4.1 Model Development

The SimCYP� population-based simulator was used to

develop the sinogliatin PBPK model. The drug-specific

parameters are summarized in Table 2. Systemic

Fig. 2 Simulated (lines) and

observed (points) mean plasma

concentration–time curves of

various dosages in a fasted

condition using Model C and

b fed condition using Model C.

Lower limit of quantification of

observed data was 1 lg/L.

Conc. concentration, Obs

clinical observed data, Sim

physiologically based

pharmacokinetic model

simulated results
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parameters were kept as the default setting in the

SimCYP� package. In the absorption part, we selected the

advanced dissolution, absorption, and metabolism

(ADAM) model, which consisted of nine compartments to

mimic gastrointestinal tract physiology [11]. The immedi-

ate-release dissolution profiles obtained from the in vitro

dissolution assay was input to simulate the dissolution

kinetics. The human jejunum effective permeability (Peff),

value was calculated from the in vitro MDCK experimental

Papp. Propranolol and cimetidine were used as reference

drugs to evaluate the system scalar. A full PBPK model

was applied to the distribution part. Briefly, the full PBPK

model defined mathematical compartments for different

tissues linked by the circulatory system [12]. The volume

of distribution was predicted using the method of Rodgers

and Rowland [13]. In the elimination part, three different

models were used to predict human clearance: (i) in vivo

CLiv calculated from the two-species scaling method using

rat and dog data (TS-rat,dog) (Model A); (ii) in vitro

CYP3A4-mediated CLint values (Model B); and (iii)

in vitro CYP3A4-mediated maximum rate of the metabo-

lite formation (Vmax) and Michaelis-Menten constant (Km)

(Model C). Observed human renal clearance were added to

all three models to obtain the total clearance.

2.4.2 PBPK Model Simulation

Simulation was based on the SimCYP� virtual population

database of ‘Chinese healthy volunteers’ (n = 594) pro-

vided by Pfizer Ltd (Sandwich, UK). The pharmacokinetics

for sinogliatin 15 mg were simulated using three models

separately, and the sinogliatin pharmacokinetics for six

dose groups (5, 10, 15, 25, 35, 50 mg) were simulated

using the final mechanistic model. The simulated phar-

macokinetic parameters and profiles were compared with

data observed in a clinical study to assess the acceptance of

the model estimation.

2.4.3 Model Evaluation Criteria and Optimization

Methods

The 90% confidence interval (CI) of the observation and

simulation was used as the criterion to determine the

simulation acceptance and accuracy of the PBPK model.

Key pharmacokinetic parameters for assessing the good-

ness of the PBPK model are maximum concentration

(Cmax), time to Cmax (tmax), CL, and area under the plasma

concentration–time curve (AUC), as defined in the Euro-

pean Medicines Agency (EMA) guideline published on 21

July 2016 [14]. The model was refined and optimized based

on the acceptance of these parameters.

For model optimization, the following steps may be

taken:

(i) Sensitivity analysis: evaluate the impact of the input

parameters of interest on the model simulation within

a ten-fold range around the experimental values.

(ii) Parameter estimation: the most sensitive parameter

will then be estimated by fitting the observed data.

(iii) Experimental confirmation: if the estimated value in

step 2 is significantly different from the experimental

value, a supplementary experiment may be consid-

ered, especially when the original experimental

design is problematic.

Table 4 Allometric scaling method for estimation of human systemic clearance in central compartment and steady-state distribution volume

Parameter Method Description Equation Predicted

value

CL (L/h) TS-rat,dog Two-species scaling

method using rat and dog

data

CLhuman = a(rat–dog) 9 (BWhuman)0.628 10.4

F Bioavailability (observed

data of dog)

0.89

CL/F Total clearance after oral

administration

11.7

Vss (L) Øie–

Tozer

method

Øie–Tozer method using

rat and dog data

Vss,human = Vp ? fu,p,human 9 Ve ? (1 - fu,p,human) 9 RE/I 9 Vp ? fu,p,human/

fut,human 9 Vr; fut,human = average of fut,animal; fut,animal = (Vr 9 fup)/

[Vss (animal) - Vp - (fup 9 Ve) - (1- fu,p) 9 RE/I 9 Vp]

