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Abstract

Objective The aims of this study were to determine the

effects of the CYP2C8*3 and *4 polymorphisms on ima-

tinib metabolism and plasma imatinib concentrations in

chronic myeloid leukaemia (CML) patients.

Methods We genotyped 210 CML patients from the

TIDELII trial receiving imatinib 400–800 mg/day for

CYP2C8*3 (rs11572080, rs10509681) and *4 (rs1058930).

Steady-state trough total plasma N-desmethyl imatinib

(major metabolite):imatinib concentration ratios (metabolic

ratios) and trough total plasma imatinib concentrations

were compared between genotypes (one-way ANOVA

with Tukey post hoc).

Results CYP2C8*3 (n = 34) and *4 (n = 15) carriers had

significantly higher (P\ 0.01) and lower (P\ 0.01)

metabolic ratios, respectively, than CYP2C8*1/*1

(n = 147) patients (median ± standard deviation:

0.28 ± 0.08, 0.18 ± 0.06 and 0.22 ± 0.08, respectively).

Plasma imatinib concentrations were consequently[ 50%

higher for CYP2C8*1/*4 than for CYP2C8*1/*1 and

CYP2C8*3 carriers (2.18 ± 0.66 vs. 1.45 ± 0.74

[P\ 0.05] and 1.36 ± 0.98 lg/mL [P\ 0.05],

respectively).

Conclusions CYP2C8 genotype significantly alters ima-

tinib metabolism in patients through gain- and loss-of-

function mechanisms.

Key Points

Cytochrome P450 (CYP) 2C8 metabolism plays a

role in imatinib clinical pharmacokinetics.

The CYP2C8 genotype of a chronic myeloid

leukaemia patient can significantly affect their

imatinib metabolism, and consequently imatinib

exposure for a given dose.

1 Introduction

Imatinib is one of the most widely used first-line treatments

for chronic myeloid leukaemia (CML), and is also indicated

in Ph? acute lymphoblastic leukaemia, c-KIT- and platelet-

derived growth factor receptor (PDGFR)-positive gastroin-

testinal stromal tumours (GISTs), myelodysplastic/myelo-

proliferative diseases associated with PDGFR gene re-

arrangements, aggressive systemic mastocytosis (without

D816V c-Kit mutation), hypereosinophilic syndrome and/or

chronic eosinophilic leukaemia, and dermatofibrosarcoma
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protuberans [1–4]. Currently up to 50% of CML patients

discontinue imatinib due to lack of efficacy or adverse

effects [5]; a significant problem requiring switching to other

treatments that may be more costly or may have significant

toxicities. Imatinib response is significantly associated with

plasma imatinib concentrations, which can vary more than

25-fold between patients for a given dose [6–9]. Therefore,

imatinib dose individualisation will likely be a key to

achieving treatment goals in more patients.

As a low hepatic extraction ratio drug, steady-state

plasma imatinib concentrations are determined by vari-

ability in plasma protein binding and intrinsic clearance.

Imatinib undergoes hepatic N-demethylation to the much

less potent [10–13] major metabolite N-desmethyl imatinib

(NDIM), with approximately 65% of systemic exposure

corresponding to imatinib and 10–20% to NDIM [14, 15].

Both imatinib and NDIM undergo mostly hepatic excretion

with very little renal contribution [16]. Therefore, imatinib

biotransformation to NDIM is a clinically important inac-

tivating process, with variable imatinib metabolism likely

to be a major contributor to the large inter-patient vari-

ability in the dose–plasma concentration relationship; this

may be partly genetically determined [17, 18].

Imatinib is metabolised to NDIM by cytochrome P450

(CYP) 2C8 and 3A4 in vitro, with evidence of dose- and

time-dependent mechanism-based CYP3A4 inhibition

[19–21]. Steady-state imatinib pharmacokinetics are unre-

lated to variable CYP3A activity (quinine 3-hydroxylation)

in CML patients [22] (as in GIST patients [23, 24]), are not

significantly influenced by CYP3A4 inducers or inhibitors

[16, 25, 26], and there is no consistent evidence that

CYP3A4 or CYP3A5 genetic polymorphisms alter imatinib

metabolism [27–30]. We recently demonstrated that ima-

tinib N-demethylation in human liver microsomes is

mainly mediated by CYP2C8, for which the CYP2C8*3

(rs11572080 [R139K] and rs10509681 [K399R]) is a gain-

of-function haplotype [31]. The other major polymorphism

in Caucasians, CYP2C8*4 (rs1058930), has been associ-

ated with reduced paclitaxel, amodiaquine and fluoxetine

metabolism [32–35]. Compared with other members of the

CYP2C family, CYP2C8 metabolism and pharmacogenet-

ics have not been the focus of much clinical pharmacology

research in general, and CYP2C8 genotype effects on

imatinib metabolism in vivo have not been investigated.

