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Abstract

Background and Objective Pharmacokinetic/pharmacody-

namic modeling and simulation can aid clinical drug

development by dynamically integrating key system- and

drug-specific information into predictive profiles. In this

study, we propose a methodology to predict pharmacoki-

netic/pharmacodynamic profiles of sinogliatin (HMS-5552,

RO-5305552), a novel glucokinase activator to treat dia-

betes mellitus, for first-in-patient (FIP) studies.

Methods and Results Initially, pharmacokinetic/pharma-

codynamic profiles of sinogliatin and another glucokinase

activator (US2) previously acquired from healthy subjects

were fitted using Model A incorporating an indirect

response mechanism. The pharmacokinetic/pharmacody-

namic profiles of US2 in patients with type 2 diabetes

mellitus (T2DM) were then fitted using Model B incor-

porating circadian rhythm and food effects after thoughtful

research on the difference between healthy subjects and

T2DM patients. The differences in results between the two

US2 modeling populations were used to scale the values of

the pharmacodynamic parameters and refine the pharma-

codynamic model of sinogliatin, which was then utilized to

project pharmacokinetic/pharmacodynamic profiles of

sinogliatin in T2DM patients after an 8-day simulated

treatment. Results showed that the projected pharmacoki-

netic/pharmacodynamic values of five parameters were

within 70–130% of values fitted from observed clinical

data while the other two remaining projected parameters

were within a twofold error. Population pharmacokinetic/

pharmacodynamic analysis conducted for sinogliatin also

suggested that age and sex were significantly correlated to

pharmacokinetic/pharmacodynamic characteristics. Addi-

tionally, Model B was combined with a glycosylated

hemoglobin (HbA1c) compartment to form Model C, which

was then used to project serum HbA1c levels in patients

after a 1-month simulated treatment of sinogliatin. The

predicted HbA1c changes were nearly identical to observed

clinical values (0.82 vs. 0.78%).

Conclusions Model-based drug development methods uti-

lizing a learn–research–confirm cycle may accurately

project pharmacokinetic/pharmacodynamic profiles of new

drugs in FIP studies.
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Key Points

We provide good validated example of learn–

research–confirm methodology to show how to

predict pharmacokinetics/pharmacodynamics in

patients with complex system profiles based on data

from healthy subjects.

The results of the population pharmacokinetic/

pharmacodynamic analysis offered an insightful

basis for further modeling research of sinogliatin

(HMS-5552, RO-5305552), a novel glucose kinase

activator, during future phase II/III trials.

1 Introduction

Accurately predicting pharmacokinetic/pharmacodynamic

profiles of a new drug in first-in-patient (FIP) studies by

analyzing the pharmacokinetic/pharmacodynamic charac-

teristics in healthy subjects could greatly support clinical

pharmacologists in trial design by, for example, optimizing

dose selection or setting inclusion/exclusion criteria.

However, making such predictions is challenging because

of potentially different modulation systems and drug

potency between healthy subjects and patients. To better

quantitatively understand these differences, modeling and

simulation was considered useful in integrating key sys-

tem- and drug-specific information in the recent two dec-

ades [1–3]. However, only a few cases have been reported

[4, 5] and validated so far.

Glucokinase (GK) is a key enzyme that phosphorylates

D-glucose to glucose-6-phosphate, which is the first step of

glucose metabolism in cells [6]. It serves as a ‘glucose

sensor’ to regulate glucose-stimulated insulin release in

pancreatic b cells. It also serves as glucose translator to

convert glucose to glycogen and regulates glucose pro-

duction in liver [6, 7]. The differential regulation function

in pancreatic islets and liver allows GK activators (GKAs)

to improve insulin secretion caused by both b cell dys-

function and insulin resistance, the two key characteristics

of type 2 diabetes mellitus (T2DM) pathology. Therefore,

GKAs represent a promising new class of drugs to treat

T2DM [8]. Sinogliatin (HMS-5552, RO-5305552) is a

fourth-generation GKA with a structurally novel amino

acid-based chemical scaffold. Preclinical experiments

suggested that sinogliatin is a potent and safe drug candi-

date to treat diabetes, and prior to the present study a single

ascending dose (SAD) study was conducted to evaluate its

safety, tolerability, pharmacokinetics, and pharmacody-

namics following oral administration in healthy subjects

[9]. This SAD study showed that sinogliatin significantly

decreased fasting serum glucose (FSG) by up to 1.2 mmol/

L at the maximum tested dose of 50 mg in healthy subjects.

Because diabetic patients will have higher fasting and 24-h

glucose baselines, the clinically effective dose should

theoretically be higher than 50 mg in T2DM patients.

Hence, simulating the pharmacokinetic/pharmacodynamic

characteristics for these T2DM patients in order to opti-

mize the dose would be especially valuable for accelerating

the clinical development of sinogliatin.

Here, we propose a methodology to translate pharma-

cokinetic/pharmacodynamic characteristics from healthy

subjects to diabetic patients using a novel GKA, sinogliatin,

as an example. The specific objectives of the present study are

to (1) predict FSG profiles in diabetic patients after a simu-

lated 8-day dosing of sinogliatin on the basis of pharma-

cokinetic/pharmacodynamic characteristics of sinogliatin in

healthy subjects and another same-in-class GKA (US2) in

both healthy subjects and diabetic patients; (2) quantitatively

address the key factors affecting pharmacokinetic/pharma-

codynamic characteristics of sinogliatin in diabetic patients;

and (3) predict glycosylated hemoglobin (HbA1c) dynamics

in diabetic patients after 1-month dosing of sinogliatin. We

hope this will offer a useful example to project pharmacoki-

netic/pharmacodynamic profiles in patients with complex

system on the basis of data in healthy subjects, especially for

drugs of the same class as GKA. Additionally, the results of

the population pharmacokinetic/pharmacodynamic analysis

could offer a solid basis for further modeling research on

sinogliatin during future phase II/III trials.