108

BW body weight, CL systemic clearance in central compartment, fu,p unbound fraction in plasma, RE/I ratio of extravascular to intravascular

albumin, Ve extracellular fluid volume, Vp plasma volume, Vr reminder volume, Vss steady-state distribution volume

Vp equals 0.0313, 0.0515, and 0.0436 L/kg for rat, dog, and human, respectively; Ve equals 0.265, 0.216, and 0.151 L/kg for rat, dog, and human,

respectively; Vr equals 0.364, 0.450, and 0.380 L/kg for rat, dog, and human, respectively; RE/I ratio of extravascular to intravascular albumin)

equals 1.4
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2.5 Model Validation

The food effect trial simulation was performed using the

final mechanistic model based on the actual trial design.

The only exception was that the actual clinical food effect

study was carried out in patients with a relatively healthy

status. This simulation was based on the hypothesis that

there was no pharmacokinetic difference between healthy

volunteers and T2DM patients since (i) some other clinical

studies of sinogliatin have shown that there was no sig-

nificant pharmacokinetic difference in the two populations

in the dosage range of 25–50 mg; and (ii) the liver and

renal function of all T2DM patients who participated in the

clinical study were normal. The geometric means values

and 90% CIs of key pharmacokinetic parameters from ten

simulated trials were compared with the observed clinical

data to validate the final PBPK model.

2.6 Model Application

2.6.1 Clinical Drug–Drug Interaction (DDI) Study Design

Four potential clinical DDI study designs were simulated with

the inhibitor itraconazole: (A) multiple administration of

itraconazole for 14 days, single administration of sinogliatin

on the eighth day (D8); (B) multiple administration of itra-

conazole for 8 days, single administration of sinogliatin on

D8; (C) multiple administration of itraconazole for 14 days,

single administration of sinogliatin on the fourth day (D4);

and (D) multiple administration of itraconazole for 8 days,

single administration of sinogliatin on D4. For each design,

the ratio of AUC (AUCR) with and without inhibitor (AUCR

= AUCwith inhibitor/AUCwithout inhibitor) and the ratio of Cmax

(CmaxR) with and without inhibitor (CmaxR = Cmax,with inhibitor/

Cmax,without inhibitor) were compared to select the optimal

clinical DDI trial design.

2.6.2 Drug Exposure Evaluation in Hepatic Cirrhosis

Patients

Pharmacokinetic simulation in hepatic cirrhosis patients

(Sim-Cirrhosis CP) was performed in three populations:

Sim-Cirrhosis CP-A (mild), Sim-Cirrhosis CP-B (moder-

ate), and Sim-Cirrhosis CP-C (serve). The simulated AUC

and Cmax values of each population were compared with

those of the healthy population to support clinical dose

adjustment.

2.6.3 Impact of Cytochrome P450 (CYP) 3A4 Alleles

on Hepatic Metabolism

The impact of CYP3A4 alleles on metabolism was evalu-

ated for three CYP3A4 alleles: wild-type (CYP3A4*1) and

variant-type (CYP3A4*16 and CYP3A4*18). Different

CYP abundances [15] were input in the default Chinese

healthy population, as shown in Electronic Supplementary

Material Table 5. Simulated CL and AUC values were

used to evaluate the inter-individual variability of impact of

CYP3A4 alleles on hepatic metabolism.

3 Results

3.1 Understanding Drug Metabolism

and Pharmacokinetic Characteristics Using

the AS, IVIVE, and Css-MRT Method

The TS-rat,dog method was selected as the best AS method

based on a unified strategy [16]. The estimated human CLiv

and CL/F values were 10.4 and 11.7 L/h, respectively. The

estimated CLiv values of other AS methods are listed in

Electronic Supplementary Material Table 2. The Vss was

estimated to be 108 L using the Øie–Tozer method, as

shown in Table 4. The estimated CL/F and Vss values were

0.98- and 0.99-fold of the observed data, respectively.

