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Abstract

Background and Objectives Sepsis is characterised by an

excessive release of inflammatory mediators substantially

affecting body composition and physiology, which can be

further affected by intensive care management. Conse-

quently, drug pharmacokinetics can be substantially

altered. This study aimed to extend a whole-body physio-

logically based pharmacokinetic (PBPK) model for healthy

adults based on disease-related physiological changes of

critically ill septic patients and to evaluate the accuracy of

this PBPK model using vancomycin as a clinically relevant

drug.

Methods The literature was searched for relevant infor-

mation on physiological changes in critically ill patients

with sepsis, severe sepsis and septic shock. Consolidated

information was incorporated into a validated PBPK van-

comycin model for healthy adults. In addition, the model

was further individualised based on patient data from a

study including ten septic patients treated with intravenous

vancomycin. Models were evaluated comparing predicted

concentrations with observed patient concentration–time

data.

Results The literature-based PBPK model correctly pre-

dicted pharmacokinetic changes and observed plasma

concentrations especially for the distribution phase as a

result of a consideration of interstitial water accumulation.

Incorporation of disease-related changes improved the

model prediction from 55 to 88% within a threshold of

30% variability of predicted vs. observed concentrations.

In particular, the consideration of individualised creatinine

clearance data, which were highly variable in this patient

population, had an influence on model performance.

Conclusion PBPK modelling incorporating literature data

and individual patient data is able to correctly predict

vancomycin pharmacokinetics in septic patients. This study

therefore provides essential key parameters for further

development of PBPK models and dose optimisation

strategies in critically ill patients with sepsis.
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Key Points

A physiologically based pharmacokinetic model was

successfully developed to predict the

pharmacokinetics in a cohort of critically ill septic

patients treated with vancomycin considering

relevant disease-related changes in physiology.

Incorporation of literature-based physiological

changes obtained from a structured literature survey

led to a significant improvement in model prediction

for vancomycin, whereas individual creatinine

clearance data were necessary to better predict the

clearance of this primarily renally cleared drug.

The gathered key parameters for physiological

alterations during sepsis will allow for a further

physiologically based pharmacokinetic modelling

extension in this subpopulation of patients with the

aim to optimise drug dosing in critically ill septic

patients.

1 Introduction

Despite improvements in critical care medicine, sepsis

remains a leading cause of death with about seven million

fatalities per year [1]. The mortality rate for septic shock

can be as high 50% [2] and an increase of incidence by

approximately 8.5% per year is expected for the future

[3, 4]. According to the definition of the American College

of Chest Physicians/Society of Critical Care Medicine

consensus conference, sepsis is a microbiologically proven

or clinically suspected infection, which is accompanied by

a systemic inflammatory response syndrome [5]. This

inflammatory state is associated with a multitude of chan-

ges in physiological and biochemical processes. Among

others, an increase of endothelial permeability (‘capillary

leakage syndrome’) [6, 7], vasodilatation through release

of nitric oxide (NO) and changes in macro- and microcir-

culation owing to the procoagulant effects of cytokines [8],

as well as changes in protein biosynthesis [9, 10] are typ-

ically observed. The resultant multi-organ dysfunction can

peak in life-threatening complications.

The main principles in sepsis therapy are prompt

hemodynamic stabilisation, surgical therapy of the infec-

tious focus where applicable, support of organ failure as

clinically needed in the intensive care unit (ICU) and the

initiation of antimicrobial drug therapy [11]. However,

physiological changes during sepsis may influence the

pharmacokinetics (PK) of the administered drugs, resulting

in an uncertainty of pharmacotherapeutic success. In the

past, several studies were able to demonstrate major

changes in the PK of drugs administered to septic patients

and a number of sepsis-related alterations in physiology

with probable influence on PK were described [12–14].

However, the clinical relevance of these changes remains

so far unknown. Hence, a more profound understanding of

the impact of physiological changes on PK in sepsis is

necessary to optimise pharmacotherapy.

Whole-body physiologically based pharmacokinetic

(PBPK) modelling is an ideal in silico technique to predict

the impact of physiological processes on drug PK owing to

(non-)pathological states. In comparison to classical phar-

macokinetic modelling, PBPK incorporates drug-specific

parameters and patient characteristics to predict whole-

body PK [15]. While physicochemical parameters can be

determined experimentally, the large number of physio-

logical input parameters, though not always easy to obtain,

allows for physiologically based predictions and translation

of results. Databases such as the International Commission

on Radiological Protection [16] offer a vast source of

information on physiological and anatomical data to allow

for PBPK modelling in healthy individuals. Detailed

knowledge on disease-related physiological, anatomical

and biochemical alterations can be used for the prediction

of PK in special populations by implementing these

changes into the model. So far, PBPK models have been

successfully developed for patients with liver cirrhosis

[17], patients in perioperative settings [18], as well as

individuals in non-pathological conditions, such as preg-

nant women [19] and children [20], showing that PBPK

modelling is capable of simulating special populations.

The aim of the current investigation was to develop a

whole-body PBPK model to reflect the disease-related

physiological changes of critically ill septic patients and to

evaluate the accuracy of the model using in vivo data of

intravenously administered vancomycin in septic patients.

We implemented physiological data extracted from litera-

ture as well as individual patient data to improve model

prediction during sepsis and compared it with a model

considering no disease-related physiological changes. To

our knowledge, this is the first study examining the effects

of sepsis-related physiologic alterations on PK using a

PBPK approach.

2 Materials and Methods

2.1 Workflow

The workflow for scaling of a vancomycin PBPK model in

critically ill septic patients is described in Fig. 1.
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2.2 Physiologically Based Pharmacokinetic

Modelling

PK-Sim� (Bayer Technology Services, Leverkusen, Ger-

many) is a commercially available PBPKmodelling software

to describe the fate of xenobiotics in various laboratory ani-

mals and humans. The generic structure of human PBPK

modelling in PK-Sim� consists of 18 compartments, repre-

senting relevant organs and tissues of the body, defined by

their physiologic volumes and blood flow rates. Organs are

physiologically linked via arteries and veins to enable inter-

compartmental mass transport. Each compartment is further

subdivided into four sub-compartmental structures, namely

plasma and red blood cells (which form the intravascular

space), the interstitial space and the intracellular space. To

describe the rate and extent of drug disposition in a com-

partment, PK-Sim� estimates drug-related model parameters

(permeability, organ/plasma partition coefficients) based on

readily accessible physicochemical information (e.g. molec-

ular weight, protein binding, lipophilicity) as well as known

organ composition data (e.g. lipid, water, protein). Addition-

ally, parameters for compound-specific renal and hepatic

elimination processes are required to finally solve differential

equations and to obtain concentration–time data of the

Fig. 1 Schematic workflow for the development of a PBPK model

for septic patients based on a model for healthy adults (model 0).