Other enzymes (CYP1A2, CYP2D6, CYP2C9 and

CYP2C19) play little or no role in imatinib N-methylation

to NDIM [20, 36], and consequently their genetics have

shown no significant effect on imatinib pharmacokinetics

[28, 29].

We hypothesised that the CYP2C8*3 polymorphisms

would increase, and the CYP2C8*4 polymorphism would

decrease, imatinib metabolism to NDIM in CML patients.

This study aimed firstly to determine CYP2C8 genotype

differences in imatinib metabolism as indicated by steady-

state metabolic ratio (trough plasma NDIM:imatinib con-

centration ratio) in CML patients treated with imatinib. It

then aimed to identify any dose and time dependency of

these genotype effects. Finally, the study aimed to inves-

tigate the potential clinically relevant consequences of any

genotype effects on the metabolic ratio by determining

genotype differences in steady-state plasma imatinib

concentrations.

2 Methods

2.1 Patients, Data and Exclusions

The study was a retrospective analysis of the first

3 months of treatment for 210 predominantly Caucasian

chronic-phase CML patients who participated in the

TIDEL (Therapeutic Intensification in De Novo Leukae-

mia)-II study [37]. Briefly, all patients started treatment

with imatinib 600 mg/day. If patient trough plasma ima-

tinib concentrations at day 22 of treatment were

\1000 ng/mL (based on previous studies indicating a

correlation between the minimum plasma imatinib con-

centration achieved [[1000 ng/mL] and the likelihood of

achieving complete cytogenetic remission and/or major

molecular response) [7, 8], then the imatinib dose was

increased to 800 mg/day. Imatinib dose reductions to

400 mg/day were allowed at any time for grade III/IV or

persistent grade II toxicities. Patients were switched to

nilotinib 400 mg twice daily if they were unable to dose

escalate to imatinib 800 mg due to intolerance or had a

loss of imatinib response at any time. Dose changes in

response to failure to achieve pre-determined time-de-

pendent treatment response targets [37] were made after

the 90-day timepoint analysed in this retrospective anal-

ysis. The study was approved by the relevant Human

Research Ethics Committees of participating study sites

[37].

The following data from the TIDEL-II study were used

in the main and supplementary analyses: imatinib dose and

trough plasma imatinib and NDIM concentrations deter-

mined by HPLC with UV detection as described in Elec-

tronic Supplementary Material Online Resource 2 for days

8, 22 and 90 of treatment; and patient age and sex.

Three patients were excluded for all timepoints due to

unclear dosing histories. Additional timepoint-specific

exclusions (n = 5) were made due to documented devia-

tions in time of blood sampling. Demographics of the 207

patients included in this study, and a summary of dose and

timepoint data used, are shown in Table 1.
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2.2 Genotyping

CYP2C8 rs11572080, rs10509681 and rs1058930 were

determined by probe-based allelic discrimination assays as

detailed in Online Resource 1.

2.3 Statistical Analysis

Chi squared analysis (GraphPad PRISM 5, GraphPad

Software, San Diego, CA, USA) was used to test for

genotype deviations from Hardy–Weinberg equilibrium.

All other data analyses were conducted in the R statistical

package (version 3.3.1) [38].

The metabolic ratio was calculated as plasma NDIM

concentration (lmol/L) divided by plasma imatinib con-

centration (lmol/L). Histograms and quantile–quantile (Q–

Q) plots indicated that plasma imatinib and NDIM

concentrations (ng/mL) and the metabolic ratio were not

normally distributed. Square-root-transformed plasma

imatinib concentration, and loge-transformed plasma

NDIM concentration and metabolic ratio, data were nor-

mally distributed. Transformed data were used in all sta-

tistical comparisons.

