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Abstract Physiologically-based pharmacokinetic (PBPK)

modeling is a powerful tool used to characterize matura-

tional changes in drug disposition to inform dosing across

childhood; however, its use is limited in pediatric drug

development. Access to pediatric pharmacokinetic data is a

barrier to widespread application of this model, which

impedes its development and optimization. To support the

development of a pediatric PBPK model, we sought to

leverage opportunistically-collected plasma concentrations

of the commonly used antibiotic clindamycin. The pedi-

atric PBPK model was optimized following development

of an adult PBPK model that adequately described litera-

ture data. We evaluated the predictability of the pediatric

population PBPK model across four age groups and found

that 63–93% of the observed data were captured within the

90% prediction interval of the model. We then used the

pediatric PBPK model to optimize intravenous clin-

damycin dosing for a future prospective validation trial.

The optimal dosing proposed by this model was 9 mg/

kg/dose in children B5 months of age, 12 mg/kg/dose in

children[5 months–6 years of age, and 10 mg/kg/dose in

children 6–18 years of age, all administered every 8 h. The

simulated exposures achieved with the dosing regimen

proposed were comparable with adult plasma and tissue

exposures for the treatment of community-acquired

methicillin-resistant Staphylococcus aureus infections. Our

model demonstrated the feasibility of using opportunistic

pediatric data to develop pediatric PBPK models, extend-

ing the reach of this powerful modeling tool and potentially

transforming the pediatric drug development field.

Key Points

Opportunistic pharmacokinetic (PK) data were

successfully used to evaluate the predictive accuracy

of a clindamycin pediatric physiologically-based

pharmacokinetic (PBPK) model.

The model predicted clindamycin exposures

reasonably well, and recommended doses similar to

those predicted by a population PK approach.

Given the greater access to opportunistic pediatric

PK data, this method holds great promise to increase

the development of PBPK models in children.
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1 Introduction

The 2012 US FDA recommendation in support of modeling

and simulation in pediatric drug development included an

endorsement of physiologically-based pharmacokinetic

(PBPK) modeling [1]. PBPK models are particularly useful

for modeling drug disposition in infants and children

because they incorporate growth changes and maturation in

processes that are known to alter drug disposition. By

integrating both the known physiological changes that alter

drug disposition in children, with known drug-specific

parameters, these models can accurately predict changes in

drug disposition as a function of age. Because PBPK

models leverage prior knowledge of drug disposition and

physiology, their development is less reliant on drug con-

centration data than their population pharmacokinetic (PK)

counterparts [2]. As such, nontraditional clinical trials

collecting a minimal number of drug concentrations may

be sufficient to successfully develop PBPK models.

A successful, nontraditional alternative to PK trials in

children is the use of opportunistic PK data collection [3].

Opportunistic PK studies capitalize on standard of care

procedures by timing the collection of samples to occur

optimally at the time of routine laboratory blood draws.

Because participants are already receiving the drug of

interest, and additional samples do not need to be col-

lected for research purposes only, this study design min-

imizes the risk to the study participant and often has

higher informed consent rates. Data from opportunistic

PK trials have previously served as the basis for empirical

compartmental population PK model development [4, 5].

Opportunistic PK data may also be useful for the devel-

opment and validation of pediatric PBPK models. We

hypothesized that combining opportunistic and literature

data would allow us to develop a well-parameterized

pediatric PBPK model for the lincosamide antibiotic

clindamycin.

We chose clindamycin to evaluate this approach due to

its frequent and increasing use to treat severe infections

with methicillin-resistant Staphylococcus aureus (MRSA)

in children despite remaining relatively understudied in this

population [6]. Furthermore, the availability of adult lit-

erature data and pediatric opportunistic data collected from

infants to adolescents provided the necessary in vivo data

needed to evaluate model performance. Lastly, clin-

damycin has pharmacologic properties that make it ideally

suited for PBPK modeling: as a cytochrome P450

(CYP) 3A4 substrate, its clearance will be affected by

developmental changes, and target tissue concentrations for

MRSA therapy in the lung, bones, and skin have been

established as pharmacodynamic endpoints that can be

simulated by the PBPK model [7, 8].