2 Methods

2.1 Study Design

Data were obtained from five studies: (1) a SAD study of

sinogliatin in healthy subjects; (2) a SAD study of US2 in

healthy subjects; (3) an 8-day multiple ascending dose

(MAD) study of US2 in diabetic patients; (4) an 8-day

MAD study of sinogliatin in diabetic patients; and (5) a

1-month MAD study of sinogliatin in diabetic patients

(Table 1). In studies 1–4, plasma drug concentrations and

FSG levels were determined via intensive sampling. In

study 5, HbA1c was additionally measured. The overall

prediction strategy is summarized in Fig. 1. Firstly, phar-

macokinetic/pharmacodynamic profiles of sinogliatin in

T2DM patients were predicted based on pharmacokinetic/

pharmacodynamic modeling results of sinogliatin in heal-

thy subjects by translational borrowing of quantitative

differences in pharmacokinetic/pharmacodynamic charac-

teristics of US2 between healthy subjects and T2DM

patients. The differences in pharmacokinetic/

926 D. Liu et al.
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pharmacodynamic characteristics between the two popu-

lations were assumed to be same for both sinogliatin and

US2. Because of systemic differences between the two

populations, Model A and B were developed to mimic

pharmacokinetic/pharmacodynamic profiles of GKA in

healthy subjects and T2DM patients, respectively. This

translational prediction was validated with observed phar-

macokinetic/pharmacodynamic profiles of sinogliatin in

T2DM patients, which were further analyzed using a non-

linear mixed-effect modeling method to quantify the key

factors affecting pharmacokinetic/pharmacodynamic pro-

files of inogliatin in T2DM patients. Finally, serum HbA1c

levels in patients after 1-month treatment of sinogliatin

were simulated by assuming that the quantitative rela-

tionship between serum glucose (SG) and HbA1c was the

same as previously reported in the literature. This simula-

tion was also validated using observed HbA1c profiles after

later sinogliatin treatment.

2.2 Prediction of Pharmacokinetic/

Pharmacodynamic Characteristics

for Sinogliatin from Healthy Subjects

to Patients with Diabetes

2.2.1 Modeling Analysis of Pharmacokinetic/

Pharmacodynamic Profiles of sinogliatin and US2

in Healthy Subjects

Mean concentration–time profiles across all dose levels

were simultaneously fitted using the ADAPT5 package

(Biomedical Simulations Resource, Los Angeles, CA,

USA) [10]. A two-compartmental pharmacokinetic model

(Eqs. 1–3) with linear clearance and absorption was uti-

lized to fit pharmacokinetic profiles for each drug of

sinogliatin and US2 in healthy subjects. An indirect

response model (IDR) with stimulation of response elimi-

nation (Eq. 4) was utilized to fit mean FSG–time profiles of

each drug in healthy subjects due to the mechanism of

Fig. 2 The proposed model structures for Models A, B, and C. Aa

drug amount in absorption compartment, CL systemic clearance, CLd
distribution clearance between the central and peripheral compart-

ments, E/E0 relative food effect, GFmeal total food effect on

production of glucose, ka absorption rate constant, kd elimination

rate constant of serum HbA1c, ke,Emeal elimination rate constant of E/

E0, kout turnover rate constant of plasma glucose, SC50 drug

concentration in the central compartment at which the stimulation

effect is half Smax, Smax maximum effect of glucokinase on plasma

glucose, VT distribution volume of the peripheral compartment, Kin

production rate constant of plasma glucose, Ac drug amount in central

compartment, AT drug amount in tissue compartment, Vc(Cp)

distribution volume of central compartment (plasma drug concentra-

tion in central compartment), epe.t decrease function of plasma

glucose in the morning in T2DM patients, kg transduction rate

constant from plasma glucose to HbA1c

Fig. 1 The overall prediction strategy. btw between, FSG fasting

serum glucose, HbA1c glycosylated hemoglobin, HMS5552 sinogliatin

(RO-5305552), HV healthy volunteers,MADmultiple ascending dose,

PD pharmacodynamics, PKPD pharmacokinetic/pharmacodynamic,

Pop-PKPD population pharmacokinetic/pharmacodynamic, SAD sin-

gle ascending dose, SC50 drug concentration in the central compart-

ment at which the stimulation effect is half of the maximum effect of

glucokinase on plasma glucose, T2DM type 2 diabetes mellitus

928 D. Liu et al.



action for GKA [6]. The applied pharmacokinetic/phar-

macodynamic model (Model A; see Fig. 2a) was selected

according to the F test (a = 0.05) of the Akaike Infor-

mation Criterion value, precision of estimated parameters,

and overall goodness-of-fit. Their residual unexplained

variabilities (RUV) were described by a proportional error

model (Eq. 5).

Vp

dCp

dt
¼ ka � Aa � CL � Cp � CLdðCp � CtÞ Cp 0ð Þ ¼ 0

ð1Þ

Vt

dCt

dt
¼ CLdðCp � CtÞ Ct 0ð Þ ¼ 0 ð2Þ

dAa

dt
¼ �ka � Aa Aa 0ð Þ ¼ 0 ð3Þ

dGlu

dt
¼ Gbase � kout � kout � Glu � 1þ Smax � Cp

SC50 þ Cp

� �
Glu 0ð Þ

¼ Gbase

ð4Þ
Yobs ¼ Ypred � 1þ e1ð Þ ð5Þ

where Cp and Ct are the drug (sinogliatin or US2) con-

centrations in the central and peripheral compartments; Vp

and Vt are the distribution volumes of drug in the central

and peripheral compartments; CL and CLd are the systemic

clearance in the central compartment and the distribution

clearance between the central and peripheral compartment

of drug; ka and Aa are the absorption rate constant and

amount of drug in deposit compartment; Glu represents SG

level and Gbase is its baseline level; kout is the turnover rate

constant of plasma glucose, which actually reflect effects of

insulin and glucagon as well as elimination rate constant of

glucose; Smax is the maximum stimulation effect and SC50

is the drug concentration in the central compartment at

which the stimulation effect is half Smax; Yobs and Ypred are

the observed and predicted plasma concentrations; and e1 is
the proportional component quantifying the residual error,

being assumed to be normally distributed in the range from

0 to r2.