Day 8 metabolic ratios and plasma imatinib concentra-

tions were compared between genotypes by one-way

ANOVA with Tukey post hoc test (lm function in stats

package [38], Anova function in car package [39], and glht

function of the multcomp package [40]). Tests for linear

trend between genotypes (gene–dose effect) were per-

formed in GraphPad PRISM 5. The proportion of patients

achieving the day 22 plasma imatinib 1000 ng/mL con-

centration target was also compared (Chi squared test)

between genotypes.

Forward stepwise (inclusion criteria: type II ANOVA

P\ 0.05) linear mixed-effects modelling was used to

investigate the main (fixed) effects of dose (factor: 400,

600 and 800 mg/day), time (factor: day 8, 22 and 90),

age, sex and genotype on the metabolic ratio and plasma

imatinib or NDIM concentrations, with random effect

(intercept) for patient ID (lmer function of lme4 package

[41]). To determine dose and time dependency of any

significant genotype effects on metabolic ratios or plasma

imatinib concentrations, genotype was held as a fixed

effect and each patient held as a random intercept, whilst

testing (type II ANOVA P\ 0.05) random slopes and

intercepts for dose and/or day. The effects of individual

predictors from multiple regression analyses (averaging

over other terms in the model) were determined using the

allEffects function of the effects package [42]. Simulta-

neous Tukey post hoc tests on significant main effects

were conducted using the glht function of the multcomp

package [40].

The dose proportionality of trough plasma imatinib

concentrations within patients decreasing to 400 mg/day,

and increasing to 800 mg/day, from 600 mg/day before

day 90 of treatment was determined as described in Online

Resource 3.

Point-wise P-values (no correction for multiple testing)

are presented unless specified otherwise.

3 Results

3.1 Genetic Variability

One hundred and sixty patients were CYP2C8*1/*1, 31

were *1/*3, 3 were *3/*3 and 16 were *1/*4. CYP2C8

rs11572080 and rs10509681 were in complete linkage

disequilibrium. Given the low frequency of the CYP2C8*3/

*3 genotype, these patients were grouped with CYP2C8*1/

Table 1 Demographics and summary of dose and time point data for

TIDELII chronic myeloid leukaemia patients analysed in this study

Demographics, dose and timepoint Value

Age at start of treatment (years) [median (range)] 54 (22–86)

Sex (male:female) (n) 118:89

Dose and timepoints with trough plasma imatinib concentration data

(n)

Treatment day 8

Dose

400 mg/day 0

600 mg/day 199

800 mg/day 0

Timepoint exclusion 1

Missing concentration data 7a

Treatment day 22

Dose

400 mg/day 1

600 mg/day 198

800 mg/day 0

Timepoint exclusion 3

Missing concentration data 5b

Treatment day 90

Dose

400 mg/day 13

600 mg/day 150

800 mg/day 23

Timepoint exclusion 1

Missing concentration data 20b

NDIM N-desmethyl imatinib
a An additional 3 patients had a plasma NDIM concentration below

the lower limit of quantification
b An additional 1 patient had a plasma NDIM concentration below

the lower limit of quantification
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*3 for statistical analyses, and collectively referred to as

CYP2C8*3 carriers. All CYP2C8*1/*4 patients were

wildtype at both CYP2C8*3 loci.

CYP2C8 genotype distribution did not deviate signifi-

cantly from Hardy–Weinberg Equilibrium (P = 1.0).

3.2 Metabolic Ratio

Day 8 plasma NDIM:imatinib concentration ratios ranged

from 0.07 to 0.63 (median = 0.23). The metabolic ratio

was significantly higher for CYP2C8*3 carriers compared

to CYP2C8*1/*1 and CYP2C8*1/*4, and significantly

lower for CYP2C8*1/*4 compared to CYP2C8*1/*1

(Table 2; Fig. 1a). CYP2C8 genotype accounted for 10%

of variability in the metabolic ratio. There was no signifi-

cant linear trend if CYP2C8*1/*3 and CYP2C8*3/*3 were

separated (P = 0.4).

Linear mixed-effects analysis of day 8, 22 and 90 data

identified significant dose (P = 0.0004), day (P = 5 9 10-6)

and CYP2C8 genotype (P = 4 9 10-5) main effects (Fig. 2),

but no significant effects of age or sex (P[0.1).