Human CL and CL/F values were estimated to be 11.6

and 13.1 L/h, respectively, using the IVIVE method based

on enzyme kinetic parameters of rhCYP3A4 (see details

listed in Table 2) and the estimated CL/F was 1.10-fold of

the observed data. The estimation results using microsomal

data were not acceptable since the scaling factor between

observed and predicted data (Fsc) of rat and dog were 37

and 148, far exceeding the default accepted criterion of 5.

Details are listed in Electronic Supplementary Material

Tables 3 and 4.

Css-MRT-normalized pharmacokinetic profiles of rat,

dog, and monkey are plotted together in Fig. 3a. The

normalized pharmacokinetic profiles of rat and monkey

were in good superposition, but were different from that of

dog, indicating the interspecies metabolism processes are

different. Therefore, human oral pharmacokinetic param-

eters were estimated using a normalized rat–monkey

pharmacokinetic profile and dog pharmacokinetic profile

separately, and the results are summarized in Table 5.

Simulated human oral pharmacokinetic profiles using dog

data were within two-fold of observed profiles, providing

acceptable estimation as shown in Fig. 3b. Human profiles

using rat–monkey data provided relative poor estimation,

as shown in Fig. 3c. The estimation difference depended

on preclinical interspecies difference. An in vitro metabo-

lism experiment demonstrated that the metabolic product

types of humans are the same as those of dog, but different

from those of rat or monkey.
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3.2 Sinogliatin PBPK Model Development

and Evaluation

The final PBPK model was developed with the three dif-

ferent types of methods described previously as Model A,

Model B, and Model C. Simulated oral pharmacokinetic

parameters for the 15 mg single dose are shown in Table 6

and simulated oral pharmacokinetic profiles are presented

in Fig. 4. A virtual Chinese population of 1000 subjects

was generated for each simulation. All three models cap-

ture the observed data well. However, Model A could not

simulate the effect of DDIs, hepatic cirrhosis, and genetic

factors on drug exposure with apparent CLiv and Model B

cannot predict non-linear enzymatic saturation kinetics in

DDI simulation and CYP3A4 polymorphism evaluation.

Hence, Model C was selected as the final model to estimate

the oral pharmacokinetic parameters and profiles of various

doses, as shown in Table 3 and Fig. 2a. For doses from 5 to

50 mg, 90% CIs of simulated CL, Cmax, and AUC values

were within those observed in the healthy population,

indicating the final model could accurately simulate the

metabolism and absorption extent. The 90% CI of the

Fig. 3 a Normalized

concentration–time curves by

Css and MRT for rat, dog, and

monkey at the lowest

intravenous dose level.

Simulated (lines) and observed

(points) mean plasma

concentration-time curves using

data for b dog and c rat and

monkey. Lower limit of

quantification of observed data

was 1 lg/L. Conc.

concentration, Css steady-state

concentration, MRT mean

residence time, Obs clinical

observed data, Sim

physiologically based

pharmacokinetic model

simulated results
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simulated tmax was not the same but close to that of

observation, indicating that the simulated absorption rate of

the current PBPK model was faster than observed. Overall,

the simulation results demonstrate that the sinogliatin

PBPK model could capture the observed pharmacokinetic

characteristics well in healthy populations.

3.3 Sinogliatin PBPK Model Food Effect Simulation

and Validation

The pharmacokinetic parameters and profiles of sinogliatin

with food were simulated as shown in Table 3 and Fig. 2b.

A virtual Chinese population of 1000 subjects was gener-

ated for each simulation. The 90% CIs of simulated CL,

Cmax, and AUC values were within that observed and the

90% CI of the simulated tmax was partially within that

observed, indicating that the final model performed a good

simulation of food effect. The simulated profiles also

showed that the model could well-fitted the pharmacoki-

netic characteristics.