2 Methods

2.1 Description of Physiologically-Based

Pharmacokinetic (PBPK) Model Development

Workflow

We followed the FDA guidance on PBPK model devel-

opment and workflow in children to build our pediatric

PBPK model (Fig. 1) [9–11]. We first developed an adult

PBPK model and extracted clindamycin intravenous con-

centration versus time data from three adult PK studies

[12–14]. To assess the predictive accuracy of the adult

population PBPK model, we compared the distribution of

observed clindamycin plasma concentration data with the

simulated plasma concentration data for a virtual popula-

tion with demographic characteristics representative of all

three studies [14]. The finalized adult model served as the

basis for developing the pediatric PBPK model. In the

pediatric model, we maintained the physicochemical and

drug-specific absorption, distribution, metabolism and

elimination (ADME) parameters of clindamycin and

replaced the anthropometric and physiological information

with pediatric values using pre-established age-dependent

algorithms in PK-Sim� (version 5.5; Bayer Technology

Services, Leverkusen, Germany). To assess the predictive

accuracy of the pediatric model, we performed simulations

with virtual populations ranging from term neonates to

18 years of age.

2.2 Clinical Data and Software Used

We identified relevant adult clindamycin concentration

versus time data reported in the literature using a system-

atic search of Pubmed� using the search terms ‘clin-

damycin’, ‘pharmacokinetics’, and ‘pharmacokinetic’.

Data obtained using microbiologic assay techniques that

may not have reliably distinguished clindamycin from

clindamycin metabolite concentrations were excluded. To

provide the concentration–time data for the adult PBPK

model development, we selected three adult clindamycin

PK studies that were most appropriate based on route of

administration, study participant demographics and clinical

characteristics, and bioanalytical method used (electronic

supplementary Table 1) [13–15]. The software Plot Digi-

tizer� (version 2.6.6) was used to extract the concentration

versus time data.

To develop the pediatric PBPK model, we leveraged

individual clindamycin plasma concentration versus time

data collected after intravenous administration of clin-

damycin phosphate in an opportunistic PK study (POPS;

ClinicalTrials.gov identifier: NCT01431326) [5]. This was

a multicenter, prospective, PK, and safety study of

1344 C. P. Hornik et al.



understudied drugs administered to children (\21 years of

age) per standard of care. In this study, we collected PK

samples either in an opportunistic fashion at the time of

clinical laboratory collections, or if the parent or patient

consented, following a specific collection for study pur-

poses (end of infusion 2–5 h after infusion, within 1 h prior

to next dose, and 16–24 h after the final dose). Because this

was a standard-of-care study, dosing and PK sample col-

lection times varied between participants. Clindamycin

concentrations were measured using a validated bioana-

lytical assay previously described [5]. In the analyses

described herein, we excluded clindamycin plasma con-

centration versus time data collected from preterm infants,

obese participants, and those receiving extracorporeal

membrane oxygenation support due to the significant

physiologic alterations expected to be present in these

populations.

The software PK-Sim� (version 5.5; Bayer Technology

Services) and MoBi� (version 3.5; Bayer Technology

Services) were used for model development and simula-

tion, while Stata� (version 14.1; StataCorp LP, College

Station, TX, USA) was used for data manipulation and

visualization.

2.3 Adult PBPK Model Development

We used the standard whole-body 15-organ PBPK model

implemented in PK-Sim� [16, 17]. Organs were kinetically

equivalent to well-stirred compartments. Clindamycin

phosphate is extensively metabolized to clindamycin, with

only 0.35% of unchanged clindamycin phosphate excreted

in urine after intravenous administration [14]. The con-

version to clindamycin has been shown to be complete

within approximately 2 h, which was incorporated into the

model using a plasma alkaline phosphatase conversion rate.