2.2.2 Modeling Analysis of Pharmacokinetic/

Pharmacodynamic Profiles of US2 in Patients

with Diabetes

Because US2 was orally administrated under both fasting

and fed status in the 8-day MAD study, the meal effect on

SG levels was additionally considered. In order to simplify

modeling analysis, the relative food effect (E/E0) with a

fixed initial value of 1 was utilized to describe the food

effect. Because food consumption was finished within

0.5 h, total food effect on production of glucose (GFMeal)

was assumed to be infused in the first 0.5 h after food

intake with a rate constant of GFMeal/0.5 [11]. Circadian

rhythm was observed in T2DM patients in the placebo

group, as reported by other groups [12, 13]. SG levels were

measured at 0–4 h post-dose, which was 8:00 a.m.–

12 noon. These measurements did not support a modeling

analysis with a full circadian rhythm model describing 24-h

profiles. Considering SG levels were reported to be grad-

ually decreasing during this time, a simple exponential

elimination function (Eq. 7) with an elimination rate con-

stant of Pe (decrease rate constant of plasma glucose in the

morning in T2DM patients) was utilized to mimic the

circadian rhythm in the morning. During the rest of the day,

the glucose level will return to the baseline value according

to the characteristics of IDR model without consideration

of food and drug effects. The feedback function [14]

caused by sequential increased insulin was not considered

because a minor feedback phenomenon was only observed

at 1 h for the highest dose group, which didn’t support the

fitting of this mechanism for all groups. After integrating

meal effect and circadian rhythm in the morning, Model A

was modified to Model B (Fig. 2b, Eqs. 1–3 and 5–7),

which was then utilized to fit pharmacokinetic/pharmaco-

dynamic profiles of US2 in T2DM patients using the

ADAPT5 package.

dE=E0

dt
¼ GFmeal

0:5
if 0�0:5 hð Þ þ ke;Emeal � ke;Emeal

� E
E0

E

E0

0ð Þ
¼ 1 ð6Þ

dGlu

dt
¼ Gbase � kout �

E

E0

ð�e�Pe�Tif in the morningÞ � kout

� Glu � 1þ Smax � Cp

SC50 þ Cp

� �
Glu 0ð Þ

¼ Gbase

ð7Þ

where E/E0 represents the relative effect of the meal;

GFmeal reflects the total amount of meal effect and ke,Emeal

is the elimination rate constant of E/E0; and Pe represents

the decrease rate constant of SG level of T2DM patients in

the morning (8:00 a.m.–12 noon) due to the circadian

rhythm.

2.2.3 Extrapolation and Confirmation of Predicting

Pharmacokinetic/pharmacodynamic Characteristics

of Sinogliatin from Healthy Subjects to Diabetic

Patients

Model B was utilized to simulate pharmacokinetic/phar-

macodynamic profiles of sinogliatin in T2DM patients. The

values of sinogliatin pharmacokinetic parameters in T2DM

patients were assumed to be the same as those in healthy

Translational Modeling and Simulation in New Drug Development 929



subjects. The food effect on pharmacokinetic profiles of

sinogliatin in T2DM patients was assumed to be negligible

due to (1) no potential mechanisms to produce differences

between the two populations [5]; and (2) its two absorption

characteristics: high bioavailability in dogs (89.4%), and

high permeability (1.7 lm/s from the apical to basolateral

side [15]) (unpublished data). Pharmacodynamic parame-

ters of sinogliatin, Gbase, kout, Smax, and SC50, in patients

were scaled on the basis of their differences in US2

between healthy subjects and T2DM patients. The other

three pharmacodynamic parameters, GFmeal, ke,Emeal, and

Pe, were assumed to be the same between studies 3 and 4

since the same food composition was consumed in both

studies and these system parameters are not expected to

change significantly in T2DM patients. After study 4 was

conducted for sinogliatin, the pharmacokinetic/pharmaco-

dynamic parameters were simultaneously estimated based

on Model B using the ADAPT5 package and their values

were compared with the parameter values used to simulate

pharmacokinetic/pharmacodynamic profiles in patients in

order to assess predictive accuracy of the current

methodology.

2.3 Population Pharmacokinetic/pharmacodynamic

Analysis of Sinogliatin in Patients with Diabetes

For drug concentrations and plasma glucose levels in

study 4 (Table 1), population pharmacokinetic/pharmaco-

dynamic analysis was sequentially conducted with a non-

linear mixed-effect modeling approach, using NONMEM�

version 7.2 software (ICON Development Solutions,

Gaithersburg, MD, USA) interfaced with Pirana� (version

2.8.0, Pirana Software & Consulting BV, Amsterdam, The

Netherlands). One- and two-compartmental pharmacoki-

netic models with linear elimination and absorption were

assessed based on objective function value (OFV), good-

ness-of-fit, the precision of parameter estimates, diagnostic

plots, and determination of physiological/pathological

plausibility. The first-order conditional estimation with

interaction (FOCEI) method was used to assess the

parameters. Inter-individual variability (IIV) was assumed

to be log-normally distributed and was described by an

exponential model (Eq. 8). The RUV was described using a

mixed-error model (Eq. 9).