3.4 Model Application

3.4.1 Clinical DDI Study Design

For each potential DDI design, the simulated AUC with

itraconazole was higher than that without itraconazole. The

AUCR of designs A, C, and D were insignificantly

Table 5 Human

pharmacokinetics parameters

estimated by steady-state

concentration–mean residence

time methods

Parameter Description Estimated value

Method 1a Method 2b

Meanc CV% Meanc CV%

CL (L/h) Systemic clearance 0.94 6.54 6.29 6.16

Vc (L) Volume of central compartment 4.42 9.13 27.2 6.81

CLd (L/h) Distribution clearance 75.2 4.90 2.37 4.27

Vd (L) Volume of peripheral compartment 3.97 8.52 45.9 12.5

Fa Absorbed fraction 0.23 14.4 0.92 13.5

ka Absorption rate constant 0.62 17.7 0.32 12.7

CL systemic clearance in central compartment, Css-MRT steady-state concentration–mean residence time,

CV% coefficient of variation
aMethod 1: Css-MRT method using rat and monkey data
bMethod 2: Css-MRT method using dog data
cGeometric mean values

Table 6 Observed and physiologically based pharmacokinetic simulated pharmacokinetic parameter values of oral sinogliatin 15 mg dosage

[data are given as geometric mean (90% confidence interval)]

Parameter Sim Obs

Model A Model B Model C Model D Model E

Cmax (lg/L) 194 (186–203) 174 (167–181) 185 (177–192) 118 (113–123) 120 (116–125) 204 (170–259)

tmax (h) 0.84 (0.79–0.86) 0.85 (0.78–0.88) 0.82 (0.76–0.83) 1.76 (1.61–1.75) 4.14 (3.96–4.31) 1.5 (1.0–4.0)

CL (L/h) 14.0 (12.9–15.1) 16.9 (15.8–18.2) 16.3 (15.2–17.5) 16.6 (15.5–17.8) 8.3 (7.8–8.9) 11.8 (8.6–17.4)

AUC (lg�L/h) 1072 (991–1159) 885 (825–951) 919 (857–986) 903 (842–969) 1801 (1689–1920) 1268 (858–1752)

Model A: input allometric scaling estimated CLiv to simulate human CL

Model B: input CLrhCYP3A4 to simulate human CL

Model C: input Vmax, Km of rhCYP3A4 to simulate human CL

Model D: input SimCYP� estimated MDCK Papp 14.33 (10–6 cm/s) values on the foundation of Model C

Model E: input raw experimental MDCK Papp 7.72 (10–6 cm/s) on the foundation of Model A

AUC area under the plasma concentration–time curve, CL systemic clearance in central compartment, CLiv clearance after intravenous

administration, CLrhCYP3A4 clearance of sinogliatin in rhCYP3A4 incubation system, Cmax maximum concentration, CYP cytochrome P450, Km

Michelis–Menten constant, MDCK Madin-Darby canine kidney, Obs clinical observed data, Papp apparent permeability coefficient, rhCYP3A4

recombinant CYP3A4, Sim physiologically based pharmacokinetic model simulated results, tmax time to Cmax, Vmax enzyme maximum rate of

metabolite formation
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different while the AUCR of design B was half of that of

designs A, C and D. This indicated that design B had

weaker inhibition of CYP3A4. The CmaxR of sinogliatin

presented a similar trend (unpublished data). Design D was

selected as the final clinical DDI design. A virtual Chinese

population of 1000 subjects was generated for each

simulation.

3.4.2 Drug Exposure Evaluation in Hepatic Cirrhosis

Patients

The simulated AUC values in three Sim-Cirrhosis-CP

populations were higher than that in the Sim-Healthy

(simulation in healthy patients) population. The simulated

AUC in Sim-Cirrhosis-C was 2-fold and 1.5-fold higher

than that in Sim-Cirrhosis-A and in Sim-Cirrhosis-B,

respectively. The simulated Cmax presented a similar trend

(unpublished data). A virtual population of 1000 subjects

was generated for each simulation.

