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Abstract Tobacco smoke contains a large number of

compounds in the form of metals, volatile gases and

insoluble particles, as well as nicotine, a highly addictive

alkaloid. Marijuana is the most widely used illicit drug of

abuse in the world, with a significant increase in the USA

due to the increasing number of states that allow medical

and recreational use. Of the over 70 phytocannabinoids in

marijuana, D9-tetrahydrocannabinol (D9THC), cannabidiol

(CBD) and cannibinol are the three main constituents. Both

marijuana and tobacco smoking induce cytochrome P450

(CYP) 1A2 through activation of the aromatic hydrocarbon

receptor, and the induction effect between the two products

is additive. Smoking cessation is associated with rapid

downregulation of CYP1A enzymes. On the basis of the

estimated half-life of CYP1A2, dose reduction of CYP1A

drugs may be necessary as early as the first few days after

smoking cessation to prevent toxicity, especially for drugs

with a narrow therapeutic index. Nicotine is a substrate of

CYP2A6, which is induced by oestrogen, resulting in lower

concentrations of nicotine in females than in males, espe-

cially in females taking oral contraceptives. The significant

effects of CYP3A4 inducers and inhibitors on the phar-

macokinetics of D9THC/CBD oromucosal spray suggest

that CYP3A4 is the primary enzyme responsible for the

metabolism of D9THC and CBD. Limited data also suggest

that CBD may significantly inhibit CYP2C19. With the

increasing use of marijuana and cannabis products, clinical

studies are needed in order to determine the effects of other

drugs on pharmacokinetics and pharmacodynamics.

Key Points

Both marijuana and tobacco smoking induce

cytochrome P450 (CYP) 1A2 through activation of

the aromatic hydrocarbon receptor, and the induction

effect between the two products is additive.

CYP3A4 inducers and inhibitors significantly alter

the pharmacokinetics of D9-tetrahydrocannabinol

(D9THC), 11-hydroxy-D9-tetrahydrocannabinol (11-

OH-THC) and cannabidiol (CBD) when

administered as a D9THC/CBD oromucosal spray,

suggesting a major role of CYP3A4 in the

elimination of D9THC and CBD.

There are only limited data on the effects of other

drugs on the disposition of marijuana and other

cannabis products, and additional clinical studies are

needed.

1 Introduction

Data from the World Health Organization (WHO) have

shown that 21 % of the global population aged 15 years

and above smoke tobacco. The prevalence of tobacco

smoking is higher in men than in women, regardless of age.

The Western Pacific region and Europe have the highest

prevalence of tobacco smoking among men and women, at

48.5 and 19.3 %, respectively [1]. In the USA, 17.8 % of

all adults (42.1 million people) were current smokers,

according to data from the Centers for Disease Control and
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Prevention, in 2013 [2]. This reflected a net reduction of

3.1 % from 2005. The prevalence was highest among

adults between 25 and 44 years of age (20.1 %) and lowest

among older adults over 64 years (8.8 %). It is well known

that smoking is a leading cause of many preventable dis-

eases and death. In the USA, marijuana use has doubled in

the past decade, increasing from 4.1 % in 2001–2002 to

9.5 % in 2012–2013, primarily because of the increasing

number of states allowing medical and recreational use of

marijuana [3]. Globally, marijuana is the most widely used

illicit drug of abuse in the world, with an estimated

2.6–5.0 % of people reported as having used cannabis at

least once in the previous year [4].

2 Tobacco

Tobacco is derived from the plant Nicotiana, grown for

production of the tobacco leaf. In addition to nicotine,

tobacco smoke contains over 7000 chemicals in the form of

metals, volatile gases and insoluble particles. Some of the

documented carcinogens include aromatic amine, arsenic,

benzene, benzo[a]pyrene, beryllium, butadiene, cadmium,

polonium120, nicotine and nicotine-derived nitrosamines

such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

(NNK) and N0-nitrosonornicotine (NNN), and a number of

other polycyclic aromatic hydrocarbons (PAHs) [5–7]. The

use of tobacco products may interact with the effects of

other drugs. Although the mechanisms of interaction

between tobacco products and drugs may include both

pharmacodynamic and pharmacokinetic interactions, the

knowledge is more extensive and the mechanism is more

established for the pharmacokinetic interactions. Specifi-

cally, PAHs, which are products of incomplete combustion

of organic matter through tobacco smoking, are well-

known inducers of drug-metabolizing enzymes. Exposure

to PAHs in humans results in marked induction of cyto-

chrome P450 (CYP) 1A1 and 1A2 in the liver, small

intestine and lung tissues [8–10]. In addition to the CYP1A

family, there are limited data suggesting induction of

CYP2E1 by tobacco smoking, although it is unclear whe-

ther the induction is caused by PAHs or other components

in the tobacco smoke, such as toluene [11–13]. CYP2A6

activity is suppressed by tobacco smoking, but this is not

caused by nicotine, as previously proposed [14, 15].