Pij ¼ hi � exp gij
� �

ð8Þ

Yobs ¼ Ypred � 1 þ e1ð Þ ð9Þ

In Eq. 8, hi is the typical value of the ith population

parameter; Pij is the estimate of the ith parameter in the jth

individual; and gij quantifies the deviation of the typical

parameter value from the individual parameter value,

assuming that gij is normally distributed in the range from 0

to x2. In Eq. 9, Yobs and Ypred are the observed and

predicted plasma concentrations; e1 is the proportional

component quantifying the residual error, being assumed to

be normally distributed in the range from 0 to r2.
The pharmacokinetic/pharmacodynamic characteristics

of sinogliatin were also described by Model B (Fig. 2b)

with a modification replacing Smax and SC50 with the

parameter slope, which means the maximum effect (Emax)

model in Eq. 7 was replaced by slope�Cp. The following

covariates were plotted against individual pharmacokinetic

parameters: demographic population characteristics (body

surface area [16], lean body weight [17], total body weight,

age), body mass index (BMI), height, sex, liver function

(alanine aminotransferase, aspartate transaminase, protein

binding factor [albumin], and total bilirubin), and renal

function (serum creatinine). The following covariates were

plotted against individual pharmacodynamic parameters:

BMI, age, sex, total cholesterol, high-density lipoprotein

cholesterol, low-density lipoprotein cholesterol, fasted

serum C-peptide, FSG, and fasted serum insulin. Consid-

ering the eta-shrinkage, these plots were utilized to guide

the shape of the parameter-covariate relationships (e.g.,

linear or power) as well as to identify covariate relation-

ships to be explored within NONMEM�. Covariates with a

coefficient of determination value of higher than 0.3 were

investigated in NONMEM� using stepwise forward

inclusion (P\ 0.05) and backward elimination (P\ 0.05),

guided by the difference in OFV. Power and linear

covariate effects on pharmacokinetic parameters were

tested for continuous variables (Eq. 10) and categorical

variables (Eq. 11).

Pij ¼ h1 � exp gij
� �

� X=Xmedianð Þh ð10Þ

Pij ¼ h1 � exp gij
� �

� 1þ h2 � Xindicatorð Þ ð11Þ

In Eq. 10, X is the individual covariate value and Xmedian

is the median value of the jth covariate; And h1 is an

estimate of the typical population parameter and h2
describes the effect of the covariate on Pij. In Eq. 11,

Xindicator indicates the categorical covariate; and h2
describes the extent of the covariate effect.

Internal model evaluation during the population phar-

macokinetic/pharmacodynamic (PopPK/PD) model-finding

steps included assessments of decrease in OFV, precision

of estimated parameters, inspection of goodness-of-fit plots

from the basic model without inclusion of covariates and of

the different covariate models, as well as graphical

inspection of the relative standard error (RSE) of the mean

by plotting the conditional weighted residuals over time

after dose. In addition, the final PopPK/PD model was

assessed using visual predictive checks (VPCs; n = 500)

and non-parametric bootstrapping (n = 500). The VPCs

were created with the Perl-speaks-NONMEM (PsN) toolkit
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(version 3.6.2) [18] and Xpose (version 4.2.1) [19] for

graphical analysis. A total of 500 datasets were sampled

randomly from the original dataset, followed by fitting

using the PsN toolkit (version 3.6.2) [18, 20].

2.4 Prediction of Pharmacokinetic/

Pharmacodynamic Profiles of Sinogliatin

after 28-Day Treatment in Study 5

An additional HbA1c compartment was added into Model C

with a transduction parameter (kg) between SG and HbA1c

and the elimination rate constant of serum HbA1c (kd). kd

was borrowed from a publication (0.000664 1/h) and kg
was set to be equal to HbA1c baseline 9 kd/Gbase [21]. This

compartment was then utilized to simulate HbA1c changes

in T2DM patients with different baseline levels of FSG and

HbA1c, with additional information on variability in glu-

cose changes estimated in the above PopPK/PD analysis.

Clinical trial design for simulation was set as the final

protocol of the real study. Other parameters were assumed

to be the same as estimation in the above population

analysis. The simulated HbA1c changes from baseline were

compared with observed value to evaluate predictive

accuracy.

Fig. 3 Observed and fitted

pharmacokinetic/

pharmacodynamic profiles for

sinogliatin (HMS-5552, RO-

5305552) in healthy subjects

and US2 in both healthy

subjects and patients with type 2

diabetes mellitus. a,
b Pharmacokinetic and

pharmacodynamic profiles for

sinogliatin in healthy subjects;

c, d pharmacokinetic and

pharmacodynamic profiles for

US2 in healthy subjects; e,
f pharmacokinetic and

pharmacodynamic profiles for

sinogliatin in patients with type

2 diabetes mellitus. BID twice

daily, Conc. concentration, obs

observed, prd predicted, QD

once daily
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3 Results

In this study, three sub-studies were conducted to project

8-day sinogliatin pharmacokinetic/pharmacodynamic pro-

files in diabetic patients from those in healthy subjects,

quantify the key factors affecting sinogliatin pharmacoki-

netic/pharmacodynamic profiles in diabetic patients, and

predict 28-day sinogliatin pharmacokinetic/pharmacody-

namics in diabetic patients from those in 8-day sinogliatin

treatment. These three sub-studies were conducted

sequentially; therefore, their results are described below in

the same order.

3.1 Predicting Pharmacokinetic/Pharmacodynamic

Characteristics of Sinogliatin from Healthy

Subjects to Diabetic Patients

3.1.1 Modeling Analysis of Pharmacokinetic/

Pharmacodynamic Profiles for Sinogliatin

in Healthy Subjects and US2 in Healthy Subjects

and Type 2 Diabetes Mellitus Patients

Projected and observed pharmacokinetic/pharmacody-

namic profiles for sinogliatin in healthy subjects and US2

in healthy subjects and T2DM patients are shown in Fig. 3;

these profiles suggest that Model A captured the pharma-

cokinetic/pharmacodynamic characteristics of sinogliatin

and US2 in healthy subjects without systemic bias.

Observed glucose–time curves for the middle three dose

levels (10, 15, and 25 mg) are overlapped, which was

possibly caused by small sample size for each dose level.