3.4.3 Impact of CYP3A4 Alleles on Hepatic Metabolism

The simulated results for different CYP3A4 alleles are

shown in Electronic Supplementary Material Table 5.

After oral administration of sinogliatin 15 mg, the AUC

values in CYP3A4*1, CYP3A4*16, and CYP3A4*18 car-

riers were 1.09-fold, 0.65-fold, and 1.86-fold of that in

CYP3A4 carriers. A virtual population of 1000 subjects

was generated for each simulation.

4 Discussion

The overall strategy of the mechanistic understanding

process could be summarized as follows:

1. AS, IVIVE, and Css-MRT methods provided under-

standing of mechanistic DMPKs to support PBPK

model development.

2. Based on this knowledge and understanding, a PBPK

model was developed by integrating physiologic and

drug-specific parameters. The PBPK model was then

optimized and validated using the observed clinical

data from a SAD study and food effect (MAD) study,

respectively.

3. The final PBPK model could not only provide a

knowledge base to learn and confirm input data and

understanding but also evaluate the effect of extrinsic

(DDI) and intrinsic (hepatic cirrhosis, genetic) factors

on drug exposure.

AS, IVIVE, and Css-MRT provided mechanistic under-

standing to support sinogliatin PBPK model development;

furthermore, according to the learning exercises of this case

study, we proposed an effective strategy for PBPK model

construction. For sinogliatin, the AS method provided the

human pharmacokinetic parameters of CLiv and Vss.

TS-rat,dog was selected as the best AS method according to

a unified selection strategy [16]. Using this method we

showed that sinogliatin is primarily eliminated through the

liver with a high excretion ratio. Additionally, optimal CLiv

and Vss values were fixed in the initial PBPK model in

order to achieve acceptable elimination prediction; thus,

Fig. 4 Simulated (lines) and observed (points) mean plasma con-

centration–time curves of the sinogliatin 15 mg dosage. The black

line represents the mean for the total virtual population. The dashed

lines represent the 5th and 95th percentiles for the total virtual

population. CI confidence interval, Conc. concentration, Obs clinical

observed data
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we could focus on absorption optimization of the PBPK

model. The IVIVE strategy verified in vitro metabolic data

and mechanistically extrapolated in vivo CLh. We under-

stood that sinogliatin was mainly metabolized by CYP3A4

and judged that in vitro microsomal data (rat and dog)

were not able to be ascertained using this method. Finally,

the in vitro Vmax and Km of rhCYP3A4 were input into the

final PBPK model to capture the metabolism properties of

sinogliatin based on the IVIVE concept. The Css-MRT

approach provided human oral pharmacokinetic profiles of

sinogliatin for different dosages. We showed the preclinical

interspecies difference using this method: the dog meta-

bolic process was more similar to that of human than that

of rat and monkey. This approach had an insignificant

contribution to sinogliatin PBPK development; however,

for the first-in-human (FIH) studies it is recommended that

an animal PBPK model be built to support human PBPK

model construction [17–19]. Thus, knowledge on inter-

species difference was essential to selecting the optimal

animal species for constructing the preclinical PBPK

model. Furthermore, based on these learning exercises in

the sinogliatin case study, we proposed an effective strat-

egy for PBPK model construction. Firstly, simple methods

(e.g., AS, IVIVE, and Css-MRT) were used to understand

the DMPK properties. This knowledge was then used to

support PBPK model construction: the AS method pro-

vided human CLiv and Vss. These parameters were fixed in

the initial PBPK model, allowing confidence to be gained

regarding metabolism estimation which then made it pos-

sible to focus on absorption optimization. The IVIVE

strategy verified the in vitro metabolic data, and confirmed

the predominant CYP enzyme involved in in vivo meta-

bolism and the corresponding fraction (fm). The IVIVE

strategy ensured that the PBPK model performed good

metabolism prediction using enzyme-level data. The Css-

MRT approach provided the knowledge on interspecies

difference that enabled selection of the optimal species to

construct the preclinical PBPK model in some FIH studies.