Although there are some published data suggesting that

PAHs may alter the expression of phase II enzymes and

some drug transporters—namely, multidrug resistance

protein 1 (MDR1) and multi-resistant protein (MRP)—

these results are inconsistent with substrate concentrations,

which are likely clinically relevant on the basis of current

knowledge [16].

2.1 Mechanism of CYP1A Induction by Polycyclic

Aromatic Hydrocarbons

The human CYP1A enzymes function both as detoxifying

enzymes for drugs (e.g. caffeine, theophylline, R-warfarin)

and as metabolic activators for harmful xenobiotics, such

as aromatic amines and heterocyclic aromatic amines that

have carcinogenic potential. Of the two isoforms that are

expressed in humans, CYP1A2 is preferentially expressed

and accounts for about 15 % of total hepatic CYP content.

A low level of CYP1A2 expression is also present in the

oesophagus, stomach and colon, but not in the small

intestine. On the other hand, CYP1A1 is considered an

extrahepatic enzyme in humans, expressed at low levels in

the lung, gastrointestinal tract, kidney and placenta, but

practically undetectable in the liver [17]. Both enzymes are

regulated by the aromatic hydrocarbon receptor (AhR) and

are highly inducible at both messenger RNA (mRNA) and

protein levels by a variety of chemicals. The mechanism of

induction through AhR has been well characterized. In

brief, AhR is a ligand-activated transcription factor and a

basic helix–loop–helix protein, which is coupled with two

heat-shock proteins (Hsp90), a co-chaperone pros-

taglandin E synthase 3 (p23) and an AhR-associated pro-

tein 9 (ARA9). The binding of PAH to AhR results in the

release of Hsp90 and the translocation of the AhR–PAH

complex into the nucleus with the help of Ah receptor

nuclear translocator (Arnt). This heterodimer then interacts

with the xenobiotic responsive element at the promotor

region of the CYP1A1 and CYP1A2 genes, which leads to

transcription activation of the genes and increased trans-

lation of the specific CYP enzymes [18, 19]. Since the

mRNA of AhR is dominantly expressed in the placenta,

lung, heart, pancreas and liver, induction of CYP1A

enzymes can occur through different routes of PAH

exposure, including smoking [20, 21]. In addition to PAHs,

endogenous hormones also appear to modulate the

expression of CYP1A enzymes both under normal physi-

ology and in the presence of diseases [18].

2.2 Pharmacokinetics of Nicotine and Effects

of Other Drugs on Nicotine Metabolism

Nicotine is the main ingredient in tobacco products that

leads to addiction. Besides nicotine, other alkaloids that are

present in abundance in tobacco products include norni-

cotine, anatabine and anabasine [22, 23]. The plasma

concentrations of anatabine and anabasine can be used to

confirm whether the nicotine exposure of an individual

comes from tobacco products or from nicotine replacement

therapy, such as nicotine gum or nicotine transdermal

patches.
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Nicotine can be absorbed from various routes of

administration, which include inhalation, buccal absorption

and transdermal absorption. Nicotine is a weak base, with

an acid dissociation constant (pKa) of 8.0. The absorption

kinetics of nicotine through smoking are a complex pro-

cess, as nicotine is both distilled from burning tobacco and

carried proximally by particulate matter into the lower

respiratory tract. The pH of the particulate matter in some

commercially available cigarette brands ranges from 6.0 to

7.8, although the majority of the cigarette brands available

in the USA are on the lower end of the pH range. The high

systemic bioavailability of nicotine via smoking is likely

facilitated by the efficient transfer of nicotine from the

particle to the vapour phase and/or impacting of particles in

the airways, which are covered with bronchial fluid at a pH

of 7.4 [24]. Published data suggest that the bioavailability

of nicotine through cigarette smoking is 80–90 %, whereas

the bioavailability rates are about 55 or 70 % with use of a

nicotine inhaler or nasal spray, respectively [25]. Nicotine

gum has bioavailability of 51–78 %, and nicotine trans-

dermal patches have bioavailability of 68–100 % [25]. The

maximal pharmacodynamic effect of nicotine is achieved

quickly through smoking, as the maximum plasma con-

centration (Cmax) is achieved within 5 min after a cigarette

is smoked [25].