Therefore, the fitting based on dose-dependent efficacy is

not perfect for the three dose levels. However, glucose–

time curves for the highest two dose levels and the lowest

dose level were fitted well, which could give good confi-

dence in predicting pharmacodynamic profiles in T2DM

patients and conquer the limitation of overlapping for the

middle three dose levels. According to the above

Table 2 Fitting results of pharmacokinetic/pharmacodynamic parameters for sinogliatin (HMS-5552, RO-5305552) in healthy subjects and US2

in both healthy subjects and patients with type 2 diabetes mellitus

Parameters Description Sinogliatin in healthy

subjects

US2 in healthy

subjects

US2 in T2DM

patients

Estimate CV% Estimate CV% Estimate CV%

CL (L/h) Systemic clearance in the central compartment 12.3 2.0 42.75 4.6 34.2 2.2

Vp (L) Distribution volume of the central compartment 23.1 16.5 43.62 38.5 33.9 18.7

CLd (L/h) Distribution clearance between the central and

peripheral compartment

2.86 23.5 28.07 42.1 22.3 21.5

Vt (L) Distribution volume of the peripheral compartment 28.2 9.9 230 15.8 213 8.0

ka (1/h) Absorption rate constant 0.261 13.7 0.282 30.1 0.264 14.3

kout (1/h) Turnover rate constant of plasma glucose 2.51 21.2 1.45 15.9 0.485 8.0

Gbase (mmol/L) Baseline level of glucose 4.88 0.9 5.32 0.7 8.72 0.5

Smax (units) Maximum effect of glucokinase on plasma glucose 0.607 14.0 0.607 FIXEDa 1.01 8.4

SC50 (ng/mL) Drug concentration in the central compartment at

which the stimulation effect is half Smax

417 9.1 102 9.6 478 14.9

GFMeal (units) Total food effect on production of glucose NA NA NA NA 2.15 10.9

ke,Emeal (1/h) Elimination rate constant of food effect NA NA NA NA 1.39 10.6

Pe (1/h) Decrease rate constant of plasma glucose

in the morning in T2DM patients

NA NA NA NA 0.0508 10.2

CV% percentage coefficient of variability, NA not applicable, T2DM type 2 diabetes mellitus
a Fixed as sinogliatin

Fig. 4 Glucose–time curves in healthy subjects and patients with

type 2 diabetes mellitus before (upper) and after (lower) administra-

tion of US2. HV healthy volunteers, T2DM type 2 diabetes mellitus
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understanding and research of glucose modulation in

T2DM patients, Model A was modified to Model B, which

was found to acceptably capture major pharmacokinetic/

pharmacodynamic characteristics of US2 in T2DM patients

(Fig. 3e, f). Additional figures with estimated and observed

pharmacokinetic/pharmacodynamic profiles in T2DM

patients are depicted in Electronic Supplementary Material

1A for each dose level. Estimated parameters are summa-

rized in Table 2. The precisions expressed as the percent-

age coefficient of variability (CV%) were estimated to be

less than 50% for all parameters, which showed robust

estimation. In order to translate the systemic difference

from US2 to sinogliatin under the same conditions, Smax

was assumed to be same for both drugs in healthy subjects.

Fig. 5 Simulated and fitted pharmacokinetic/pharmacodynamic pro-

files of sinogliatin (HMS-5552, RO-5305552) in patients with type 2

diabetes mellitus after 8-day dosing. a, b Simulated pharmacokinetic

and pharmacodynamic profiles of sinogliatin; c, d fitted pharmacoki-

netic and pharmacodynamic profiles of sinogliatin. BID twice daily,

Conc. concentration, obs observed, prd predicted
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The smaller value of kout in T2DM patients suggested a

slower rate of return back to SG homeostasis than in

healthy subjects, which could also be clearly observed by

comparing drug effect in Fig. 4.

3.1.2 Extrapolation of Pharmacokinetic/

Pharmacodynamic Characteristics of Sinogliatin

from Healthy Subjects to Diabetic Patients

Simulated, observed, and fitted pharmacokinetic/pharma-

codynamic profiles of sinogliatin in T2DM patients are

depicted in Fig. 5 (separated figures for each dose level are

depicted in Electronic Supplementary Material 1B) and

summarized in Table 3. In a comparison of Fig. 5a, c,

average plasma exposure expressed in area under the

plasma concentration–time curve (AUC) and steady-state

plasma drug concentration (Css), calculated using a non-

compartment analysis method by Pheonix WinNonlin� 5.1

(Pharsight Co., Cary, NC, USA), was comparable (bias

within ±10%), although an approximately twofold error

existed in Vp and ka between simulated and fitted values. In

a comparison of Fig. 5b, d, similar trends were captured. In

order to evaluate the predictive accuracy of drug effect in

T2DM patients without interference from different baseli-

nes, projected/observed and fitted/observed values of glu-

cose change from their baselines—time curves are depicted

in Electronic Supplementary Material 1C and 1D. A

decrease of 0.37–1.77 and 0.57–2.49 mmol/L of SG level

was projected and fitted for sinogliatin at steady state over

the dose range of 25–200 mg twice daily. The difference

was caused by a higher value of the systemic parameter,

Smax (1.01 vs. 1.70), in T2DM patients in study 4. The

maximum glucose decrease after drug administration under

a fasting state was projected and fitted to be –3.64 to –1.72

and –4.74 to –2.58 mmol/L. The small difference was

caused by a bigger amplitude in the circadian rhythm, Pe

(0.0508 vs. 0.0745 1/h), in T2DM patients. The relative

peak value of the post-food glucose level at steady state

(Day 7) was projected and fitted to be 0.428–2.81 and –

1.32 to 2.34 mmol/L, which may be responsible for all of

the differences in Smax, Pe, and kout. In conclusion, the

relative bias values were within the range of ±30% for five

pharmacodynamic parameters but not for Smaxand Pe,

where relative bias within the range of ±70% was found

between projected and fitted value.