The physicochemical parameters and ADME data for

clindamycin were extracted from the literature (Table 1)

[18]. Tissue or plasma partition coefficients (Kp) were

predicted using the in silico tissue composition approach

proposed by Rodgers et al. [19–21]. While clindamycin is

78–94% bound to plasma a1-acid glycoprotein, the fraction

of plasma protein bound clindamycin phosphate and the

preferred protein to which it is bound are not known

[21–24]. Therefore, we assumed the same degree of protein

binding to a1-acid glycoprotein for clindamycin phosphate

and clindamycin.

For both clindamycin phosphate and clindamycin, we

approximated renal clearance using two methods: (1) based

on total plasma clearance and percentage of the dose

recovered in urine as unchanged drug; and (2) based on

glomerular filtration rate and unbound fraction of the drug

in plasma. Renal clearance estimated using methods (1)

and (2) were then compared to determine whether an active

secretion or reabsorption process was needed in the model.

The hepatic clearance of clindamycin in the adult PBPK

model was calculated as a sum of the clearance mediated

Fig. 1 Model-building

workflow for pediatric PBPK

model. ADME absorption,

distribution, metabolism and

elimination, PBPK

physiologically-based

pharmacokinetic, PK

pharmacokinetic
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by CYP3A4/A5. The relative contribution of these two

clearance pathways was determined based on results from

an in vitro metabolism study of clindamycin [8]. The total

hepatic clearance of clindamycin phosphate and clin-

damycin was calculated as the sum of the scaled values of

three individual clearance pathways: intrinsic clearance of

plasma alkaline phosphatase (CLint(plasma-ALP)); intrinsic

clearance of hepatic isozyme CYP3A4 (CLint(hep-CYP3A4));

and intrinsic clearance of hepatic isozyme CYP3A5

(CLint(hep-CYP3A5)). The observed concentration versus time

data from the selected adult PK studies were compared

with the concentrations simulated using the initial adult

PBPK model. To evaluate model performance, we simu-

lated concentration versus time data in an adult using

average demographics (age and body weight) representa-

tive of all three adult PK studies, and we evaluated the

central tendency of model predictions using a visual check

of any substantial discrepancy between simulated and

observed mean concentration versus time data. We opti-

mized the model parameters, including the intrinsic clear-

ance via CYP3A4/A5, tubular secretion, and unbound

fraction of clindamycin and intrinsic clearance via alkaline

phosphatase, renal absorption, and unbound fraction of

clindamycin phosphate, using the MoBi� Toolbox for

MATLAB (Bayer Technology Services/The Mathworks

Inc., Natick, MA, USA).

To account for interindividual PK variability, we

developed an adult population PBPK model by

incorporating virtual populations into its framework, while

maintaining the physicochemical and ADME parameters

from the finalized adult PBPK model. We created a virtual

population of adults (N = 100) using the demographic

(sex, age, and weight) distribution reported in the adult PK

studies of clindamycin selected from the literature. In

addition, we included in the model interindividual vari-

ability (expressed as the percentage coefficient of varia-

tion) for enzymes and transporters (CYP3A4, 81%;

CYP3A5, 185%; plasma alkaline phosphatase, 31%; and

transporter for tubular secretion, 25%) extracted from the

literature [25, 26]. From the virtual population, we evalu-

ated the adult population PBPK model by comparing the

distribution of observed clindamycin plasma concentration

versus time data (mean and standard deviation [SD]) with

the simulated data (geometric mean and SD). A model was

considered final if the mean ± SD of the simulated data

captured[80% of the observed data.

2.4 Pediatric PBPK Model Development

2.4.1 Anatomical and Physiological Parameterization

The pre-established age-dependent algorithms in PK-Sim�

were used to generate anatomical and physiological

parameters, including bodyweight, height, organ weights,

blood flows, cardiac output, total body water, and lipid and

protein concentrations [16, 17].