After systemic absorption, nicotine undergoes extensive

hepatic metabolism, primarily by CYP2A6. CYP2B6 and

2E1 also play a minor role in the biotransformation of

nicotine [25]. The primary metabolite of nicotine is coti-

nine, with small fractions of the compound being converted

to nicotine-N-oxide, nornicotine and 4-(3-pyridyl)-4-hy-

droxybutanoic acid, or being conjugated to nicotine glu-

curonide [26]. The majority of the cotinine is either

glucuronidated by uridine diphosphate (UDP) glucurono-

syltransferase (UGT) UGT1A4 and 1A9, or further

metabolized by CYP2A6 to 30-hydroxycotinine (3HC)

[27]. UGT2B10 and 2B17 are the two key hepatic enzymes

involved in the glucuronidation of 3HC for the formation

of the two inactive metabolites, 3HC-N-glucuronide and O-

glucuronide, respectively. Cotinine, 3HC and a few other

nicotine metabolites, as well as other tobacco-based alka-

loids such as anabasine, are present in the urine in large

quantities [28]. Their urinary concentration profiles can be

used to assess a person’s adherence to a smoking cessation

intervention.

CYP2A6 is polymorphically expressed. Specific geno-

types (e.g. CYP2A6*9/*9) are associated with up to a 50 %

reduction in the rate of formation of 3HC [26]. Addition-

ally, both UGT2B10 and 2B17 are polymorphically

expressed [27, 29]. The deletion frequencies for the

UGT2B17 gene are approximately 50, 45 and 95 % among

Caucasians, African Americans and Asians, respectively

[30]. However, the ratio of 3HC to cotinine, also known as

the nicotine-to-metabolite ratio, does not appear to be

altered by UGT2B17 deletion alone [31]. In addition to

nicotine pharmacokinetics, genetic polymorphism of these

enzymes can also alter the pharmacodynamics of nicotine

and may influence the risk of smoking-related cancer and

nicotine addiction. The current knowledge of CYP2A6 is

more extensive than that of UGT2B10 and 2B17. CYP2A6

is involved in the metabolism of a relatively small group of

drugs [32, 33]. Over 35 alleles of CYP2A6 have been

described so far. Generally speaking, Caucasians and

Latinos metabolize nicotine faster than Asians and African

Americans. Women also metabolize nicotine faster than

men. Although the cause of nicotine addiction is multi-

factorial, studies have shown that a higher nicotine meta-

bolic rate may contribute to a higher level of nicotine

dependency. Therefore, one of the theoretical treatment

approaches towards smoking cessation is to alter the

activity of CYP2A6. Selegiline is a mechanism-based

inhibitor of CYP2A6, and its role as a smoking cessation

treatment has been evaluated in a few clinical trials, with

inconsistent results [34–36]. At this point, altering the

pharmacokinetic of nicotine alone is not an effective

approach for smoking cessation or tobacco addiction.

2.3 Effects of Tobacco on Other Drugs

Since tobacco smoking induces the expression of CYP1A1

and 1A2 enzymes, drugs that are primarily metabolized by

these enzymes will have faster systemic clearance as a

result of enzyme induction (Table 1). As reviewed by

Zevin and Benowitz [37], the average clearance rates of

caffeine, chlorpromazine, clozapine, oestradiol, flecainide,

fluvoxamine, haloperidol, mexiletine, olanzapine, propra-

nolol, tacrine and theophylline were increased by

30–100 % in smokers compared with non-smokers.

Melatonin is metabolized by CYP1A2, with minor

metabolism by CYP2C9 and CYP2C19 [38]. In a study

assessing the effects of caffeine on the pharmacokinetics of

melatonin 6 mg, the baseline clearance and elimination

half-life (t�) values of melatonin were 245 and 143 %

higher, respectively, in six healthy male smokers than in

six non-smokers [39]. Smoking did not significantly alter

endogenous melatonin concentrations. The area under the

plasma concentration–time curve (AUC) from time zero to

infinity (AUC?) of a single dose of melatonin 25 mg

increased 2- to 10-fold when it was administered to seven

female smokers and one male smoker before and after a

7-day smoking abstinence period [40]. Mirtazapine is

metabolized by CYP1A2, CYP2D6 and CYP3A4 [41]. The

steady-state concentrations of mirtazapine were, on aver-

age, 23, 34 and 41 % lower in patients who were smokers

than in non-smokers [42–44]. The AUC? value of tizani-

dine was 33 % lower in 15 healthy male smokers than in 38
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non-smokers [45] after a 4 mg single dose of tizanidine,

which is metabolized primarily by CYP1A2 [46]. Tobacco

smoking should also increase the clearance of ramelteon

[47] and rasagiline, as both are extensively metabolized by

CYP1A2 [48].