3.2 Population Pharmacokinetic/Pharmacodynamic

Analysis of Sinogliatin in Patients with Diabetes

A two-compartment model with linear absorption and

elimination adequately captured the pharmacokinetic

characteristics of sinogliatin in T2DM patients. The effects

of IIV on CL, Vp, CLd, and Vp and RUV of the model were

best described using an exponential model and a propor-

tional error model, respectively. Estimated PopPK/PD

parameters are listed in Table 4. The precision of most

parameters, expressed as a percentage RSE, was less than

50%, except for X CLD (88.4%), X VT (67.4%), and X slope

(52.7%), indicating that the model was fitted robustly. The

effect of IIV on ka tended towards 0, and was thus fixed at

0. CL was found to be inversely related to age (Eq. 12)

(difference in OFV [DOFV] = 13; P\ 0.01), which sug-

gested that CL is decreased by *30% when age is changed

from 52 to 104 years. Vt was found to be smaller in females

by 20% (Eq. 13) (DOFV = 7.6; P\ 0.05). Renal or liver

function have no significant effect on drug elimination,

although the drug was majorly eliminated by the cyto-

chrome P450 (CYP) 3A4 enzyme and *10% of the dose

was eliminated by the kidneys in parent drug.

CL ¼ TVCL � AGE=52ð Þ�0:478 ð12Þ
Vt ¼ TVVT ð�0:8 if femaleÞ ð13Þ

Pe was found to be 1.8 times in females than in males

(Eq. 14) (DOFV = 8.4; P\ 0.01), which suggested that

FSG levels of female patients is decreased to a larger extent

Table 3 Summary of values for simulation and fitted values of PK/

PD parameters of sinogliatin (HMS-5552, RO-5305552) in T2DM

patients based on data in healthy subjects

Parametera Simulation before study Fitting after study

Projected values Fitted values CV%

CL (L/h)b 12.3 11.56 2.7

Vp (L)
b 23.1 52.81 22.0

CLd (L/h)
b 2.86 3.72 28.9

Vt (L)
b 28.2 37.27 15.8

ka (1/h)
b 0.261 0.5723 25.6

Smax (units)
c 1.01 1.70 21.1

SC50 (ng/mL)d 1954 1970 31.8

Gbase (mmol/L)c 8.72 8.19 1.2

kout (1/h)
d 0.828 0.614 15.9

GFMeal (units)
c 2.15 1.97 18.9

ke,Emeal (1/h)
c 1.39 1.32 18.0

Pe (1/h)
c 0.0508 0.0745 15.3

CV% percentage coefficient of variability, T2DM type 2 diabetes

mellitus
a See Table 2 for definitions of parameters
b Simulated parameter value is obtained by estimation of sinogliatin

in healthy subjects
c Simulated parameter value is the same as estimation of US2 in

T2DM patients
d Simulated parameter value is scaled using the difference of this

parameter of US2 between healthy subjects and T2DM patients
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than in male patients when both are fasted. TVCL, TVVT,

TVPe, and TVKe,Emeal mean typical value of CL, VT, Pe,

and Ke,Emeal, respectively. ke,Emeal (the elimination rate

constant of food effect) was found to be inversely related to

age (Eq. 15) (DOFV = 6.1; P\ 0.05).

Pe ¼ TVPeð�1:8 if femaleÞ ð14Þ

ke Meal ¼ TVKe Meal AGE=52ð Þ�1:25 ð15Þ

The fitting performance of the final PopPK/PD model is

depicted in Electronic Supplementary Material 2 Figure 1.

The scatter-plots of individual and population-predicted

concentrations versus observed values showed no major

bias, and most conditional weighted residuals were shown

to lie within an acceptable range (-2 to 2). The

pharmacokinetic/pharmacodynamic data for all treatment

subgroups were simulated to form 500 datasets using the

same experimental design and parameter estimates obtained

with the FOCEI method. The 5th, 50th, and 95th percentiles

(prediction intervals) of the simulated data were calculated

and plotted as red lines against the observed concentrations,

as shown in Electronic Supplementary Material 2 Figure 2.

The model adequately predicted the observed data, with the

prediction interval including most of the observed

sinogliatin concentrations or FSG levels. The non-

parametric stratified bootstrapping results fitted from 500

sampling datasets are shown in Table 4. The bootstrap

analysis showed the original pharmacokinetic/

pharmacodynamic model for sinogliatin concentrations/

FSG levels to be stable and the estimated parameters to be

precise.

3.3 Projection of Pharmacokinetic/

pharmacodynamic Profiles of Sinogliatin

after a 1-Month Treatment

Predicted HbA1c percentage profiles are depicted in Fig. 6.

The observed HbA1c in T2DM patients after a 28-day

treatment of sinogliatin 75 mg (twice daily) was observed

to be decreased from 8.98 to 8.18%, which was predicted to

be from 9.0 to 8.2%.

Table 4 Population PK/PD analysis of sinogliatin (HMS-5552, RO-5305552) in T2DM patients with validation of bootstrap (n=500)

Parameters Definition Estimates CV% Bootstrap IIV (%) CV% Bootstrap

CL (L/h) Systemic clearance in the central

compartment

12.2 4.0 [11.6, 12.8] 19.6 33.2 [15.6, 23.1]

Vp (L) Distribution volume of the central

compartment

32 29.7 [24.4, 39.5] 36.6 32.0 [28.2, 43.2]

CLd (L/h) Distribution clearance between the

central and peripheral

compartment

4.81 10.1 [3.82, 5.80] 29.2 88.4 [17.7, 52.0]

Vt (L) Distribution volume of the

peripheral compartment

43.5 10.0 [38.3, 48.6] 23.6 67.4 [15.3, 39.6]

ka (1/h) Absorption rate constant 0.374 26.1 [0.274, 0.474] 0 (FIXED) NA NA

Gender on Vt Gender effect on Vt –0.2 43.3 [–0.337, –0.0629] NA NA NA

Age on CL Age effect on CL –0.478 48.6 [–0.847, –0.109] NA NA NA

EPS Residual error (CCV) 0.184 3.5 [0.167, 0.199] NA NA NA

kout (1/h) Elimination rate constant for SG 0.617 10.4 [0.514, 0.759] 50 27.6 [35.9, 60.7]

Gbase (mmol/L) PG concentration at baseline 8.54 2.6 [8.15, 8.92] 19.6 19.3 [16.4, 22.5]