Model 1a represents anatomical and physiological data adaptation for

septic subjects based on literature values only. For model 1b, the

literature-based adaptations were modified by patient CrCL values

from the study. In model 2, additional adjustments for readily

accessible patient data from the study were implemented. ADME

administration, distribution, metabolism, excretion, CrCL creatinine

clearance, PBPK physiologically based pharmacokinetic, PK

pharmacokinetics
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modelled substance. A more detailed insight into the generic

model structure of PK-Sim� is given by Willmann et al.

[21, 22] or the software manual [23].

2.3 Development and Evaluation of a PBPK Model

for Vancomycin in Healthy Individuals

PK-Sim� (version 6.0) was used for the development and

evaluation of a vancomycin PBPK model in healthy volun-

teers. Model-building parameters are listed in Table 1. The

elimination process of vancomycin was divided into a renal

(90%) and a hepatic clearance process (10%). For the evalu-

ation of the initial model in healthy adults, two datasets from

the literature were used. The first was a study conducted by

Cutler et al. who investigated the age dependency of van-

comycin PK [24]. Stated pharmacokinetic parameters from

the younger adult group were used to calculate the plasma

concentration profiles of vancomycin for each individual.One

subject (subject 4) was excluded from the evaluation dataset

because micro rate constants needed to calculate the plasma

concentration profile could not be determined bymeans of the

given pharmacokinetic parameters. The second dataset by

Blouin et al. studied the difference between normal and

morbidly obese healthy subjects [25]. Measured data from

both subgroups were used as observed values.

2.4 Study Design and Patient Recruitment

Plasma concentration data for model evaluation and indi-

vidual physiological parameters were collected in critically

ill septic patients from June 2014 to May 2016, treated in

the ICUs of the University Hospital of Muenster. The study

was approved by the local ethics committee and written

informed consent was obtained from the patient or the

patient’s representatives before admission to the study.

Inclusion criteria were as follows: (1) septic adult patients

([18 years of age) as defined by the American College of

Chest Physicians/Society of Critical Care Medicine criteria

[5]; (2) necessity for treatment in an ICU; (3) indication for

intravenous treatment with vancomycin for a suspected or

confirmed infection. Patients were excluded if they expe-

rienced dialysis-dependent renal failure. Moreover, patients

with preexisting liver cirrhosis or any form of preexisting

hepatic impairment were also excluded.

The indication for vancomycin therapy and the dosing

regimenwas as determinedby the physician in attendance.The

vancomycin dose ranged between 1 and 2 g and was admin-

istered two to three times a day via an intravenous infusion

over a period of approximately 1 h. Blood samples for van-

comycin quantification were collected during the first (after

completion of infusion, 2, 4 and 6 h after start of infusion, pre-

dose), second (after completion of infusion, 4 h after start of

infusion, pre-dose) and third (randomly after completion of

infusion, pre-dose) administration. All blood samples were

collected via an indwelling arterial catheter into heparinised

tubes. The tubeswere centrifuged to obtain plasma, whichwas

stored at -20 �C until analysis of vancomycin. The exact

vancomycin dose, infusion times and sample collection times

were recorded and patient demographic, clinical, as well as

laboratory data were extracted from the electronic medical

records. Creatinine clearance (CrCL)was estimated according

to the Cockcroft–Gault formula [26].

2.5 Drug Assay Method

Vancomycin plasma concentrations were determined using

a modified high-performance liquid chromatography

method [27, 28]. In brief, 100 lL of plasma was mixed

Table 1 Input parameters for

the basic PBPK model of

vancomycin

Parameters Value References

Model settings Standard model for small

molecules

Model parameters: partition

coefficient

PK-Sim� standard

Model parameters: cellular

permeabilities

Charge-dependent Schmitt

Molecular weight (g/mol) 1449 [86]

logP 2.45 Modified according to predicted value

from [78]

fup 0.67 [87–89]

pKa 2.18 (acid), 7.75 (base), 8.89

(base)

[90]

CLrenal (mL/min/kg) 0.95 [24, 25]

CLhepatic (mL/min/kg) 0.11 [24, 25]

CLhepatic hepatic plasma clearance of vancomycin, CLrenal renal plasma clearance of vancomycin, fup
fraction unbound of vancomycin in plasma, logP logarithm of octanol/water partition coefficient, PBPK

physiologically based pharmacokinetic, pKa negative decadic logarithm of acid dissociation constant
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with 50 lL of 2.5% phosphoric acid, 400 lL acetonitrile

and 10 lL of 70% perchloric acid. After incubation, the

mixture was centrifuged and the supernatant was trans-

ferred and extracted with 900 lL dichloromethane. After

centrifugation, 40 lL of the upper aqueous layer was

injected onto the column. High-performance liquid chro-

matography instrumentation and the mobile phase were

identical to a previously described method [27]. The limit

of quantification of the method was 1 mg/L and the intra-

and inter-day assay coefficients of variation were \11%

over the entire calibration range of 1–80 mg/L. Samples

were stable for at least 7 days at 4 �C and 5 weeks at

-20 �C.
For determination of unbound vancomycin, a previously

described ultrafiltration method was used [29]. Recovery of

vancomycin in the ultrafiltrate ranged between 96.8 and

98.4% and freezing at -20 �C for 6 weeks showed no

influence on protein binding.