Clopidogrel irreversibly binds to P2Y12 adenosine

diphosphate receptors and inhibits platelet function. It is a

prodrug, which is first converted to 2-oxo-clopidogrel by

CYP1A2, 2B6 and 2C19, and is eventually converted to the

active metabolite by CYP2B6, 2C9, 2C19 and 3A4.

Therefore, CYP2C19 and 3A4 are considered the most

important enzymes for the biotransformation of clopidogrel

[49]. However, a so-called smoking paradox has been

observed in a number of clinical trials, which showed

improved clinical responsiveness and enhanced achieve-

ment of clinical endpoints with clopidogrel therapy in

smokers [50]. Yousef et al. [51] compared the single-dose

(75 mg) pharmacokinetics of clopidogrel carboxylic acid

metabolite in 27 smokers and 48 non-smokers. In com-

parison with non-smokers, the AUC? and t� values of the

clopidogrel metabolite were 30 and 35 % lower, respec-

tively, in smokers. Conversely, Gurbel et al. [52] showed

that the AUC value of the clopidogrel active metabolite

was 18.4 % higher in 54 smokers than in 56 non-smokers

in a controlled clinical trial. A significantly greater extent

of platelet inhibition, as measured by calculated inhibition

of platelet aggregation, was also observed in smokers. At

this point, further investigations are needed to understand

the mechanism of this observed interaction.

Current research suggests that nicotine as a compound

appears to have limited drug interaction potential. Nicotine

exposure, in the absence of smoke, does not affect the

activity of CYP1A2 in humans [53]. However, in a study of

eight healthy subjects, application of a 17.5 mg transder-

mal nicotine patch at 12 h prior to oral administration of

levodopa resulted in a 24 % reduction in the levodopa Cmax

[54]. The change in the AUC from 0 to 4 h (AUC4) after

levodopa dosing was not significant. The study was repe-

ated using a higher nicotine dose (a 35 mg transdermal

patch) in six male subjects receiving enteral nutrition (the

components of the enteral formula and the feeding regimen

were not mentioned). Levodopa absorption was reduced by

an average of 34 % in six of the eight subjects and by 60 %

in four of those six subjects [54]. The exact mechanism of

this possible drug interaction is unclear, and the clinical

significance requires confirmation with further investiga-

tion. It is worth noting that the oral bioavailability of

levodopa is impaired by food, which may explain the

reduced bioavailability in the subjects receiving enteral

nutrition.

Table 1 Highlight of clinically significant cytochrome P450 (CYP)–mediated pharmacokinetic drug interactions with tobacco, marijuana and

cannabinoids, where these products serve as the precipitant drugs

Compound CYP involved Mechanism Object drugs and impact on

plasma concentration

References

PAHs from cigarette smoking CYP1A1, CYP1A2 Induction ; Caffeine

; Chlorpromazine

; Clozapine

; Oestradiol

; Flecainide

; Fluvoxamine

; Haloperidol

; Melatonin

; Mexiletine

; Mirtazapine

; Olanzapine

; Propranolol

; Ropinirole

; Tacrine

; Theophylline

; Tizanidine

[39–47, 60]

Marijuana inhalation CYP1A1, CYP1A2 Induction ; Chlorpromazine

; Theophylline

[89–92]

CBD CYP2C19 Inhibition : Clobazam

: N-Desmethylclobazam

[101]

CBD cannabidiol, PAHs polycyclic aromatic hydrocarbons
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What is equally important is to determine how smoking

cessation alone may alter the pharmacokinetics of existing

drug regimens in a previously smoking individual. In a

study involving eight men and four women who were

heavy smokers (defined as smoking at least 20 cigarettes

daily), CYP1A2 activity, measured by caffeine clearance,

was decreased by 12.3, 20.1, 25.0 and 28.2 % from base-

line after abrupt cessation of smoking for 1, 2, 3 and

4 days, respectively [55]. At steady state, the overall mean

reduction in CYP1A2 activity was 36.1 % (range

24.4–58.4 %). All study subjects experienced significantly

reduced caffeine clearance by day 6 of smoking cessation.