Accounting for other significant main effects, post hoc

analyses showed that the imatinib 800 mg/day dose was

associated with a significantly lower metabolic ratio than

600 (17% lower, P\ 0.01) and 400 (25% lower, P\ 0.01)

mg/day, with no significant difference between 400 and

600 mg/day. Day 22 metabolic ratios were significantly

higher than at day 8 (11% higher, P\ 0.0001) and day 90

(7% higher, P\ 0.05), with no significant difference

between days 8 and 90.

The CYP2C8*3 carrier genotype was associated with a

significantly higher metabolic ratio than CYP2C8*1/*1

(18% higher, P\ 0.01) and CYP2C8*1/*4 (39% higher,

P\ 0.001); CYP2C8*1/*4 genotypes were 15% lower than

CYP2C8*1/*1 (P = 0.09). Random slopes for genotype

effect within dose and day did not significantly improve the

model (P[ 0.9).

3.3 Plasma Imatinib Concentration

Day 8 trough total plasma imatinib concentrations ranged

from 280 to 5000 ng/mL (median = 1480 ng/mL) and

were significantly ([50%) higher in CYP2C8*1/*4 patients

than in CYP2C8*1/*1 and CYP2C8*3 carrier genotypes

(Table 2; Figs. 1b and 3a).

Dose was the only significant (P = 1 9 10-11) main

effect in linear mixed-effects analysis of day 8, 22 and 90

data; plasma imatinib concentrations were a median 52%

higher at 600 mg/day than at 400 mg/day, and 149%

higher (non-dose-proportional) at 800 mg/day than at

600 mg/day (see Online Resource 3).

Accounting for dose, the CYP2C8 genotype was not a

significant predictor of plasma imatinib concentrations T
a
b
le

2
C
Y
P
2
C
8

g
en

o
ty

p
e

d
if

fe
re

n
ce

s
in

p
la

sm
a

N
-d

es
m

et
h

y
l

im
at

in
ib

:i
m

at
in

ib
m

et
ab

o
li

c
ra

ti
o

an
d

p
la

sm
a

im
at

in
ib

co
n

ce
n

tr
at

io
n

s
in

ch
ro

n
ic

m
y

el
o

id
le

u
k

ae
m

ia
p

at
ie

n
ts

C
Y
P
2
C
8

g
en

o
ty

p
e

D
ay

8
m

et
ab

o
li

c
ra

ti
o

D
ay

8
p

la
sm

a
im

at
in

ib
co

n
ce

n
tr

at
io

n
D

ay
2

2
p

la
sm

a
im

at
in

ib

ta
rg

et
a

[y
es

:n
o

(%
)]

M
ed

ia
n
±

S
D

(n
)

M
ea

n
d

if
fe

re
n

ce
(9

5
%

C
I)

(l
o

g
e
)

M
ed

ia
n
±

S
D

(n
)

(l
g

/m
L

)
M

ea
n

d
if

fe
re

n
ce

(9
5

%
C

I)
(H

n
g

/m
L

)

*
1

/*
1

0
.2

2
±

0
.0

8
(1

4
7

)
(I

n
te

rc
ep

t
=

-
1

.4
9

)
1

.4
5
±

0
.7

4
(1

5
0

)
(I

n
te

rc
ep

t
=

3
8

.9
)

1
2

2
:2

8
(8

1
)

*
3

ca
rr

ie
r

0
.2

8
±

0
.0

8
(3

4
)

v
s.

*
1

/*
1

:
0

.1
9

(0
.0

6
to

0
.3

3
)#

#
1

.3
6
±

0
.9

8
(3

4
)

v
s.

*
1

/*
1

:
–

1
.4

(–
5

.6
to

2
.8

)
2

5
:7

(7
8

)

(*
1

/*
3

)
(0

.2
7
±

0
.0

8
(3

1
))

(1
.3

5
±

0
.9

3
(3

1
))

(2
2

:7
(7

6
))

(*
3

/*
3

)
(0

.3
3
±

0
.1

1
(3

))
(1

.6
1
±

1
.2

8
(3

))
(3

:0
(1

0
0

))

*
1

/*
4

0
.1

8
±

0
.0

6
(1

5
)

v
s.

*
1

/*
1

:
–

0
.2

4
(–

0
.4

3
to

–
0

.0
4

)#

v
s.

*
3

:
–

0
.4

3
(–

0
.6

6
to

–
0

.2
1

)�
�
�

2
.1

8
±

0
.6

6
(1

5
)

v
s.

*
1

/*
1

:
7

.1
(1

.1
to

1
3

.1
)#

v
s.