2.6 Collection of Physiological Parameters in Sepsis

A literature search was conducted to qualify and quantify

physiological, anatomical and biochemical parameter

alterations in adults during sepsis, capable of affecting the

PK of drugs. Because sepsis can be further subdivided into

different degrees of severity (namely sepsis, severe sepsis

and septic shock), only studies presenting an explicit

classification of the respective septic state, according to the

official definition of the American College of Chest

Physicians/Society of Critical Care Medicine consensus

conference or a comparable definition, were taken into

account. Patients aged \18 years, as well as patients

experiencing dialysis-dependent renal failure were

excluded.

To merge parameter values of different studies, the

weighted mean value �X was calculated using Eq. (1):

�X ¼
PJ

j¼1 nj � xj
PJ

j¼1 nj
ð1Þ

where nj is the number of study subjects in the jth study and

xj is the reported mean value of the jth study. The pooled

standard deviation (SD) was calculated using Eq. (2):

Pooled SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ

j¼1 nj � 1
� �

� SD2
j

� �
þ
PJ

j¼1 nj � xj � �X
� �2

� �

PJ
j¼1 nj

v
u
u
u
t

ð2Þ

where SDj is the standard deviation of the jth study. Data

presented as median values and the interquartile range or

minimum and maximum values were considered by prior

conversion into the mean and SD as described by Hozo

et al. and Wan et al. [30, 31], assuming a normal distri-

bution of respective parameters.

Based on the quantitative physiological data identified

from the literature search, a scaling factor for each

parameter was calculated to allow PBPK model adapta-

tions in septic patients. Mean values of the respective

physiological parameters from healthy adults were used as

control values. The scaling factor was calculated according

to Eq. (3):

Scaling factor (parameter) =
mean valuesepsisðparameterÞ
mean valuehealthyðparameter)

ð3Þ

2.7 Sepsis-Related Scaling of PBPK Model

Parameters

2.7.1 Model 0

For model 0, no sepsis-related physiological alterations

were implemented into the initial vancomycin model for

healthy adults. To allow for comparison among the dif-

ferent sepsis-related models described in the subsequent

sections, the elimination process was adapted according to

the approximation formula by Pea et al., showing a linear

relation between total body vancomycin clearance (CLvan)

and CrCL [32]. For model 0, CLvan calculation was per-

formed by setting CrCL to a standard value of 120 mL/min

for healthy adults.

2.7.2 Model 1

In the first PBPK approach for septic patients, two different

sub-models, model 1a and model 1b, were developed. Both

refer to literature-based changes in physiology. Differing

from model 1a, individual study patient data on CrCL were

additionally taken into account for model 1b, as shown in

Fig. 1. Calculated mean physiological scaling factors for

hematocrit as well as organ blood flows were implemented

into the healthy adult model for vancomycin. Organs with

no information on changes of blood flow during sepsis

were scaled by sepsis-related alterations in cardiac index

(CI), assuming that blood flow changes linearly with car-

diac activity. Model adaptation to protein binding, body

composition and drug elimination are described in the

following. All disease-related physiological changes were

implemented manually in the model for each study patient

included.

2.7.2.1 Protein Binding Determination of the unbound

fraction of vancomycin under septic conditions was applied

using the modified Eq. (4) of McNamara and Alcorn [33]:
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fu;spesis =
1

1 +
Psepsis

Phealthy
� 1�fu;healthyð Þ

fu;healthy

ð4Þ

in which scaling of the unbound fraction in septic patients

(fu,sepsis) has been conducted on the basis of the unbound

fraction in healthy adults (fu,healthy) and of the mean molar

binding protein concentration in septic and healthy patients

(Psepsis and Phealthy). Because albumin is the dominant

binding protein of vancomycin [34], literature data on

serum albumin concentrations of the respective septic state

were used to scale the fraction unbound of vancomycin.

2.7.2.2 Body Composition To account for changes in

body composition in septic patients, seemingly ‘healthy’

subjects were initially modelled in PK-Sim� considering

age, sex, body height and body weight at ICU admission.

For each of the 18 organs presented in PK-Sim�, the vol-

ume of sub-compartmental structures (vascular [V(or-

gan)vascular], interstitial [V(organ)interstitial], intracellular

[V(organ)intracellular]), as well as the volume of protein

(V(organ)protein), fat (V(organ)fat) and interstitial, plasmatic

and intracellular water (V(organ)water,interstitial, V(organ)wa-

ter,plasma, V(organ)water,intracellular) were calculated. The

volumes for water, protein and fat were scaled by mean

literature information on extracellular water (ECW),

intracellular water (ICW), total body protein (TBP) and

total body fat (TBF) in septic patients, consequently lead-

ing to new organ weights (OW’septic’) and the new body

weight of the septic patients. Because capillary leakage in

sepsis profoundly contributes to redistribution of adminis-

tered fluids and plasma proteins, the majority of ECW was

assumed to be located in the interstitial space of the

modelled patient with a minor part remaining in the

intravascular space. This results in an adaptation of the

initially calculated sub-compartmental volume structures,

which was implemented by maintaining the intracellular

volume, as well as the vascular fraction [f(organ)vascular] to

the values from initially modelled healthy subjects (Eqs. 5–

7):

V(organ)intracellular;0septic0 ¼ V(organ)intracellular;0healthy0 ð5Þ

V(organ)vascular;0septic0 ¼ OW0septic0 � f(organ)vascular;0healthy0

ð6Þ

V(organ)interstitial;0septic0 ¼ OW0septic0

� V(organ)intracellular;0septic0

� V(organ)vascular;0septic0 ð7Þ

Moreover, the protein ratio between the interstitial space

and plasma was adjusted from a default value of 0.37 to a

value of 1, assuming an equalisation of proteins as a result

of capillary leakage.

2.7.2.3 Elimination Total CLvan was calculated as

described for model 0, whereas CrCL was scaled by a

calculated mean physiological scaling factor for model 1a

and individual patient CrCLs were considered for model

1b.

2.7.3 Model 2

Model 2 included additional patient variables that were

obtained during routine clinical care (Fig. 1; Table 2). As

organ perfusion and CI were not determined individually

during the study, scaling of blood flows was considered as

described for model 1 using the mean scaling factor for CI.