The estimated t� of the CYP1A2 enzyme was 38.6 h.

These results suggest that dose reduction may be necessary

as early as the first few days after smoking cessation to

prevent toxicity, especially for drugs with a narrow thera-

peutic index.

This time course of CYP1A2 downregulation upon

smoking cessation is consistent with the time course of

adverse event occurrence as presented in a number of

published case reports. Bondolfi et al. [56] reported a case

of clozapine toxicity with a new onset of severe sedation

and fatigue 2 weeks after abrupt cessation of smoking. The

symptoms were accompanied by a threefold increase in

clozapine and norclozapine plasma concentrations. Simi-

larly, Zullino et al. [57] reported a case of olanzapine

neurotoxicity, with akathisia and bradyphrenia, 4 days after

a patient reduced daily cigarette use from 40 cigarettes to

10. The symptoms progressed to Parkinson’s syndrome,

with bradykinesia, stooped posture, small steps, hypomi-

mia, cogwheel rigidity, seborrhoea and a positive

naseopalpebral reflex. The symptoms improved after the

daily olanzapine dose was decreased by 33 %. Although

the cause of the Parkinsonian symptoms in this case was

likely multifactorial and not limited to reduction of

smoking alone, the time course was still consistent with the

study results published by Faber and Fuhr [50], in that a

stepwise daily dose reduction of approximately 10 % until

the fourth day after smoking cessation is likely necessary,

accompanied by therapeutic drug monitoring where

appropriate. In a case report [58], a woman treated with

ropinirole for restless leg syndrome developed significant

adverse effects, including profuse sweating at night, 4 days

after quitting smoking.

In summary, smoking cessation results in downregula-

tion of the CYP1A2 enzyme. The extent of enzyme

downregulation varies and depends on the magnitude of the

change in cigarette smoking in comparison with baseline.

However, since the turnover time of the CYP1A2 enzyme

is just under 2 days, a clinically significant effect can be

detected within a week of smoking cessation. Empirical

dose reduction may be necessary within 2–3 days after

smoking cessation. In patients taking drugs with narrow

therapeutics indices, close monitoring of clinical symptoms

for adverse events is necessary within the first week of

smoking cessation. Therapeutic drug monitoring, if avail-

able and clinically feasible, should be performed.

2.4 Effects of Other Drugs on Nicotine Metabolism

The number of published drug interaction studies aimed at

evaluating nicotine as the object drug is very limited

(Table 2). As mentioned, selegiline is a CYP2A6 inhibitor,

which decreases the rate of nicotine metabolism, although

the clinical implication of CYP2A6 inhibition is unknown

[34]. Other documented in vivo CYP2A6 inhibitors include

methoxsalen and tranylcypromine [23]. Fortunately, none

of these agents is commonly prescribed in clinical practice.

Since smoking is common among individuals with history

of opioid abuse who undergo methadone maintenance

treatment, a double-blind, randomized, placebo-controlled

clinical trial was conducted to evaluate the potential

pharmacokinetic and pharmacodynamic interaction

between nicotine and methadone in 40 active smokers, who

had been receiving a stable methadone regimen for at least

2 weeks (mean dose 81.1 mg/day) [59]. The study subjects

received nicotine via their regular brand of cigarette on

study day 1. Then, on days 2 and 3, they were randomized

to receive either 4 mg of nicotine gum or placebo. The

pharmacokinetics of plasma methadone, nicotine, cotinine

and hydroxycotinine were compared. The pharmacody-

namic parameters were also assessed through responses to

a battery of subjective assessment tools, which included

vital signs, a visual analogue scale for smoking and craving

for cigarettes, a questionnaire on smoking urges, the

Minnesota Nicotine Withdrawal Scale, Addiction Research

Center Inventory, Profile of Mood States, and Subjective

Opioid Withdrawal Scale. Each of the tools was adminis-

tered four times, before and after nicotine administration,

and before and 3 h after oral methadone administration.