Development of a successful prospective PBPK model

strongly depends on the input data quality: the more

accurate the input parameters, the better prediction the

model can provide. Therefore, the primary effort in

building a reliable PBPK model should be focused on

improving the quality of the input parameters. For

absorption, in dissolution testing, the in vitro dissolution

profile of sinogliatin was acquired in phosphate

buffer via immediate release since sinogliatin is a high-

solubility compound with an aqueous phase solubility of

0.42–0.67 mg/mL. However, a 2016 SimCYP� absorption

workshop recommended an in vitro dissolution study

design, especially for poor-solubility compounds, and the

use of a bio-equivalent median (such as simulated gastric

fluid [SGF], fasted state simulated intestinal fluid [FaSSIF],

fed state simulated intestinal fluid [FeSSIF]) and optimal

experimental apparatus (such as USP (United States

Pharmacopeia)-2 dissolution model and transfer experi-

ment model) to capture the dissolution rate and precipita-

tion time [20]. In the permeability study, the Caco-2 and/or

MDCK-2 cell model should be validated with reference

drugs to calibrate the difference between experimental and

SimCYP� plug-in values. In the case of sinogliatin, the raw

MDCK Papp of 7.72 (10–6 cm/s) could not be used in the

model since the reference drugs used to validate the

MDCK-2 cell model were unavailable. As a consequence,

the absorption extent and rate (Cmax and tmax) could not be

accurately estimated in the initial PBPK model (Model E).

For metabolism, in the microsomal or recombinant human

enzyme incubation system, the substrate metabolism frac-

tion should be greater than 20% and the substrate con-

centration should be far less than the Km in order to

accurately measure the ke [21]. In our case, sinogliatin

microsomal data were not accepted because the substrate

loss fraction in the rat and dog microsomal incubation

systems were far less than 20%. Besides, the IVIVE esti-

mated Fsc of rat and dog were 37 and 148, far exceeding

the default accepted criterion of 5, which also proved that

microsomal data were unavailable. The substrate metabo-

lism fraction in the rhCYP3A4 incubation system was

nearly 85%, achieving the ke calculation requirement.

Hence, the enzyme kinetic parameters of rhCYP3A4 could

be utilized for PBPK model development.

As a learning-confirming process, the initial PBPK

model needs to be continuously refined and optimized. The

optimization and validation process of the current PBPK

model can be divided into four stages. In stage 1: the pri-

mary optimization effort was focused on obtaining accurate

elimination estimation. The CLiv estimated by the TS-rat,dog

method was put into the PBPK model to acquire accept-

able elimination estimation results.

In stage 2, optimization effort was focused on absorption

using sensitivity analysis, parameter estimation, and

experiment confirmation with the following three steps:

step 1, sensitivity analysis was performed to identify the

input parameters with the most impact on the model out-

puts [22]; step 2, by fitting the observed data, the values for

the most sensitive parameters were estimated; and step 3,

additional experiments were carried out in standard

experimental condition to optimize input data. For

sinogliatin, the initial PBPK model could not capture the

characteristics of absorption (Model E). Sensitivity analy-

sis clearly revealed that the MDCK Papp was the most

sensitive parameter affecting sinogliatin absorption. When

the MDCK Papp changed ten-fold from that of the raw data

value of 7.72 (10–6 cm/s), from 0.772 to 77.2 (10–6 cm/s),

the Cmax and tmax output varied from 47.6 to 458 lg/L and

6.10 to 0.752 h, respectively. By fitting the observed data
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of ten healthy subjects receiving the 50 mg dose, the

MDCK Papp was estimated to be 14.33 (10–6 cm/s).

Updating the model with the estimated Papp (Model D), the

simulation was optimized, with the output results of tmax

being 1.17-fold that of the observed data. However, the

prediction of Cmax was poor, being 0.58-fold of the

observed value. At the same time, an in vitro MDCK-2 cell

experiment was carried out with SimCYP� plug-in refer-

ence drugs cimetidine and propranolol used as positive

controls. The new experimental MDCK Papp of 11.64

(10–6 cm/s) was then used to further update the PBPK

model. The final simulated output of Cmax and tmax were

0.99-fold and 0.46-fold of the observed data, respectively.