Model adaptation of protein binding, body composition and

elimination are described in the following. As described for

model 1, all disease-related physiological changes were

implemented manually in the model for each study patient

included.

2.7.3.1 Protein Binding Protein binding of vancomycin

was determined individually for each patient, applying the

validated high-performance liquid chromatography

method.

2.7.3.2 Body Composition As described for model 1,

seemingly ‘healthy’ subjects were initially modelled in PK-

Sim� considering sex, age, body height and body weight at

ICU admission. This was followed by scaling each of the

18 organs by means of an organ weight scaling factor

(OWSF) calculated according to Eq. (8):

OWSF ¼ Body weight at study inclusion

Body weight at ICU inclusion
ð8Þ

If body weight was not measured on study inclusion day,

it was calculated supposing a linear relationship between

body weight at ICU admission and the body weight

measured at the earliest possible time after study inclusion.

The sub-compartmental structures for septic patients were

calculated as described in Eqs. 5–7. Finally, sub-

compartmental water distribution of each organ was

adjusted according to Eqs. (9–11), with a minor ICW

shift of 10% to the interstitial space as a result of the

interdependency of proteolysis and intracellular

dehydration in critical illness assumed by Häussinger

et al. [35]:

V organð Þwater; intracellular; 0septic0
¼ V organð Þwater; intracellular; 0healthy0 � 0:9

ð9Þ

V organð Þwater; plasma; 0septic0 ¼ V organð Þwater; plasma; 0healthy0

+ (V organð Þvascular; 0septic0�V organð Þvascular; 0healthy0 Þ
ð10Þ
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V organð Þwater; interstitial; 0septic0
¼ V organð Þwater; interstitial; 0healthy0
þ OW 0septic0 � OW0healthy0
� �

� ðV organð Þwater; plasma; 0septic0

� V organð Þwater; plasma;0healthy0 Þþ ð0:1� V(organ)water; intracellular;0healthy0 Þ

ð11Þ

Because no individual information on TBP and TBF was

available, volumes for fat and protein were kept constant to

the default value of the ‘healthy’ subject. As described for

model 1, the protein ratio between interstitial space and

plasma was adjusted to a value of 1.

2.7.3.3 Elimination Total CLvan was calculated as

described for model 0 incorporating individual patient

CrCL values from the study.

2.8 Model Evaluation

For model evaluation, a visual predictive check between

simulated and observed data was carried out. In addition,

goodness-of-fit (comparison of simulated and observed

data) plots were generated for predictive performance

analysis. Percentage error (PE) and absolute percentage

error (APE) were calculated for every concentration point

according to Eqs. (12 and 13):

PE %½ � ¼ ðcpred � cobsÞ
cobs

� 100 ð12Þ

APE %½ � ¼
cpred � cobs
�
�

�
�

cobs
� 100 ð13Þ

where cpred is the PBPK-simulated plasma concentration of

vancomycin and cobs is the actual concentration of van-

comycin. To finally describe model accuracy and precision,

mean prediction error (MPE) and mean absolute prediction

error (MAPE) were calculated. For model acceptance,

values should be located around the line of identity with a

maximum deviation of ±30% owing to the relative narrow

therapeutic index described for vancomycin. Additionally,

the median area under the systemic drug concentration–

time curve from time 0–24 h (AUC0–24h) was calculated by

PK-Sim� for the ten septic patients in each model by

extending the treatment interval for every patient to 24 h

by their given dosing regimen and normalising the calcu-

lated AUC0–24h values to fixed daily doses of vancomycin

2 g. Spearman correlation coefficient (rs) was used to

analyse the correlation of the dose-normalised AUC0–24h

values among the models.

3 Results

3.1 Patient Data

In total, ten septic patients (eight male, two female) treated

with vancomycin could be enrolled during the study period,

Table 2 Characteristics of septic patients attended in the study

Patient Age

(years)

Sex Weight at

ICU

admission

(kg)

Weight at

study

inclusion

(kg)

Height

(cm)

Septic

state

APACHE

II score

SAPS

II

scorea

SOFA

score

Albumin

(g/dL)

Hematocrit CrCLa

(mL/

min)

fu
(%)

1 43 M 87 100 173 Sepsis 10 26 3 2.7 25.6 220 66.6

2 55 M 80 75 175 Septic

shock

32 55 11 2.7 26.5 128 67.7

3 70 F 55 62.3 167 Septic

shock

30 73 12 2.4 28.9 60.8 67.7

4 25 M 85 87.8 185 Sepsis 18 30 6 2.7 26.7 280.7 66.5

5 52 F 56 62.9 172 Septic

shock

19 61 11 2.4 27 163.4 75.6

6 60 M 55 60.1 173 Sepsis 28 78 6 2.5 24.2 113.1 66.3

7 24 M 122 129.6 193 Sepsis 37 62 9 2.6 21.1 261 68.5

8 73 M 63 67.9 175 Septic

shock

35 32 11 2.2 26.2 57.4 73

9 44 M 115 134.2 192 Septic

shock

17 31 8 2.3 24.7 48.4 72.2

10 68 M 75 76 170 Sepsis 32 69 11 3.2 32.8 70.9 63.5

APACHE Acute Physiology and Chronic Health Evaluation, CrCL creatinine clearance, F female, fu fraction unbound, ICU intensive care unit, M

male, SAPS Simplified Acute Physiology, SOFA Sequential Organ Failure Assessment
a Creatinine clearance calculated according to the Cockgraft–Gault equation: male CrCL = [140 - age (years)] 9 weight (kg)/[72 9 serum

creatinine (mg/dL)]; female CrCL = 0.85 9 male CrCL
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yielding a total of 69 blood samples that were available for

analysis of vancomycin concentration. All patients were

classified as having sepsis or septic shock. Detailed

demographic data and patient characteristics are sum-

marised in Table 2.

3.2 Literature Search

The results of the literature search are presented regarding

the qualitative and quantitative physiological changes

related to sepsis. The resultant key scaling factors that are

applied in the PBPK models for septic patients are sum-

marised in Table 3.