Slope [1/(lg/mL)] Drug effect on decrease of PG 0.000587 12.6 [0.000465, 0.000720] 69.1 52.7 [44.6, 10.1]

k,Emeal (1/h) Elimination rate constant for food

effect on PG

0.86 10.3 [0.653, 1.04] 47 35.9 [28.2, 62.8]

GFMeal (units) Amount of food effect on PG 2.58 10.6 [2.13, 3.06] 39.9 27.1 [29.3, 48.0]

Pe (1/h) Decrease rate constant for FSG in

morning

0.054 12 [0.0355, 0.0701] 61.1 34 [42.7, 79.3]

Gender on Pe Gender effect on Pe 0.823 34.1 [0.635, 2.20] NA NA NA

Age on ke,Emeal Age effect on ke,Emeal –1.25 25.8 [–1.76, –0.32] NA NA NA

IOV Inter-day variability of food effect

on PG

NA NA NA 45.9 18.9 [38.1, 58.5]

EPS Residual error (CCV) 0.0131 3.5 [0.0115, 0.0147] NA NA NA

CCV constant coefficient of variation, CV% percentage coefficient of variability, FSG fasting serum glucose, NA not applicable, PG plasma

glucose, SG serum glucose
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4 Discussion

Modeling and simulation have been extensively applied to

predict pharmacokinetic/pharmacodynamic profiles of new

drugs in new systems, such as from a preclinical study to a

first-in-human (FIH) study [22, 23], from healthy subjects

to patients [4, 5], and from a short-term treatment trial to a

long-term treatment trial [24, 25]. Regarding pharmacoki-

netic prediction, physiologically based pharmacokinetic

models have exhibited strong power in integrating specific

system changes [26, 27]. For this kind of model, the

prediction results could be reliable if key covariates are

considered within the model. The system structure is

known and we don’t need to modify the model structure

when we predict pharmacokinetic characteristics in new

populations or species. However, we know much less about

the pharmacodynamic system than the pharmacokinetic

system. Therefore, many more challenges exist for accurate

prediction of pharmacodynamic characteristics. So far,

most studies translationally predicting pharmacodynamic

profiles did not change the model structure by assuming the

same modulation system between different populations.

This did work for some drugs by either replacing a

parameter value with the new system’s value [22] or

scaling the parameter using the difference between the two

populations or species [23]. However, in most situations,

significant differences exist between healthy subjects and

patients. Therefore, in order to receive a reliable prediction,

it is very important for us to identify the differences

between systems as the first step. We then need to confirm

these differences by searching the literature and understand

the mechanism causing these differences. Next, we need to

quantitatively describe this difference using reference drug

data based on our understanding and its mechanism.

Overall, it is a critical step to research the differences

between systems before we make predictions, as this sup-

ports us to address, understand, and accurately quantify the

system. Although several predictive studies have been

conducted using data from healthy subjects for patients,

few cases using modeling and simulation techniques have

been reported and validated [4, 5]. In the present study,

careful research was conducted, in which we modified the

model structure based on the results of our research, and

new mechanisms (circadian rhythm [12, 13] and food

effect [11]) were addressed and confirmed from other

studies. The following modeling research on reference

drug, US2, revealed that drug-specific parameters (SC50

and Smax) and system-specific parameters (Gbase and kout)

are significantly different between healthy subjects and

T2DM patients. Additionally, incorporating circadian

rhythm effects turned out to be necessary in modeling

pharmacodynamic profiles of GKA in patients. Therefore,

based on the research results, all of the above knowledge

was dynamically integrated and quantitatively applied to

predict pharmacokinetic/pharmacodynamic profiles of

sinogliatin in T2DM patients based on the data generated

from healthy subjects. This is our first learn–research–

confirm cycle. The dynamic relationship between SG levels

and HbA1c has previously been reported in T2DM patients

by other investigators [21]. Therefore, in the second cycle

of learn–research–confirm, this previous learning was

directly applied to assist in accurately predicting HbA1c

profiles of sinogliatin in T2DM patients by integrating

variability estimated from a population pharmacokinetic/

Fig. 6 Predicted glycosylated hemoglobin percentage profiles in

patients with type 2 diabetes mellitus after dosing of sinogliatin

(HMS-5552, RO-5305552) when the glycosylated hemoglobin base-

line of patients with type 2 diabetes is 8% (a), 8.5% (b), and 9% (c).
HbA1c glycosylated hemoglobin
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pharmacodynamic study. The predictive performance of

the two cycles of learn–research–confirm methodology

proved to be successful, demonstrating the necessity of the

‘research’ step in the middle of ‘learn’ and ‘confirm’ if we

would like to accurately predict pharmacokinetic/pharma-

codynamic/disease profiles between different populations,

especially populations with complex modulation systems.

So far, two kinds of pharmacodynamic model have been

applied to GKA: one is a simple IDR model integrating the

results of an in vitro study reported by Zager et al. [28] and

the other is a complicated model integrating glucose,

insulin, and glucagon characteristics reported by Schneck

et al. [29]. In order to simplify glucose modulation, Zager

et al. [28] grouped liver glycogen production, enhancement

of insulin secretion, and peripheral effects into a basic IDR

model structure using kin and kout. A huge turnover rate of

plasma glucose (kout = 5860 L/h) was estimated by Zager

et al. [28] to show the elimination half-life of plasma

glucose to be just *0.4 s in mice, which is almost

impossible. Although the pharmacodynamic model utilized

by Schneck et al. [29] integrated more hormones, the fixed

pharmacodynamic parameters (15 of 22 parameters) were

‘borrowed’ from a Caucasian population, which may not fit

the aim of our study to predict pharmacodynamic profiles

in a Chinese population. In order to predict pharmacody-

namic profiles in a Chinese population accurately, we

removed the in vitro part of the Zager et al. [28] model and

utilized a standard IDR model to capture the entire mod-

ulation ofglucose. The parameter reflecting glucose meta-

bolism, kout, was estimated to be a rational value

(0.485–2.51 1/h) and it was found to be lower in T2DM

patients, which is consistent with other studies [30]. It was

also found to be smaller in healthy Chinese subjects than it

is in healthy Caucasian subjects; the reason for this has not

been determined so far. Different BMIs (24.9 vs. 29.9 kg/

m2) may be one of the reasons as obese subjects will have

weaker glucose control than normal subjects, which means

a slower turnover rate [31].