Considering the model application was focused on evalu-

ating the extrinsic and intrinsic effect on the drug exposure

(Cmax and AUC), good prediction for Cmax was essential

for the current model. Finally, the experimental MDCK

Papp was input to provide estimation of absorption. In stage

3, the elimination model was optimized using enzyme-

level data for mechanistic insight into the elimination. The

CLint,hepatic of rhCYP3A4 was input into the PBPK model.

To further evaluate the non-linear enzymatic saturation

kinetics in DDI simulation and evaluation of the enzyme

polymorphism, the Vmax and Km of rhCYP3A4 were used

in the final model. Finally, in stage 4, the optimized PBPK

model was validated using observations from the clinical

food effect trial. The validated results showed that the

mechanistic PBPK model could capture pharmacokinetic

properties of sinogliatin well in both a fasted and fed

condition.

After the optimization efforts mentioned above, though

much improved, some limitations still existed in the model.

The 90% CIs of the estimated tmax in fasted and fed status

were not within those of observed data. This may be caused

by the in vitro–in vivo estimated deviation of dissolution.

In vitro dissolution profiles of sinogliatin were obtained

from phosphoric buffer with different pH values of 6.8, 4.5,

and 1.2. The dissolution profile of pH 6.8 was input in the

current model to simulate in vivo solubility since this pH

value was closed to endogenous intestinal pH. However,

the in vitro dissolution studies revealed that the dissolution

capability of sinogliatin decreased significantly in lower

pH. Hence, the model-input dissolution profile (pH 6.8)

will predict the in vivo dissolution process faster with

lower gastrointestinal pH (such as in the gastric tract and

pyloric tract) by overlooking the precipitation time. The

same limitation existed in tmax prediction of fed status.

While the estimated tmax in fed status was delayed com-

pared with that in fasted status, the gastric emptying time

of food effect was built-in in the software. Since the model

application was focused on evaluating the extrinsic and

intrinsic effect of the drug exposure (Cmax and AUC), the

under prediction of tmax was acceptable in the current

model. The other limitation of the current model is the

neglect of the contribution of membrane transporters. For

an investigational drug mainly excreted through metabo-

lism such as sinogliatin, the US Food and Drug Adminis-

tration (FDA) recommend that it is essential to evaluate

in vitro whether the drug is a substrate of P-gp, OATP1B1,

or OATP1B3 based on the applicable decision tree. P-gp is

expressed in the gastrointestinal tract, liver, and kidney,

and has a role in limiting oral bioavailability. The in vitro

efflux study of P-gp indicated sinogliatin might be a P-gp

substrate. However, the contribution of P-gp in sinogliatin

absorption is not anticipated to be significant, since

sinogliatin is a drug with high solubility and permeability

and the intestinal absorption is not a rate-limited step. It is

appropriate to exempt such drugs from in vivo evaluation

with a P-gp inhibitor based on the FDA guidance [23].

In vitro OATP1B1/1B3 studies also showed that sinogliatin

has no inhibited effect on these transporters. Consequently,

the contribution of OATP in the sinogliatin elimination

process was not considered in the current model.

The PBPK model of sinogliatin provided the following

positive impacts on drug development:

Provided a knowledge base to learn and confirm the

data and understanding PBPK simulated results provided

judgement of input data quality to help decide whether

supplementary experiments were needed. Based on simu-

lated results of Model E and sensitivity results, we judged

that MDCK Papp was the most sensitive parameter for

estimation of model absorption. In addition, the raw

in vitro MDCK study design was defective. Hence, we

decided to undertake an in vitro supplementary MDCK

experiment to optimize this key input parameter. On the

other hand, model-simulated results also verified knowl-

edge and understanding provided by other methods. For

sinogliatin, PBPK simulated results confirmed knowledge

provided by the IVIVE method: by assuming the fm of

CYP3A4 to be 100%, the systemic CL could be charac-

terized well via the Vmax and Km of rhCYP3A4.