3.2.1 Plasma Proteins

A marked decrease in serum albumin is associated with

sepsis, compared with standard values of 3.5–5.0 g/dL in

healthy subjects (sepsis 2.43 ± 0.58 g/dL; severe sepsis

2.49 ± 0.49 g/dL; septic shock 1.95 ± 0.67 g/dL). Proin-

flammatory cytokines such as interleukin (IL)-1, IL-6 and

tumour necrosis factor alpha (TNF-a) mainly cause this

alteration through suppression of albumin messenger RNA

synthesis in the liver [10]. Moreover, capillary leakage

leads to an augmentation of the transcapillary elimination

rate and to an albumin shift from the intravasal to the

interstitial space. Studies determined a 1.5- to 4-fold

increase of the normal value of transcapillary elimination

rate during sepsis [36–38], which may lead to an equali-

sation of plasma and interstitial protein concentrations. In

contrast to a reduction of albumin, sepsis causes an

increase in acute phase protein concentration of a1-acid
glycoprotein (healthy subjects: 55–140 g/dL; sepsis sub-

jects: 147.5 ± 75.2 g/dL; severe sepsis subjects:

192.7 ± 81.7 g/dL; septic shock subjects: 192.7 ± 67.3 g/

dL) [39].

3.2.2 Hematocrit

A multitude of causes leads to a fall in hemoglobin levels

and thus hematocrit in septic patients. Infusion of fluids,

the loss of blood and a decreased erythropoiesis all con-

tribute to anemia, and consequently to a loss of the cellular

fraction of blood during sepsis (healthy subjects: 37–50%;

sepsis subjects: 33 ± 7.7%; severe sepsis subjects:

34.2 ± 7.7%; septic shock subjects: 31.8 ± 6.5%).

3.2.3 Metabolic Enzyme Activity

Studies of cytochrome P450 (CYP) activity in human

sepsis are scarce and described semi-quantitatively. All

studies show a distinct decrease in hepatic CYP clearance

[40–44]. Alterations of CYP activity and expression are

mainly regulated through the influence of proinflammatory

Table 3 Calculated physiological scaling factors associated with different septic states, based on a meta-analysis for septic patients and control

values observed for healthy individuals

Parameter Septic state References

Sepsis Severe sepsis Septic shock

Albumina 0.57 0.59 0.46 [36, 37, 91–112]

a1-acid glycoproteinb 1.51 1.98 1.98 [91, 113–115]

Hematocritc 0.77 0.80 0.74 [36, 37, 93, 95, 103, 108, 116–123]

Cardiac indexd 0.94 1.12 1.20 [96, 101, 104, 124–162]

Total liver blood flowd 1.65 1.63 1.88 [96, 124, 129, 143, 152, 160, 163–171]

Creatinine clearancee 0.84 0.70 0.57 [94, 99, 100, 103, 147, 158, 161, 162, 172–186]

Total body waterf 1.27 1.27 1.27 [46–50]

Extracellular waterf 1.76 1.76 1.76 [46–48, 50, 53]

Intracellular waterf 0.96 0.96 0.96 [46–48, 50]

Total body fatf 0.88 0.88 0.88 [47–49]

Total body proteing 0.96 0.96 0.96 [46–48]

a Control value is described as the mean value of the official reference range
b Control value depicted as mean value from Israili et al. [187]
c Control value was set at 0.43
d Control value was set at 0.75 L/min/m2 as described by Zacho et al. [69] and Madsen et al. [70]
e Control value was set at 120 mL/min
f Control value taken as mean value from Ritz et al. [51]
g Control values from Cohn et al. [55], Wang et al. [57], Vartsky et al. [58], Burkinshaw et al. [59] and Lukaski et al. [60]
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mediators (e.g. IL-1, IL-6, TNF-a, NO) downregulating

CYP messenger RNA biosynthesis [9, 45]. Moreover,

binding of NO to the heme moiety of CYPs, as well as

nitrosylation of tyrosine residues in CYP proteins are dis-

cussed as possible causative mechanisms [42]. As a result,

drug metabolism in sepsis can be influenced by a reduced

amount of CYP enzymes, a decreased maximal velocity

and reduced drug-enzyme affinity expressed as Michaelis

constant, with no quantitative data being available for any

CYP enzyme in septic patients so far. Owing to the non-

enzymatic elimination of vancomycin, CYP-enzyme rela-

ted changes were not considered in this study.

3.2.4 Body Composition

Fundamental changes in fluid distribution and body com-

position are observed in septic patients. In general, total

body water (TBW) of septic patients increases to a mean

value of 47.8 ± 2.8 L [46–50]. Compared to healthy

individuals with a mean TBW of about 37.7 ± 8.0 L for

men and women [51], this means an average increase of

27% (Table 3). Large amounts of fluid are shifted from the

intravasal to the interstitial space leading to tissue edema

[52]. Overall, ECW increases from 15.2 ± 3.9 L in healthy

individuals [51] to 26.8 ± 2.6 L in septic subjects

[46–48, 50, 53] and thus resulting in an ECW/TBW ratio of

55%, with the normal ratio being around 40% [51].

In contrast to ECW and TBW, ICW is not affected in

early sepsis but decreases over the course of critical illness.

While the ICW volume is comparable to that of healthy

individuals in early sepsis (21.4 ± 1.7 L in sepsis subjects

vs. 22.4 ± 4.1 L in healthy individuals), up to 10–15% of

ICW is lost in late sepsis (18.8 ± 1.6 L) [46–48, 50]. This

is accompanied with a decrease in TBP, as reported by

Häussinger et al., who postulated a dependency of TBP and

ICW with cytokines being one possible mediator [35].

Analogous to ICW, TBP is hardly affected in early sepsis

but declines in late sepsis through increased catabolism

(9.7 ± 0.9 kg in early sepsis subjects vs. 8.5 ± 0.6 kg in

late sepsis subjects vs. 10.2 ± 2.2 kg in healthy individu-

als) [46–50, 53–60]. TBF changes only slightly with values

of 16.5 ± 2.2 kg at onset of sepsis and 15.8 ± 2.5 kg in

late sepsis (18.8 ± 7.8 kg in healthy individuals)

[47–49, 51].