*
3

:
8

.5
(1

.6
to

1
5

.3
)�

1
5

:0
(1

0
0

)

P
-v

al
u

eb
3
9

1
0
-

5
0

.0
1

0
.0

4

M
et

ab
o

li
c

ra
ti

o
an

d
p

la
sm

a
im

at
in

ib
co

n
ce

n
tr

at
io

n
m

ed
ia

n
s

an
d

S
D

ar
e

u
n

tr
an

sf
o

rm
ed

;
m

ea
n

d
if

fe
re

n
ce

s
ar

e
fo

r
tr

an
sf

o
rm

ed
d

at
a

C
I

co
n

fi
d

en
ce

in
te

rv
al

,
S
D

st
an

d
ar

d
d

ev
ia

ti
o

n

M
ea

n
d

if
fe

re
n

ce
an

d
T

u
k

ey
’s

p
o

st
h

o
c

#
P
\

0
.0

5
an

d
#
#
P
\

0
.0

1
v

s.
C
Y
P
2
C
8

*
1

/*
1

an
d

�
P
\

0
.0

5
an

d
�
�
�
P
\

0
.0

0
1

v
s.
C
Y
P
2
C
8

*
3

ca
rr

ie
r

a
T

ro
u

g
h

p
la

sm
a

im
at

in
ib

co
n

ce
n

tr
at

io
n

ta
rg

et
C

1
0

0
0

n
g

/m
L

b
O

n
e-

w
ay

A
N

O
V

A
o

f
tr

an
sf

o
rm

ed
d

at
a

fo
r

m
et

ab
o

li
c

ra
ti

o
an

d
p

la
sm

a
im

at
in

ib
co

n
ce

n
tr

at
io

n
.

C
h

i
sq

u
ar

ed
te

st
fo

r
d

ay
2

2
p

la
sm

a
im

at
in

ib
co

n
ce

n
tr

at
io

n
ta

rg
et

980 D. T. Barratt et al.



(P = 0.08), and nor were day (P = 0.6), age (P = 0.5) or

sex (P = 0.2), when analysing day 8, 22 and 90 data

together. Given the disparity in results for the CYP2C8

genotype between day 8 and multiple timepoint analyses

(combined days 8, 22 and 90), an interaction between

CYP2C8 genotype and day was examined. The geno-

type 9 day interaction was not significant (P = 0.18);

however, Fig. 3a illustrates a decrease in CYP2C8 geno-

type differences over time in treatment and a significant

decrease in trough plasma imatinib concentrations on

day 90 among CYP2C8*1/*4 genotype patients

(P = 0.002 for day main effect [post hoc P\ 0.01 day 90

vs. day 8 and day 22]), none of whom had a prescribed

dose reduction. There were no significant (P[ 0.1) day

effects on plasma imatinib concentrations within

CYP2C8*1/*1 or CYP2C8*3 carrier patients.

Of 198 patients without a dose change prior to day 22,

162 (82%) reached the day 22 plasma imatinib concen-

tration target of[1000 ng/mL. The proportion of patients

achieving this target was significantly different between

CYP2C8 genotypes (Table 2), with all CYP2C8*1/*4

patients above 1000 ng/mL on day 22 compared with 81%

for CYP2C8*1/*1 and 78% for CYP2C8*3 carriers.

3.4 Plasma N-Desmethyl Imatinib Concentration

Dose (P = 7 9 10-12) and day (P = 2 9 10-5), but not

genotype (P = 0.5), showed significant main effects in

linear mixed-effects analysis of day 8, 22 and 90 plasma

NDIM concentrations. Day 22 plasma NDIM concentra-

tions were significantly higher than at day 8

(P\ 1 9 10-4) and day 90 (P\ 0.01), with no significant

difference between days 8 and 90 (see Online Resource 3,

Fig. S1).

As with plasma imatinib concentrations, Fig. 3b shows a

significant decrease in trough plasma NDIM concentrations

on day 90 among CYP2C8*1/*4 genotype patients

(P = 0.002 for day main effect [post hoc P\ 0.01 day 90

vs. day 22]).

4 Discussion

CYP2C8 makes up as little as 7% of total hepatic CYPs, and

drug metabolism driven solely by the CYP2C8 enzyme is

relatively uncommon [43]. Consequently, CYP2C8 meta-

bolism and pharmacogenetics have not been focal points for

much previous clinical pharmacology research. Where

substrates are also metabolised by more abundant CYPs

such as CYP3A4, the contribution of CYP2C8 is often

discounted, and until recently this was the case for imatinib.