Overall, trough plasma methadone concentrations were

unaffected by the method of nicotine exposure, even

though plasma nicotine concentrations were significantly

higher on the days when nicotine exposure occurred

through smoking. Cigarette smoking also appeared to

decrease opioid withdrawal scores by enhancing the effect

of methadone. In addition, methadone administration sig-

nificantly decreased nicotine withdrawal scores. These

findings suggest that a pharmacodynamic interaction

between nicotine and methadone may exist, whereas a

pharmacokinetic interaction seems unlikely [59]. In vitro

and in vivo data have suggested that the CYP2A6 enzyme

can be induced by artemisinin carbamazepine, dexam-

ethasone, phenobarbital, phenytoin and rifampin; however,

the clinical significance is unclear [25, 60]. Finally,

oestrogen induces CYP2A6 expression [61]. The systemic
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clearance of nicotine is faster in women than in men,

especially among women who use combined hormonal

contraceptive agents [62–64]

3 Cannabinoids

Marijuana is derived from the plant Cannabis sativa L. and

consists of a variety of compounds, including over 400

natural compounds, with the phytocannabinoids being the

most psychologically active [65]. At least 70 phyto-

cannabinoids have been identified in marijuana [66]. D9-

Tetrahydrocannabinol (D9THC), cannabidiol (CBD) and

cannibinol are the three main constituents. D9THC binds to

CB1 and CB2 receptors and is primarily responsible for the

psychotropic effects. There has been significantly increased

interest regarding the potential pharmacological effects of

CBD for use as an antiepileptic, anxiolytic, antiemetic and

hypnotic without the psychotropic effects of D9THC.

Mechanistically, CBD is a non-competitive antagonist of

CB1 receptors, inhibiting CB1 activity through negative

allosteric modulation [67], and an inverse agonist of CB2

receptors [68, 69]. CBD has also demonstrated anti-in-

flammatory activity in several preclinical models [69],

partially mediated by the adenosine A2A receptor [70].

Cannabinol (CBN) has minimal reported pharmacological

effects [66].

3.1 Pharmacokinetics

The bioavailability of D9THC after oral or smoking

administration is highly variable [66]. After a cigarette

containing 19 mg of D9THC (an estimated smoked amount

of 13 ± 1.2 mg) was smoked, peak concentrations occur-

red within 1–3 min, with 8–25 % bioavailability in com-

parison with an 5 mg intravenous infusion [71]. On oral

dosing of a cookie containing 2 mg of D9THC, the

bioavailability was 4–12 % because of extensive first-pass

metabolism, with a time to reach the Cmax (tmax) of 1–2 h

[71]. D9THC is primarily metabolized by CYP2C9 to an

active metabolite, 11-hydroxy-D9-tetrahydrocannabinol

(11-OH-THC) [72, 73]. The psychoactive properties of

11-OH-THC are equivalent to those of D9THC [74].

CYP2C9 also has a major role in the further oxidation of

11-OH-THC to an inactive metabolite, 22-nor-9-carboxy-

D9-tetrahydrocannabinol (COOH-THC). After a single

15 mg oral dose of D9THC, CYP2C9*3 subjects (n = 4)

had a 3-fold higher median D9THC AUC value than

CYP2C9*1/*1 subjects (n = 10), with a trend towards

increased sedation in subjects carrying the 3/*3 alleles [75].

The t� of D9THC was approximately 7 h in CYP2C9*1/*1,

*1/*2 and *2/*2 subjects and was increased to 15 and 22 h

in *1/*3 and *3/*3 genotypes, respectively. There was no

effect of CYP2C9 polymorphism on plasma concentrations

of 11-OH-THC. Because of slow redistribution of D9THC

from adipose tissue and other tissues, the terminal t� ran-

ges from 20 to 36 h, although in most studies, the con-

centrations have been followed for only up to 72 h and

there was low assay sensitivity at low concentrations,

limiting the reliability of the estimates [66].

Dronabinol (Marinol�; Solvay Pharmaceuticals, Inc.,

Marietta, GA, USA) is a synthetic D9THC indicated for

weight loss in patients with acquired immune deficiency

syndrome (AIDS) or for nausea and vomiting associated

Table 2 Highlight of clinically significant cytochrome P450 (CYP)–mediated pharmacokinetic drug interactions with tobacco, marijuana and

cannabinoids, where these products serve as the object drugs

Object drug Substrate of Documented precipitant drugs References

Nicotine CYP2A6 Inducer of nicotine metabolism:

Artemisinin

Carbamazepine

Dexamethasone

Oestrogen (including combined hormonal

contraceptive agents)

Inhibitor of nicotine metabolism:

Methoxsalen

Selegiline

Tranylcypromine

[25, 60]

D9THC/CBD oral mucosal spray CYP3A4 Inducer of D9THC/CBD metabolism:

Rifampin

[103]

Inhibitor of D9THC/CBD metabolism:

Ketoconazole

[103]

CBD cannabidiol, D9THC D9-tetrahydrocannabinol
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with cancer chemotherapy in patients who have failed

conventional antiemetic treatments. Dronabinol is almost

completely absorbed, with a tmax of 0.5–4 h, and undergoes

extensive first-pass metabolism to the active metabolite,

11-OH-THC, with low bioavailability of 2–14 % [76]. The

concentrations of the parent and active metabolite are

approximately equal. The terminal t� is 25–36 h, with the

majority of the dose eliminated by biliary excretion.