Table 1 Physicochemical,

ADME, and

anatomic/physiologic data for

clindamycin phosphate and

clindamycin

Clindamycin phosphate Clindamycin

Physicochemicala

LogP 0.95 2.16

pKa Base 6.78 Base 7.55

MW, g/mol 504.963 424.98

Solubility at pH7, mg/L 3220 30.6

ADME

fup 0.22 0.06 (22–24, 27)

Binding proteinb a1-acid glycoprotein a1-acid glycoprotein (22-24, 27)

CLint(plasma-ALP) 0.8 L/min

CLint(hep-CYP3A4) – 2.21 lL/min/pmol P450

CLint(hep-CYP3A5) – 0.28 lL/min/pmol P450

Tubular secretion – 0.1038 L/min

Renal filtration 0.044 1

LogP logarithm of the octanol-water partition coefficient (lipophilicity), pka negative logarithm of the acid

dissociation constant, MW molecular weight, ADME absorption distribution metabolism elimination, fup
plasma fraction unbound, CLint(plasma-ALP) intrinsic clearance of plasma alkaline phosphatase, CLint(hep-

CYP3A4) intrinsic clearance of hepatic isozyme CYP3A4, CLint(hep-CYP3A5) intrinsic clearance of hepatic

isozyme CYP3A5, CYP cytochrome P450
a All physicochemical data came from DrugBank [18]
b We assumed the same degree of protein binding to a1-acid glycoprotein for clindamycin phosphate and

clindamycin
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2.4.2 Scaling of Unbound Fraction

We estimated the unbound fraction of clindamycin in

children using the unbound fraction of clindamycin in

adults and the default a1-acid glycoprotein ontogeny

function in PK-Sim� [22–24, 27]. Prior to selecting the

default ontogeny function, we compared it with ontogeny

functions previously described in the literature by plotting

empirical Bayesian estimates of clearance derived from a

published population PK model by age over the clearance

predicted by the PBPK model using various ontogeny

functions (electronic supplementary Fig. 1) [5]. The default

function was retained after visual inspection revealed that

its use resulted in predicted clearance most in agreement

with the population model.

2.4.3 Scaling of Renal Clearance

The default age-dependent value for glomerular filtration

rate in PK-Sim� was used in the pediatric model. Because

the specific transporter for tubular secretion of clindamycin

is unknown, in the pediatric model we used the age-de-

pendence of tubular secretion published by Hayton [28].

Since this function was based on the excretion of amino-

hippuric acid, we are obligated to assume that the ontogeny

of tubular secretion of clindamycin is reflected by the

ontogeny of aminohippuric acid tubular secretion.

2.4.4 Scaling of Hepatic Clearance

Total hepatic clearance of clindamycin phosphate and

clindamycin was calculated as the sum of scaled values of

its individual clearance pathways using a physiologically-

based approach. The process of physiologic hepatic clear-

ance scaling is based on the following assumptions [29]:

1. Pathways of clearance in children are the same as

those observed in adults.

2. Well-stirred model conditions hold.

3. Enzyme metabolism follows first-order kinetics.

For clindamycin, the default setting for hepatic

CYP3A4/A5 ontogeny in PK-Sim� was used [30]. Prior to

selecting the default ontogeny function, we again compared

it with ontogeny functions previously described in the lit-

erature by plotting empirical Bayesian estimates of clear-

ance derived from a published population PK model by age

over the clearance predicted by the PBPK model using

various ontogeny functions (electronic supplementary

Fig. 1) [5]. On visual inspection, use of the default PK

Sim� ontogeny functions for hepatic CYP3A4 and

CYP3A5 resulted in predicted clearance most in agreement

with the population model, and the default functions were

retained in the PBPK model.