3.2.5 Cardiac Activity

Sepsis is often associated with cardiovascular dysfunction,

which affects cardiac activity expressed as CI. Especially

in early sepsis, the reduction in systemic vascular resis-

tance can lead to a compensatory increase in CI to maintain

tissue perfusion [61]. However, in later stages of sepsis,

multifactorial mechanisms (e.g. IL-1, TNF-a, NO) can lead

to myocardial depression and a reduced ejection fraction

[62]. Data analysis for septic patients show a severity-de-

pendent change in CI. Whereas the reference range for

healthy individuals in rest is around 2.5–4.0 L/min/m2 with

a mean value of 3.2 ± 0.5 L/min/m2 [63], CI increases

with severity of sepsis (sepsis subjects: 3.01 ± 1.12 L/min/

m2; severe sepsis subjects: 3.59 ± 1.25 L/min/m2; septic

shock subjects: 3.84 ± 1.26 L/min/m2).

3.2.6 Renal Perfusion

Limited data are available on changes of renal blood flow

(RBF) in septic patients. Only five studies were identified,

correlating RBF with cardiac output (CO). The RBF/CO-

ratio is decreased in four studies (9.5 ± 3.2% [64],

5.6 ± 2.9% [65], 7.5 ± 2% [66], 19.2 ± 4.6% [67]),

whereas only Rector et al. determined a RBF/CO-ratio of

21 ± 4.4% [68] being within the range of 20–25% for

healthy individuals. Because the majority of studies did not

fulfil any official sepsis criteria, the results were not con-

sidered for PBPK modelling.

3.2.7 Hepatic Perfusion

Numerous studies were undertaken to determine hepatic

blood flow during sepsis. Absolute values for total

splanchnic blood flow were higher in sepsis compared

with a mean value of 0.75 L/min/m2 reported for healthy

people [69, 70] (sepsis subjects: 1.24 ± 0.51 L/min/m2;

severe sepsis subjects: 1.22 ± 0.23 L/min/m2; septic

shock subjects: 1.41 ± 0.87 L/min/m2). Because cardiac

activity was determined in all studies, authors also pre-

sented hepatic perfusion as a function of cardiac index.

The mean values for all septic states were in accordance

with the fractional perfusion indicated for healthy subjects

(20–30% [71]), although a high variability for sepsis and

septic shock was found (sepsis subjects: 28.5 ± 9.8%;

severe sepsis subjects: 24.3 ± 4.3%; septic shock sub-

jects: 28.7 ± 13.6%).

3.2.8 Creatinine Clearance

During sepsis, both acute kidney injury and augmented

renal clearance can occur, resulting in changes in CrCL.

Although the exact mechanism for altered kidney function

is not clear, changes in vascular resistance, renal macro-

and microvascular perfusion, cardiac activity and inflam-

matory mediators seem to play a pivotal role [72, 73].

Meta-analysis of the available data shows a constant fall of

CrCL from 100.3 ± 56.4 mL/min in sepsis to

83.9 ± 51 mL/min and 61.1 ± 38.3 mL/min in severe

sepsis and septic shock, compared with a normal renal

function of about 120 mL/min in healthy subjects.
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3.3 Vancomycin Model for Healthy Subjects

After optimisation of the mean logP to a value of 2.45, the

model was able to accurately describe vancomycin expo-

sure after intravenous administration for healthy volunteers

(Fig. 2a, b) which is supported by the respective goodness-

of-fit plots (Fig. 2c, d). About 10% of all values deviated

from the target APE of 30% and less than 3% deviated

more than 50% with the majority of these deviations being

far below the therapeutic through level of 10–15 mg/L

requested for vancomycin. In general, the model showed

minimal bias (MPE = -1.94%) and a good precision

(MAPE = 15.7%). The model was able to predict the PK

of vancomycin in healthy individuals and was therefore

suitable for septic subgroup extrapolation.

3.4 Model Predictions for Septic Patients

Comparing model 1a with model 0, a distinct over-pre-

diction of simulated plasma concentrations can be observed

for both models (Figs. 3a–j, 4a–d), which is supported by

positive MPE values (Table 4). APE values showed an

improvement of model prediction for the literature-based

model because 68 and 55% (model 1a vs. model 0) of the

Fig. 2 a Predicted and observed mean (± SD) plasma concentration–

time curve for vancomycin in healthy adults. The observed plasma

concentrations were taken from Cutler et al. b Predicted and observed

mean (±SD) plasma concentration–time-curve of vancomycin in

healthy adults and healthy obese adults. The observed data were taken

from Blouin et al. c Goodness-of-fit plot for model prediction in

healthy adults. d Relative residuals vs. observed vancomycin

concentration for healthy adults. The solid black line indicates the

line of identity, dashed lines indicate ±30% range, dotted lines

indicate ± 50% range, filled triangles indicate observed data from

Cutler et al., filled circles indicate observed data from Blouin et al. for

non-obese healthy adults and open circles indicate observed data from

Blouin et al. for healthy obese adults. SD standard deviation
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Fig. 3 a–j Predicted plasma

concentration–time-curves for

ten septic patients. Dashed

black lines indicate the PBPK

model for healthy individuals

considering no physiological

alterations (model 0), dotted

black lines indicate the PBPK

model of healthy individuals

adapted to physiological

changes from the literature

(model 1a), solid black lines

indicate the PBPK model for

healthy individuals adapted to

individual physiological

changes (model 2) and filled

circles indicate observed values.

PBPK physiologically based

pharmacokinetic
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Fig. 4 a, c, e, g Goodness-of-fit plots for the model without

physiological changes (circles [model 0]), the model accounting for

literature values only (filled squares [model 1a]), the literature-based

model accounting for individual creatinine clearance (open squares

[model 1b]) and the model considering additional individual patient

characteristics (triangles [model 2]). b, d, f, h Relative residuals vs.

observed concentrations for the data in a, c, e, g, solid black lines

indicate lines of identity, dashed lines indicate lines of identity ±30%

range and dotted lines indicate lines of identity ±50% range
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simulated data were within the target range of 30%,

whereas 84 and 77% of all data were within 50% of the

observed values for both models, respectively. A trend for

better precision can be observed for model 1a

(MAPE = 36.5% for model 0 and MAPE = 31.3% for

model 1a). Especially for concentrations greater or equal to

20 mg/L, a distinctly better prediction can be shown for

model 1a, indicating that vancomycin distribution in the

early phase of administration is predicted more accurately.