Clinical DDI study design. The PBPK model provided

good quantitative prediction of DDIs via CYP3A4 in prior

publications [24, 25]. In our study, design D was selected

as the final clinical DDI study design after taking into

account clinical safety and the extent of CYP3A4 inhibi-

tion, as follows: (i) shortened administration period of

itraconazole compared with design A and C to prevent

itraconazole-induced hepatotoxicity [26]; (ii) it acquired

the maximum inhibition extent of hepatic CYP3A4 for

sinogliatin; compared with design B, design D extended the

sinogliatin–itraconazole interaction time on the premise

that the CYP3A4 inhibition extent of D4 was insignificant

compared with that of D8; and (iii) based on the increase in

AUC and Cmax due to enzyme inhibition, the sinogliatin

dosage was reduced in the clinical DDI trial to prevent
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drug-induced hypoglycemia. Furthermore, DDIs with ery-

thromycin and rifampicin, as a moderate inhibitor and

stimulator of CYP3A4, respectively, were also simulated to

support further clinical study design (unpublished data)

Drug exposure evaluation in hepatic cirrhosis patients

The PBPK approach was widely used for clinical phar-

macokinetic predictions in liver cirrhosis patients, espe-

cially for CYP3A-metabolized drugs [27, 28]. For

sinogliatin, exposure increases in the Sim-Cirrhosis-A, B,

or C population were evaluated to support clinical dosage

adjustment. A similar simulation was performed in two

SimCYP� virtual chronic kidney disease populations: Sim-

RenalGFR-30-60 and Sim-Renal GFR-less-30. However,

the clinical dosage adjustment in patients with renal

impairment should consider not just renal function but

other concurrent factors such as the physiological changes

caused by hepatic and kidney interactions and the possible

altered activities of efflux transporters and hydrolytic

enzyme(s) [29].

Impact of CYP3A4 alleles on hepatic metabolism The

expression and catalytic activity of CYP3A are highly

variable among individuals, and this variability is partially

attributable to genetic factors. CYP3A4*16 and

CYP3A4*18 were detected in East Asians with high allele

frequency [15, 30]. Thus, the impact of these alleles on the

pharmacokinetics of CYP3A4-metabolized drugs should be

evaluated. The PBPK approach provided stratified analysis

of in vivo metabolism simulation based on the phenotype

of CYP3A4. Sinogliatin drug exposure of CYP3A4*18

carriers was 2.9-fold and 1.7-fold higher than that of

CYP3A4*16 and wt-CYP3A4*1 carriers, indicating that

CYP3A4 polymorphism may cause inter-individual varia-

tion of metabolism. However, the impacts of CYP3A4

alleles on catalytic activities was substrate-dependent, and

hence the simulated results need further confirmation by

clinical data.

5 Conclusion

In this study, we proposed an effective PBPK development

strategy based on understanding of mechanistic pharma-

cokinetics. AS, IVIVE, and Css-MRT methods provide

mechanistic insight into human DMPK properties from

preclinical in vitro and in vivo data. This knowledge was

used to support PBPK model development. The PBPK

model was simulated and verified the pharmacokinetics of

the SAD study. Various approaches were used to optimize

the model. The final model was validated using food effect

data from the MAD study. The validated PBPK model

provided positive impacts on the drug development of

sinogliatin: it was use for the selection of the final clinical

DDI study design and evaluated the effects of intrinsic

(hepatic cirrhosis, genetic) factors on drug exposure. Our

study has three main implications: (i) provides an effective

strategy for PBPK development based on mechanistic

understandings provided by AS, IVIVE, and Css-MRT; (ii)

a PBPK model was developed to simulate the effects of

extrinsic and intrinsic factors on drug exposure to support

clinical study design; and (iii) provides a methodology of

learning and confirms preclinical and clinical data by

integrating four methods for the FIH research.
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