These functions assume that enzyme activity per gram

of tissue of CYP3A4 is, on average, 12% of the adult value

at term gestation, increases to 80% by the age of 1.3 years,

and reaches adult activity by 5 years of age, while

CYP3A5 reaches adult enzyme activity levels at term. We

calculated scaled pediatric intrinsic clearance estimates for

CYP3A4/A5 from adult values using the following

formulas:

CLint;CYP3A4 childð Þ=gliver ¼ OSFCYP3A4

� CLint;CYP3A4 adultð Þ=gliver

CLint;CYP3A5 childð Þ=gliver ¼ OSFCYP3A5

� CLint;CYP3A5 adultð Þ=gliver

where CLint,CYP3A4(child)/g liver is the scaled intrinsic clear-

ance for CYP3A4 per gram of liver; CLint,CYP3A5(child)/g liver

is the scaled intrinsic clearance for CYP3A5 per gram of

liver; CLint,CYP3A4(adult)/g liver is the intrinsic clearance due

to CYP3A4 per gram of liver in adults; CLint,CYP3A5(adult)/

g liver is the intrinsic clearance due to CYP3A5 per gram of

liver in adults; OSFCYP3A4 is the ontogeny scaling factor

for CYP3A4 corresponding to the age of the child; and

OSFCYP3A5 is the ontogeny scaling factor for CYP3A5

corresponding to the age of the child.

To scale the conversion of clindamycin phosphate to

clindamycin mediated by plasma alkaline phosphatase, we

derived the ontogeny of the enzyme using mean normal

plasma from Pediatric Normal Laboratory Values [31]. We

scaled intrinsic clearance of clindamycin phosphate simi-

larly to that of CYP3A4/A5.

2.4.5 Pediatric Dose Optimization

Using the population module in PK-Sim�, we created five

virtual pediatric populations (N = 100) of full-term ges-

tation stratified by postnatal age: 0–5 months, 1–2 years,

2–5 years, 6–11 years, and 12–18 years. Race and sex

distributions in the virtual populations were based on those

observed in the pediatric PK trial. We maintained the adult

interpatient variability (percentage coefficient of variation)

values associated with CYP3A4/A5, plasma alkaline

phosphatase, and the transporter that mediates tubular

secretion of clindamycin in the simulation of virtual

pediatric populations.

The final developed pediatric PBPK model was used to

evaluate optimal dosing for children of different develop-

mental ages. Five age groups of 100 children each were

selected: 0–5 months, [5 months–1 year, [1–6 years,

[6–12 years, and [12–18 years. Race and sex in the

simulated children were assigned using the approximate

distribution of race (85% White; 15% Black) and sex (50%

male) in the general US pediatric population. The pediatric

dosing regimen was optimized to match (within 20%)

Pediatric Physiologically-Based Pharmacokinetic Modeling of Clindamycin 1347



median adult (70-kg body weight) clindamycin exposure.

As recommended in clinical practice guidelines for com-

munity-acquired MRSA infections, the clindamycin adult

dose selected to generate reference clindamycin exposure

was 600 mg every 8 h [32]. We calculated the area under

the concentration versus time curve from zero to infinity

after a single dose (AUC?) to represent the area under the

concentration versus time curve from zero to tau at steady

state (AUC8,ss) using a noncompartmental analysis. We

also calculated the percentage of participants with simu-

lated clindamycin concentrations in target organs and tis-

sues (bone, lung, and skin) [MRSA minimum inhibitory

concentration (MIC; 0.5 mg/L) for at least 50% of the

dosing interval following the optimized pediatric dosing

regimen [7].

3 Results

3.1 Adult PBPK Model Evaluation

The observed plasma concentrations of clindamycin and

fractions of clindamycin and clindamycin phosphate

excreted unchanged in urine were adequately described by

the adult PBPK model for all three dosing regimens. This is

demonstrated by the plots overlaying simulated data from

the PBPK model with plasma concentrations of clin-

damycin and the fraction of drug excreted unchanged in

urine for clindamycin and clindamycin phosphate after a

single intravenous dose of clindamycin phosphate 600 mg

[12, 15] and after multiple intravenous doses of clin-

damycin phosphate 600 or 1200 mg (Fig. 2) [14]. The

observed clindamycin phosphate plasma concentrations

were slightly overestimated by the adult PBPK model

(Fig. 2).