However, recent in vitro studies [20, 31] combined with

these clinical findings demonstrate that CYP2C8 and its

genetic variability can still play a significant role in this

context, or at least where the CYP3A4 pathway may be

suppressed by mechanism-based inhibition.

Here we show that CML patients who carry the

CYP2C8*3 haplotype have significantly higher trough total

plasma metabolic ratios, reflecting CYP2C8*3 gain-of-

function for imatinib N-demethylation reported in human

liver microsomes [31]. The 27% increase in metabolic ratio

on day 8 is an order of magnitude less than the in silico

prediction ([200%) of Filppula and colleagues [20] for a

genotype that doubles CYP2C8 activity, but is consistent

with human liver microsome results where CYP2C8*3

increases intrinsic clearance by only approximately 20%

[31]. Our data indicated a possible CYP2C8*3 allele–dose

effect on the metabolic ratio (Table 2); however, this was

not statistically significant, likely because of too few

(n = 3) CYP2C8*3/*3 genotype patients.

Conversely, the CYP2C8*1/*4 genotype was associated

with lower metabolic ratios, indicating reduced imatinib

N-demethylation activity. Similar reduced function has

been reported for other substrates in vitro and in vivo

[32–35]. There are currently no corresponding published

data on the in vitro metabolism of imatinib in CYP2C8*1/

*4 human liver microsomes, although the 18% reduction in

metabolic ratio on day 8 was less than the in silico pre-

diction (43% reduction) of Filppula and colleagues [20] for

a genotype that halved CYP2C8 activity.

Metabolic ratios were also influenced by dose, being

significantly lower at imatinib 800 mg/day than at 600 or

Fig. 1 CYP2C8 genotype differences in steady-state trough total

plasma N-desmethyl imatinib:imatinib concentration ratios and

plasma imatinib concentrations in chronic myeloid leukaemia patients

on day 8 of treatment

CYP2C8 Genotype Significantly Alters Imatinib Metabolism in CML Patients 981



400 mg/day, which was coupled with greater than dose-

proportional increases in plasma imatinib concentrations.

Whilst an interesting finding, this was not a focus of this

study, and further discussion of the apparent dose effect on

the metabolic ratio and consequent non-dose-proportion-

ality is provided in Online Resource 3.

The clinical relevance of the CYP2C8 genetic effects on

imatinib metabolism is less obvious. The magnitude of

CYP2C8*1/*4 genotype effect on the day 8 plasma ima-

tinib concentration (?50%) was similar to the within-pa-

tient difference between 400 and 600 mg/day (?52%) in

this study, and the 50% increase predicted in silico for a

genotype with low (half) CYP2C8 activity [20]. The

CYP2C8*1/*4 genotype effect was also of similar or

greater magnitude than other gene polymorphisms previ-

ously associated with changes in plasma imatinib concen-

trations clinically (25–50% reported for ABCB1, SLC22A1

and ABCG2 [27, 30, 44]). In addition, there was a signif-

icant CYP2C8 genotype effect on the likelihood of

achieving day 22 target plasma imatinib concentrations of

1000 ng/mL, with all CYP2C8*1/*4 patients reaching this

threshold that has been associated with significantly

improved long-term treatment outcomes [6, 7].

Alternatively, whilst the CYP2C8*3 carriers had signif-

icantly higher metabolic ratios, they did not have signifi-

cantly lower plasma imatinib concentrations. In addition,

whilst CYP2C8*3 and *4 genotype effects on the metabolic

ratio appeared relatively consistent across time and the

doses investigated, genotype (in particular CYP2C8*4)

differences in plasma imatinib concentrations were less

apparent at later timepoints (Fig. 3) and non-significant

when all timepoints were combined in linear mixed-effects

analysis. Plasma imatinib concentrations are more con-

founded than the metabolic ratio by variability in patient

adherence to the treatment regimen, dose-sample interval

(e.g. due to variability in sampling time or error), and

plasma protein binding (over 5-fold variability in plasma a1

acid glycoprotein concentrations within and between CML

patients [45]). For example, plasma imatinib concentration

results may have been confounded by increased variability

in patient adherence as the amount of time in treatment

progresses [46], particularly amongst CYP2C8*1/*4

patients (Fig. 3). Whilst every effort was made to identify

and limit the effects of non-adherence by excluding data

based on documented non-adherence, it is difficult to

Fig. 2 Dose, day and CYP2C8

genotype effects on trough total

plasma N-desmethyl

imatinib:imatinib metabolic

ratio in chronic myeloid

leukaemia patients. Circles and

bars are geometric means and

95% confidence intervals,

respectively, holding other main

effects to typical values

(proportional distribution).