CBD is extensively metabolized by CYP2C19 and

CYP3A4 to eight monohydroxylated metabolites [77]. The

pharmacokinetics of deuterium-labelled CBD was deter-

mined in five chronic marijuana smokers receiving 20 mg

CBD intravenously and 18.8–19.4 mg by smoking. On oral

dosing, the absorption of CBD was low (*6 %) because of

extensive first-pass metabolism [78], with an estimated t�
of 68 h (range 41–113 h) [79]. After inhalation of CBD, the

bioavailability was 11–45 % [80].

Sativex� oromucosal spray (GW Pharma LT) is a

combination of D9THC and CBD approved for treatment of

spasticity due to multiple sclerosis. Each 100 lL spray

contains 2.7 mg of D9THC and 2.5 mg of CBD, delivered

underneath the tongue or to the inside of the cheek. The

single- and multiple-dose pharmacokinetics of D9THC and

CBD were determined in 24 healthy male subjects who

received THC/CBD spray as either 2, 4 or 8 single-dose or

multiple-dose sprays for nine consecutive days [81]. The

mean tmax values of D
9THC and CBD were approximately

1 h for all single and multiple doses. The t� values were

2.0, 3.7 and 5.3 h for D9THC; 6.5, 8.8 and 8.1 h for 11-OH-

THC; and 5.3, 6.4 and 9.4 h for CBD after administration

of 2, 4 and 8 single-dose sprays, respectively.

3.2 Effects of Cannabinoids on Other Drugs

Although in vitro studies have suggested significant CYP-

related drug interactions for D9THC, 11-OH-THC and

CBD, except for interactions with CYP1A1 and CYP1A2,

the in vitro concentrations (measured in micromoles)

associated with the interactions were significantly higher

than the serum concentrations (measured in nanomoles)

achieved after inhalation or oral dosing [82]. Marijuana tar

extracts increased expression of CYP1A1 mRNA to a

greater extent than tobacco extracts in a murine hepatoma

(Hepa-1) cell line [83]. The induction of CYP1A1

expression was significantly reduced in Hep-1 mutants

lacking AhR [83] and after knockdown of AhR expression

by use of ARH small interfering RNAs [84], demonstrating

that the induction was mediated by the AhR receptor. CBD

inhibited CYP2C19-catalyzed omeprazole 5-hydrolase

activity [85] and CYP2C9 S-warfarin 7-hydrolase and

diclofenac 40-hydrolase activity [86].

Theophylline and chlorpromazine are CYP1A2 sub-

strates with minor metabolism by CYP3A4 [87, 88]. The

effects of chronic tobacco and marijuana smoking alone

and in combination were evaluated in subjects receiving a

single 3–5 mg/kg oral dose of theophylline in orange juice

[89]. Theophylline clearance was significantly faster in

three males and four females who smoked both marijuana

and tobacco (92.7 ± 25.3 mL/h/kg) than in five male and

19 female tobacco smokers (74.9 ± 30.8 mL/h/kg), and

significantly faster in five male and two female frequent

marijuana smokers (73.3 ± 20.7 mL/h/kg) than in 11 male

and eight female non-smokers (51.8 ± 20.8 mL/h/kg).

There were corresponding decreases in the average t�
values, which were 4.3, 5.7 and 5.8 h in combination

smokers, tobacco-only smokers and marijuana-only

smokers, respectively, versus 8.1 h in non-smokers, with no

effect on the volume of distribution (Vd). Regular use of

marijuana or tobacco resulted in 61 and 31 % faster theo-

phylline clearance in a group of 35 tobacco-smoking sub-

jects and 14 marijuana-smoking subjects, respectively, than

in 30 non-smoking subjects [90]. The effect on theo-

phylline clearance occurs primarily with regular marijuana

use (C2 joints/week), with no effect of occasional use or

lower exposure (\1 joint/week) [91].