In contrast, higher residuals at lower concentrations com-

pared with model 0 can be observed, suggesting that

clearance of model 1a is under-predicted. This in turn leads

to an overestimation of concentrations in the elimination

phase of the model. The respective values for MPE and

MAPE support these observations (Table 4). Comparing

both models in terms of dose-normalised AUC0–24h, a low

variability can be observed and a correlation between both

models is observed (rs = 0.83) (Table 5). Refining model

1a through adjustment of individually observed CrCL

values (model 1b) substantially improved model prediction

(Fig. 4e, f) with 88% of the simulated data being within the

target APE of 30% and 99% within the 50% APE range.

Moreover, bias was minimised (MPE = -4.9%) and pre-

cision could be improved (MAPE = 14.9%) (Table 4).

Additionally, calculated dose-normalised AUC0–24h was

lower with a higher variability and a weak correlation

compared with model 0 and model 1a (rs = 0.41 and

rs = 0.59, respectively) (Table 5).

Consideration of additional individual patient charac-

teristics (model 2) was in good agreement with the

observed data (Fig. 4g, h). Gradual implementation of

physiological alterations gathered from patients medical

records led to an optimisation of the model with the main

determinant of improvement being the consideration of

additional body weight as body water and CrCL as shown

for patient 3 in Fig. 5. In comparison to model 0, the

individualised model 2 showed a better prediction over the

whole concentration range (Fig. 3a–j). Only peak concen-

trations after the second or third administration of van-

comycin seem to be slightly underpredicted by model 2

(Fig. 3d–f, h). However, all peak levels were sufficiently

described by model 2 because only 7% of all predicted

peak concentrations deviated more than 30% from the

observed value compared with 60% in model 0. In addi-

tion, both models show a weak comparability (rs = 0.58)

in terms of AUC0–24h (Table 5). In general, 94% of simu-

lated concentrations were within the target APE of 30 and

97% within 50%, thus showing a better prediction

Table 4 Bias and precision for

different model approaches

depending on different

vancomycin concentration

ranges

MPE (%) MAPE (%)

Total range \20 mg/L C20 mg/L Total range \20 mg/L C20 mg/L

Model 0 17.0 11.8 26.8 36.5 36.8 35.7

Model 1a 18.6 28.4 0.2 31.1 37.4 19.8

Model 1b -4.9 -3.4 -7.7 14.9 14.7 15.2

Model 2 -1.6 1.9 -8.2 14.0 14.4 13.1

MAPE mean absolute prediction error, MPE mean prediction error

Table 5 Dose-normalised

AUC0–24h values with inter-

quartile ranges and Spearman

correlations between AUC

levels of the models

Model 0 Model 1a Model 1b Model 2

Model 0
341

(320 – 349)
0.83 0.41 0.58

Model 1a
332

(309 – 378)
0.59 0.65

Model 1b
309

(234 – 339)
0.96

Model 2
315

(237 – 369)

AUC area under the concentration–time curve, AUC0–24h area under the concentration–time curve

from time zero to 24 h

Light grey-filled areas indicate median dose-normalised AUC0–24h (mg*h/L) values and inter-

quartile ranges for the ten septic patients in each model; non filled areas indicate Spearman cor-

relation coefficients (rs) between the dose-normalised AUC0–24h values of each model
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compared with model 0 and model 1a and comparable

results to model 1b. This is further supported by a minimal

bias of MPE = -1.6% and a precision of MAPE = 14.0%

(Table 4), as well as the good correlation between model

1b and model 2 in terms of the dose-normalised AUC0–24h.

4 Discussion

In the present study, we investigated for the first time the

influence of sepsis-related physiological changes on the PK

of septic patients treated with vancomycin using a PBPK

approach. As to our knowledge no database was available

presenting physiological parameters being affected during

sepsis, an extensive literature search was conducted to

identify relevant physiological data to allow for PBPK

modelling in this subpopulation.

In the past, changes in physiology and body composition

in special populations were described in a time-dependent

manner for PBPK models such as for pregnant women or

children [20, 74]. For critically ill septic patients, alter-

ations in physiology cannot be described as a function of

time only because disease progression and also recovery

are very heterogeneous owing to the influence of patient

individual characteristics as well as therapy-specific fac-

tors. Moreover, time-dependent data are practically

unavailable in literature. Consequently, we focused the

literature search on the severity of sepsis according to the

international guidelines, which has been successfully

conducted in the past for liver cirrhotic patients [17].

Exclusion criteria were only limited to children and dial-

ysis-dependent renal failure to depict the variability and the

clinically realistic situation of this patient population con-

sidering no further limitations in primary literature in terms

of sepsis treatment (e.g. fluid resuscitation, choice of

vasopressor/inotrope).

However, the literature search was complicated by the

limited number of studies providing quantitative measure-

ments of physiologic alterations in human sepsis. In some

areas, valid quantitative data are almost entirely unavail-

able for humans, such as metabolic enzyme activity and

renal perfusion, which are parameters with a significant

impact on drug elimination. This is in part because of the

high invasiveness of some procedures (e.g. blood flow

determination) and is thus often prohibited because of

ethical concerns. Therefore, most studies are conducted in

animal septic models. However, the extrapolation of the

results to humans is questionable because animal models

differ in physiological response to septic insults and show

too simple a depiction of human sepsis pathogenesis and

pathophysiology [75–77]. An additional hurdle in the lit-

erature search was the necessary exclusion of many studies

owing to a lack of distinction between septic states.

Physiological and biochemical alterations in sepsis were

often presented for a pooled population consisting of sev-

ere sepsis and septic shock patients, which might lead to

distortion of results. Despite these limitations in our liter-

ature search, our database presents a majority of physio-

logical parameters that are affected during sepsis, severe

sepsis and septic shock and can thus be considered a

starting point for PBPK modelling in this population.