Mean (±SD) weight, age and sex were comparable

between our virtual adult population and the patient pop-

ulation that provided the observed clindamycin concen-

tration–time data (electronic supplementary Table 1). The

distribution (mean ± SD) of plasma concentrations of

clindamycin and clindamycin phosphate after multiple

intravenous doses of clindamycin phosphate 600 mg from

this study was plotted and overlaid with the distribution

(geometric mean ± geometric SD) of simulated data from

the adult population PBPK model. The mean and SD of

observed plasma concentrations for clindamycin were

acceptably predicted by the adult population PBPK model

(Fig. 3).

3.2 Pediatric PBPK Model

To evaluate the predictive accuracy of the pediatric PBPK

model, we used a total of 68 plasma concentrations from 48

POPS study participants. Participants received a median of

five doses (range 1–32) of clindamycin phosphate via

intravenous administration at a median dose of 9.97 mg/kg

(range 4.6–13.8). All drug concentrations were above the

limit of quantification, with a median number of samples

collected per participant of 1.4 (range 1–6). Table 2 sum-

marizes the demographic characteristics of children with

PK data by age group. No concomitant medications known

to alter clindamycin exposure were reported for these

participants.

Because pediatric participants in the POPS study had

different dosing regimens, we generated a 90% prediction

interval of clindamycin plasma concentrations for each

individual dosing regimen. The number of observations

and participants in each age group, as well as the number of

observations outside the 90% prediction interval, are

summarized in Table 3. These results showed that the

developed PBPK model characterized 63–93% of the

opportunistic clindamycin PK data across age groups.

Using model simulations, we identified the following

optimal dosing: 9 mg/kg/dose in children B5 months of

age, 12 mg/kg/dose in children[5 months–6 years of age,

and 10 mg/kg/dose in children 6–18 years of age, all

administered every 8 h. The resulting AUC? in each age

cohort was comparable with simulated adult exposure

(70 kg) (Fig. 4). The PBPK model also predicted thera-

peutic clindamycin concentrations in bone, lung and skin at

the proposed dosing. Clindamycin concentrations in tar-

geted organs and tissues were[MRSA MIC (0.5 mg/L) for

at least 50% of the dosing interval [7] in C88% of patients

across all age groups, and in C98% of children[6 years of

age. Lastly, the proposed dosing regimen was consistent

with previously published dosing recommendations

derived using a population PK modeling approach, and is

within the doses recommended by the Infectious Diseases

Society of America for the treatment of community

acquired MRSA [5, 33].

4 Discussion

To our knowledge, we are the first to report the successful

use of opportunistic pediatric PK data for PBPK model

development. Our model adequately characterized the PK

of clindamycin in children and supported an age/body-

weight-based dosing regimen. This dosing regimen is now

being applied in an ongoing pediatric PK trial to externally

validate the developed model.

PBPK models are an attractive tool in pediatric drug

development because of their inherent ability to facilitate

extrapolation across different life stages [34]. PBPK model

development leverages existing knowledge of drug dispo-

sition and physiology, and may be less reliant on drug

1348 C. P. Hornik et al.



Fig. 2 Mean observed (dots) and simulated (lines) plasma concen-

trations and fractions of the drug excreted unchanged in urine in

healthy adults. a Clindamycin concentration in plasma, and clin-

damycin and clindamycin phosphate fractions in urine after a 30-min

intravenous infusion of clindamycin phosphate 600 mg. b Clin-

damycin phosphate concentration in plasma and fraction in urine after

intravenous administration of clindamycin phosphate 600 mg every

6 h. c Clindamycin concentration in plasma and fraction in urine after

intravenous administration of clindamycin phosphate 600 mg every

6 h. d Clindamycin phosphate concentration in plasma and fraction in

urine after intravenous administration of clindamycin phosphate

1200 mg every 12 h. e Clindamycin concentration in plasma and

fraction in urine after intravenous administration of clindamycin

phosphate 1200 mg every 12 h

Pediatric Physiologically-Based Pharmacokinetic Modeling of Clindamycin 1349



concentration data [35]. Conducting the clinical trials

necessary to garner population-specific PK data in children

is challenging [2]. Recently, an opportunistic study design,

where participants receive the therapeutic of interest as part

of the standard of care and investigators collect PK samples

at the time of routine laboratory draws, has been success-

fully applied to pediatric PK trials [3–5]. The typically

sparse PK data from opportunistic trials has previously

served as the basis for successful empirical compartmental

PK model development using population PK approaches

for various drugs, including clindamycin [5, 36, 37]. It was

hypothesized that the spare PK data collected during an

opportunistic PK trial would be well-suited for the devel-

opment of a PBPK model, which relies more heavily on

prior knowledge than clinical data [35].