CYP2C8*3 genotype group

combines CYP2C8*1/*3 and

*3/*3 genotypes. Tukey post

hoc * P\ 0.05

Fig. 3 CYP2C8 genotype effects on trough total plasma imatinib

(a) and N-desmethyl imatinib (b) concentrations in chronic myeloid

leukaemia patients over time in treatment. Circles and bars are back-

transformed means and 95% confidence intervals, respectively,

holding imatinib dose to typical values (proportional distribution)

[linear mixed-effects model of H(plasma imatinib concentration) or

loge(plasma N-desmethyl imatinib concentration) with dose and

genotype 9 day interaction main effects, and patient ID random

effect (intercept)]. NDIM N-desmethyl imatinib. Tukey post hoc **

P\ 0.01 vs. day 8 and ## P\ 0.01 vs. day 22 for one-way ANOVA

in CYP2C8*1/*4 patients
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exclude occult non-adherence entirely. Based on the data

presented in Fig. 3, it is speculated that significantly higher

plasma imatinib concentrations in CYP2C8*1/*4 patients

could have resulted in adverse effects (not captured under

the intolerance criteria of the TIDELII study [37]) leading

to patient non-adherence after the major plasma imatinib

concentration checkpoint on day 22 of the study. Significant

decreases in both plasma imatinib and NDIM concentra-

tions on day 90 in CYP2C8*1/*4 patients, with no signifi-

cant change in metabolic ratio (data not shown), suggest

non-adherence rather than increased metabolism. However,

there were no adverse effect data or other adherence

markers (e.g. pill counts) available to test such a hypothesis.

Genotyping for the CYP2C8*4 polymorphism could

foreseeably aid in decision making regarding whether to

start patients on the standard imatinib 400 (CYP2C8*4) or

higher 600 (wildtype CYP2C8) mg/day dose, if the

hypothesis regarding adverse effects and non-adherence

among CYP2C8*1/*4 patients at 600 mg/day can be pro-

ven. No CYP2C8*4/*4 patients were identified in this

study, and so it is unknown whether this genotype would

lead to more significant differences in metabolism and

plasma imatinib exposure (and possibly adverse events).

However, such patients would be rare in Caucasian (\1 in

150 patients), and rarer still in non-Caucasian (B1 in 2500

patients), patient populations [47].

This study intentionally focused on the novel investiga-

tion of the CYP2C8 genotype; however, other potential

contributors to variability in imatinib metabolism and

pharmacokinetics are acknowledged. In addition to the

aforementioned transporter genetics, variability in plasma

protein binding, and thus the imatinib and NDIM unbound

fraction, will influence total plasma concentrations and the

metabolic ratio (unpublished unbound plasma imatinib and

NDIM concentration data from a subset of TIDELII patients

indicate CYP2C8 genotype effects on metabolic ratio and

total plasma imatinib concentrations are similar after

adjusting for unbound fraction). The relative and combined

contributions, and thus importance, ofCYP2C8 genotype (or

CYP2C8 function more generally), transporter genetics and

plasma protein binding to variability in imatinib pharma-

cokinetics in CML patients remain to be determined. Whe-

ther a pharmacogenetic approach to individualised imatinib

dosing might be complementary or redundant in the context

of potential therapeutic drug monitoring/target concentra-

tion intervention should also be considered [6].

5 Conclusion

This study shows that CYP2C8*3 and *4 genotypes sig-

nificantly alter imatinib metabolism clinically and confirms

a role for CYP2C8 in imatinib pharmacokinetics, in

addition to increasing our limited knowledge of CYP2C8

clinical pharmacogenetics per se. Future prospective stud-

ies would need to be specifically designed and sufficiently

powered [48, 49] to test whether personalising imatinib

treatment based on transporter and metabolism genetics

and plasma protein binding can improve imatinib treatment

outcomes.
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