During model development, the estimation of the

lipophilicity input parameter logP, which substantially

contributes to the rate and extent of passive drug distri-

bution in the model, proved to be difficult. In the literature,

vancomycin is described as a mainly hydrophilic sub-

stance. LogP values of -4.4 up to 1.1 could be found,

supporting the hydrophilic to semi-polar characteristics of

vancomycin [78]. However, the validity is questionable

because these values are calculated based on chemical

structure and experimental measurements are virtually not

available. Moreover, logP is only a surrogate for membrane

affinity and cannot reflect a physiological membrane in its

whole complexity. To optimize PBPK model predictions,

parameterisation of logP was conducted, resulting in a

more lipophilic value of 2.45. This can be explained by

readily back-to-back dimer formation and even multimer

complex binding of vancomycin in solution [79], resulting

in a reduction of accessible hydrogen-binding partners and

consequently a decreased hydrophilicity.

Transfer of the model for healthy adults to septic

patients showed an improvement of model prediction when

Fig. 5 PBPK models for patient 3 considering gradual implementa-

tion of physiological changes. The solid black line indicates the PBPK

model without any changes in physiology (model 0), the dashed black

line indicates PBPK model considering changes in hematocrit,

fraction unbound and protein ratio interstitial/plasma, the solid grey

line indicates the PBPK model considering additional changes for

clearance and organ blood flow, the dashed grey line indicates the

final PBPK model (model 2) considering additional changes for body

water and black circles indicate observed data for patient 3. PBPK

physiologically based pharmacokinetic
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physiological alterations from literature were implemented,

as can be seen from the optimised MAPE values and the

increased percentage of concentrations within the target

APE range of 30%. Especially for concentrations exceed-

ing 20 mg/L, a distinctly better prediction for model 1a can

be observed. This demonstrates the importance of changes

in body composition for PBPK modelling of septic

patients. In addition, this supports the modification for

individual generation conducted in the model through

implementation of additional body weight in terms of TBW

rather than body fat, which is the default procedure in the

modelling software [21].

Optimisation through implementation of additional body

water appears reasonable owing to increased drug distri-

bution into the augmented tissue water fraction. In fact, this

represents a crucial step in PBPK modelling for septic

patients treated with hydrophilic drugs because of its

influence on the area under the curve, which can be a

surrogate for drug effectiveness such as for antibiotics like

vancomycin [80]. Unlike the good prediction for higher

vancomycin concentrations, over-prediction of the model

in terms of concentrations below 20 mg/L seem to be the

main reason for the modest advance of the total model.

Literature values for the respective septic state showed a

clear tendency towards reduced renal function, which

results in a reduced vancomycin clearance [32]. In contrast,

the study group showed an inverse trend as CrCL of five

septic patients exceeded mean standard value of 120 mL/

min for healthy people. This phenomenon is known as

augmented renal clearance and is often observed for criti-

cally ill patients [81]. However, quantitative studies on

augmented renal clearance are scarce for septic patients,

which may lead to a bias of CrCL under-prediction from

mere literature data. Moreover, a larger study population

would probably contribute to improve model prediction, as

septic patients are also at high risk for development of

acute kidney injury [82, 83], which would result in a

general decrease of renal function.

Model improvement can be achieved when individual

patient data are implemented in the PBPK model as shown

in Fig. 5 and seen by minimisation of MPE and MAPE

values for both, model 1b and model 2 (Table 4). Because

CrCL was the only parameter individualised in model 1b,

this clearly indicates the high influence of renal function on

model optimisation as both, accuracy and precision, were

substantially improved for this model compared with

model 0 and model 1a (Table 4). These findings are in

accordance with the results of population pharmacokinetic

studies demonstrating a significant effect of CrCL on

vancomycin clearance [84, 85].

Consequently, adjustment of CrCL for the PBPK model

in septic patients is of great advantage for more precise

model prediction and should be considered individually.

Referring to the small difference between MPE and MAPE

values and the high correlation in terms of dose-normalised

AUC0–24h for model 1b and model 2, additional consider-

ation of individual patient characteristics did not seem to

result in further model improvement. This also includes

body weight changes during intensive care stay. Never-

theless, adjustment of body composition as a result of

sepsis-related influences, as described for model 1a and

shown in Fig. 5, contributes to an improvement for model

predictions in the distribution phase of vancomycin and

thus clearly indicates the importance of this parameter for

PBPK modelling in septic patients. However, as adjustment

of body composition based on individual body weight data

did not result in distinct optimisation of model performance

compared with model 1b (Table 4), this demonstrates a

reliable and accurate assessment of body composition

changes based on the gathered literature data.

Although only a limited number of ten septic patients

were included in this study, individual vancomycin PK are

accurately (MPE) and precisely (MAPE) predicted when

sepsis-related parameters are integrated into the model with

the additional consideration of individual patient CrCL.

Consequently, the predictive performance of the PBPK

model should be tested in a larger septic population to

show the clinical applicability.

Finally, it should be noted that all findings are based on

the renally cleared vancomycin, where the effects of sepsis-

induced changes on physiological parameters such as

hematocrit, organ blood flow or protein binding are sug-

gested to be minor for model prediction. However, these

effects could be of major importance for model prediction

of highly protein-bound drugs or those with a high hepatic-

extraction-ratio, which should therefore encourage the

further investigation of drugs with a more complex phar-

macokinetic profile to show broader applicability of the

septic PBPK model.

5 Conclusion

Variations of system parameters, including biochemical

processes, body composition and organ function are

important elements for PBPK simulations of drug PK in

patients with a varying health status. In the current study,

we provided essential qualitative and quantitative infor-

mation on physiological changes of critically ill patients

with sepsis of different degrees of severity that can be used

as a starting point for further PBPK modelling in this

subpopulation of patients. Incorporation of literature-based

alterations as well as readily accessible individual patient

information successfully predicted vancomycin PK in a

respective study group of septic patients. Therefore, this

study will allow for further extension and validation of
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input parameters with the goal to optimise drug dosing in

critically ill patients with sepsis and thus improve patient

outcome. Additionally, the PBPK model for septic patients

could be used to refine dosing recommendations in situa-

tions when plasma concentration measurements are not

available.
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