It was suggested that the circadian rhythm of the SG

level was caused by the changed rate of endogenous glu-

cose production in patients, which is frequently high in the

morning and decreases gradually to rates comparable with

healthy subjects [30, 32, 33]. It exists in both T2DM

patients and healthy subjects, but the extent of the fluctu-

ation is six times stronger in patients than it is in healthy

subjects [33]. Because the decrease in the morning was not

observed in healthy subjects in the present study (Fig. 4),

circadian rhythm was only considered in studies in T2DM

patients, which is attributed to diurnal rhythm [32, 34]. The

glucose level was estimated to be decreased by 20%

(=e-0.0508 9 4 h) in the morning, which is consistent with

reported values in Caucasian T2DM patients [33, 35].

Interestingly, the glucose level decreases more in fasting

Chinese T2DM patients with a higher Pe value (0.0745 1/

h), which may be caused in different patient populations on

the basis of different levels of endogenous glucose pro-

duction between newly diagnosed and established T2DM

patients [30]. The food effect on the glucose production

rate constant was quantitatively described using a 0.5 h

infusion function followed by an exponential decrease,

which is similar to the measured glucose absorption rate in

an oral meal tolerance test [36]. So far, a piece-wise model

[37] and transit model [38] have been developed to fit the

glucose absorption rate. However, the piece-wise model

needs to estimate n - 1 parameters (where n is the sampling

point number) while the transit model could not capture the

profiles of a quick increase in a short time and a slow

decrease during rest time. Therefore, we utilized the cur-

rent model to mimic food effect on the glucose absorption

rate. Population analysis suggested the Pe was 1.8 times

higher in female than in male patients, which is newly

reported here. The elimination rate constant of HbA1c (kd)

was estimated to be 0.000664 L/h, which suggests a half-

life of *100 days. Due to HbA1c being formed on the

membrane of red blood cells, the half-life of HbA1c is

determined using the lifespan of red blood cells of

100–120 days [39]. This also reinforces the correct appli-

cation of the kd value in the second cycle of learn–re-

search–confirm.

Sinogliatin is a novel GKA, which is undergoing early-

phase clinical development. Neither pharmacokinetic/

pharmacodynamic profiles nor pharmacokinetic/pharma-

codynamic modeling analysis in patients have been

reported so far. On the basis of its mechanism of action and

its potent glucose-lowering efficacy, it is important to

estimate optimal sinogliatin doses for T2DM patients

[8, 40]. Therefore, real-time modeling and simulation

would be helpful for sinogliatin in early-phase clinical drug

development. The present study conducted pharmacoki-

netic/pharmacodynamic modeling analysis for sinogliatin

in healthy subjects followed by population pharmacoki-

netic/pharmacodynamic analysis for sinogliatin in T2DM

patients. Models A and B could capture the pharmacoki-

netic/pharmacodynamic characteristics of sinogliatin in

healthy subjects and T2DM patients in a robust manner. On

the basis of Models A and B, Model C successfully pre-

dicted the quantitative relationship between the SG level

after short-term treatment and the HbA1c level after mid-

term treatment. Therefore, the present study establishes a

solid foundation for future sinogliatin modeling analysis

during phase II/III studies. Serum insulin, C-peptide, glu-

cagon-like peptide-1, and glucagon were also determined

in healthy subjects in both studies. However, insulin

secretion increased in the lower dose range (0–10 mg) and

decreased in the higher dose range ([10 mg). A similar

phenomenon was also observed in a clinical study of
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another glucose kinase activator [29], which may have

been caused by the feedback function of decreased glucose

in the higher dose range. The dose-dependent exposure–

response relationship for other biomarkers exhibited simi-

lar characteristics. Although we utilized the most mecha-

nistic and complex model, an integrated glucose–insulin–

glucagon model, to fit these data, we have not captured this

kind of characteristic so far [29]. Therefore, this type of

characteristic makes it difficult to interpret the differences

in these biomarkers between healthy subjects and patients.

Finally, only glucose was utilized in this analysis to

describe the pharmacodynamic characteristics of sinogli-

atin in order to increase the accuracy of translational pre-

diction. So far, GKAs have not been approved by

regulatory authorities and many same-in-class drugs are

under preclinical or clinical development. Therefore, it is

of particular value for other GKAs to potentially be

assisted by a model-based drug development (MBDD)

strategy.

5 Conclusions

In the present study, we proposed a new MBDD method-

ology, the learn–research–confirm cycle, to predict the

pharmacokinetic/pharmacodynamic characteristics of the

novel GKA sinogliatin in T2DM patients from pharma-

cokinetic/pharmacodynamic data of healthy subjects and to

simulate it after mid-term treatment based on short-term

treatment data. Careful modeling of pharmacokinetic/

pharmacodynamic profiles for same-in-class drugs in both

healthy subjects and T2DM patients was additionally use-

ful in optimizing the model. For sinogliatin, these findings

were used to scale values of drug-specific and system-

specific parameters as well as to modify the model struc-

ture by adding circadian rhythm and food effect to the

model. This step of the research was proved to be necessary

in order to accurately predict pharmacodynamic profiles

across difference modulation systems. The current

methodology may prove useful for the early-phase drug

development of other GKAs. It also offers a good example

of how to predict pharmacokinetic/pharmacodynamic pro-

files in patients with complex system profiles on the basis

of data from healthy subjects. At the same time, the results

of the population pharmacokinetic/pharmacodynamic

analysis could offer a solid basis for further modeling

research relating to sinogliatin during future phase II/III

trials.
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