Using the probe drug clindamycin, a known CYP3A4/

A5 substrate, we found that our final model adequately

characterized the opportunistic PK data. As is the case for

all models, the applicability of model predictions is driven

by the validity of its underlying assumptions. Key

assumptions of our model included the ontogeny functions

of a1-acid glycoprotein and CYP3A4/A5. For both, we

used the standard PK-Sim� functions that have been pre-

viously validated. We further confirmed the adequacy of

ontogeny functions for our data by plotting individual

empirical Bayesian estimates of clearance obtained for

children of different ages from a previously published

population PK model of clindamycin against our PBPK

model predicted clearance using various CYP3A4 and a1-

acid glycoprotein maturation functions. In general, the

standard PK-Sim� functions characterized the ontogeny of

Fig. 3 Observed (dots) and simulated (lines) plasma concentration–

time profiles of clindamycin phosphate and clindamycin following

intravenous administration of clindamycin phosphate 600 mg every

6 h in healthy adults. Solid lines represent the geometric mean of the

simulated data, and the shaded area represents the geometric

mean ± geometric SD for the simulated data. Symbols represents

mean and SD for the observed data. SD standard deviation

Table 2 Demographic

characteristics of children with

pharmacokinetic data

Variable 0–1 year 2–5 years 6–11 years 12–18 years

N 9 11 10 18

Gestational age,a weeks 39 (37.3–40) – – –

Postnatal age, years 0.1 (0.03–0.3) 3.3 (2.0–5.9) 10.2 (7.5–11.5) 17.0 (12.7–19.0)

Postmenstrual age,b weeks 42 (41–53) 212 (145–349) 570 (430–639) 928 (702–1030)

Body weight, kg 4.2 (2.7–6.0) 17.2 (10.3–24.6) 31.7 (23.6–47.7) 67.9 (28.6–87)

Female 3 (33) 5 (45) 6 (60) 7 (39)

Race

White 9 (100) 9 (82) 5 (50) 13 (72)

Black or African American 0 1 (9) 3 (30) 4 (22)

Asian 0 0 1 (10) 0

Other 0 1 (9) 0 1 (6)

Data are expressed as median (range) or n (%)
a Gestational age was only collected for participants with a postnatal age\120 days
b Postmenstrual age was calculated as postnatal age ? 40 weeks when gestational age was missing

Table 3 Number of concentration data out of 90% prediction interval of the pediatric population PBPK model

0–1 year 2–5 years 6–11 years 12–18 years

Total number of participants 9 11 10 18

Total number of data points 14 16 11 27

Data points outside the 90% prediction interval [n (%)] 1 (7) 6 (37.5) 2 (18) 4 (22)

PBPB physiologically-based pharmacokinetic

1350 C. P. Hornik et al.



clearance as well as any of the other functions, and, overall,

fit the individual estimates from the population PK model

well. This suggests that our ontogeny function assumptions

were reasonable and that our model-predicted clearance

compares favorably with previously published clindamycin

clearance estimates derived from a population PK approach

[5].Other model assumptions were made due to the lack of

complete clinical pharmacology data for clindamycin.

Because the specific transporter for tubular secretion of

clindamycin is unknown, we were forced to use the age-

dependence of tubular secretion published by Hayton and

based on the excretion of aminohippuric acid in the pedi-

atric model [28]. While this assumes that the ontogeny of

tubular secretion of clindamycin is reflected by the onto-

geny of aminohippuric acid tubular secretion, we were

reassured by the prior use of this ontogeny function in

published pediatric PBPK models and its recommended use

in situations where drug-specific transporter ontogeny is

unknown [9, 38].

Our pediatric PBPK model-predicted doses fell within

the range of MRSA treatment guidelines as published by

the Infectious Diseases Society of America [32]. The body-

weight-normalized doses were higher than in adults, sug-

gesting a higher clearance per kilogram body weight in

children. Given the low hepatic extraction ratio of clin-

damycin, lower plasma protein concentration resulting in

reduced plasma protein binding and a higher liver

weight:body weight ratio relative to adults could have

contributed to the increased weight-normalized clearance

observed in children [39]. Importantly, the PBPK model-

derived doses were consistent with dosing recommenda-

tions derived from a pediatric population PK modeling

approach, and the resulting AUC? in each age cohort were

comparable with adult exposures [5]. Leveraging the

physiologic compartment structure of the PBPK model, we

were able to predict concentrations in target tissues,

including bone, skin, and lungs, and found them to be

[MRSA MIC (0.5 mg/L) for at least 50% of the dosing

interval in C88% of participants [7]. This finding further

supports the recommended dosing and demonstrates the

strengths of the PBPK modeling approach in predicting

drug exposure in target tissues.

Despite the satisfactory performance of our model, our

study is not without limitations. In a subset of children, the

model predictability was lower than expected. This dis-

crepancy may be due to physiologic characteristics of

children in the opportunistic PK trial hospitalized at the

time of clindamycin administration not matching the rela-

tively uniform, healthy children used for model simulations

in PK-Sim�. The discrepancy was also most pronounced in

the 2- to 5-year-old age stratum where only 16 oppor-

tunistic data points were available, and one appeared to be

an outlier value. In addition to the sparsity of opportunistic

data, our PBPK model was further limited by the

assumptions made during its development, including the

overarching assumption of physiologic scaling that pedi-

atric clearance pathways are the same as adults, and

regarding the ontogeny functions of a1-acid glycoprotein,

renal clearance, and CYP3A4/A5. The prediction of con-

centration in target tissues is a major advantage of the

PBPK model structure, and our identified dosing regimen

resulted in adequate drug penetration into skin, bone, and

lung tissue. However, it is important to remember that the

reliability of tissue concentration estimates derived from

the evaluation of plasma concentration–time profiles can

only be confirmed with the help of experimental tissue

concentration data. We are currently conducting an open

label PK trial (ClinicalTrials.gov identifier:

NCT02475876) to prospectively validate our model-pre-

dicted dosing using external data. Results of this trial will

be used to optimize the PBPK model, consistent with the

proposed iterative approach to model development [40].

Fig. 4 Simulated total drug

exposure as area under the

concentration versus time curve

from zero to infinity after a

single dose (AUC?) with age-

based clindamycin dosage

regimens
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5 Conclusions

Opportunistic PK data were successfully used to evaluate

the predictive accuracy of a clindamycin pediatric PBPK

model. The model predicted clindamycin exposures rea-

sonably well and recommended doses similar to those

predicted by a population PK approach. Given the greater

access to opportunistic PK data, proof of its successful

incorporation into the model development workflow may

revolutionize the application of pediatric PBPK models.

Once appropriately validated, this approach offers an

alternative to the use of opportunistic data for population

PK model development. By first developing an adult model

using existing drug data, and scaling this model to children,

prior information can be leveraged to mechanistically

characterize changes in drug disposition with age. Once an

opportunistic PK study is performed, PK data collected can

be used to evaluate the pediatric population PBPK model.

If the pediatric PBPK model is deemed robust, simulations

can be performed to identify optimal pediatric dosing. This

approach could potentially diminish the need for more

complex PK trials with richer sampling, and more exten-

sively leverages available adult data. Future PBPK model

development efforts should leverage opportunistic pediatric

data whenever available to improve model predictability

and increase the reach of this powerful modeling tool in the

pediatric population.
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