In a population pharmacokinetic analysis of trough

concentrations of chlorpromazine in 31 patients, there were

five regular users of marijuana and 11 regular users of

tobacco. The estimated clearance of chlorpromazine was

38, 50 and 107 % faster in regular users of tobacco, mar-

ijuana and the combination, respectively, than in non-users

[92].

Antipyrine is metabolized by multiple CYP isozymes,

including CYP1A2, CYP2B6, CYP2C8, CYP2C9,

CYP2C19 and CYP3A4 [93]. The t� of antipyrine

increased from a range of 6–13.8 h to 7.7–17.5 h in four of

five subjects after oral intake of D9THC 0.3 mg/kg twice

daily for 7 days [94]. A similar increase in the average t�
from 7.9 to 9.6 h was found in five of six male subjects

receiving a single 10 mg/kg oral dose with placebo or

D9THC 10–30 mg in sesame oil orally every 4 h for

10–17 days [95]. An effect of D9THC would be due to an

increased Vd and/or decreased metabolism.

The effects of marijuana smoking on nicotine pharma-

cokinetics and the 3HC-to-cotinine ratio 270 min after a

single dose of nicotine bitartrate containing 4 mg of nico-

tine base was evaluated in 68 African American healthy

subjects, who were all CYP2A6*1/*1 genotype [96]. There

was no effect of marijuana use on CYP2A6 activity or

nicotinamide pharmacokinetics when controlled for sex

and tobacco use.

Indinavir and nelfinavir are metabolized by CYP3A4

[97]. Nelfinavir is also metabolized by CYP2C19 to an

active metabolite that is subsequently eliminated by

CYP3A4-dependent metabolism [98]. HIV-infected

patients receiving either indinavir 800 mg every 8 h
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(n = 28) or nelfinavir 750 mg three times daily (n = 34)

were randomized to receive either 3.95 % D9THC mari-

juana cigarettes, dronabinol 2.5 mg capsules or placebo

three times daily for 14 days [99]. There were no signifi-

cant effects on the AUC from 0 to 8 h (AUC8), Cmax or

minimum plasma concentration (Cmin) of nelfinavir in

comparison with baseline in patients receiving D9THC or

dronabinol. D9THC significantly decreased the indinavir

Cmax by 14 %, with a trend towards a decrease (of 14.5 %)

in the AUC8. There was no effect of dronabinol on the

pharmacokinetics of indinavir.

Clobazam is extensively metabolized by CYP3A4 and,

to some extent, by CYP2C19 [100]. N-Desmethyl-

clobazam, the primary metabolite, is pharmacologically

active and is predominantly metabolized by CYP2C19. Six

female and seven male children were receiving clobazam

for the treatment of refractory epilepsy, and of the 13

children, 12 were also receiving one or two other concur-

rent AEDs [101]. CBD (Epidiolex; GW Pharmaceuticals)

was initiated at 5 mg/kg/day, increased weekly by 5 mg/

kg/day to a target of 25 mg/kg/day. The serum concen-

trations of clobazam and its active metabolite, N-

desmethylclobazam, increased by 60 ± 80 and

500 ± 300 %, respectively, after use of CBD for 4 weeks,

suggesting an inhibitory effect on CYP2C19 [101].

The effects of CBD on the pharmacokinetics of D9THC

were determined in a double-blind, placebo-controlled,

crossover study in 12 male and 12 female subjects

receiving a single oral dose of D9THC 10 mg cannabis

extract, D9THC 10 mg ? CBD 5.4 mg or placebo [102].

CBD significantly increased the AUC from 0 to 24 h

(AUC24) and the Cmax of D9THC by approximately 20 %

and decreased the formation of 11-OH-THC. The effects of

CBD were minor in comparison with the large intersubject

variability in D9THC and 11-OH-THC pharmacokinetics.

In conclusion, in vitro data and clinical data suggest that

inhaled marijuana induces CYP1A2 to an extent similar to

that observed with tobacco, with added effects when they

are used in combination. There is also some limited evi-

dence that inhaled marijuana may slightly induce CYP3A4,

with no effect of orally administered synthetic D9THC. The

effect of CBD on clobazam suggests significant inhibition

of CYP2C19, although the data are limited.

3.3 Effects of Other Drugs on Cannabinoids

The effects of multiple daily doses of rifampin 600 mg for

10 days, ketoconazole 400 mg for 6 days and omeprazole

40 mg for 6 days on the pharmacokinetics of D9THC,

11-OH-THC and CBD after a single dose (4 sprays) of

Sativex� oromucosal spray were determined in a ran-

domized, crossover, parallel study in three groups of 12

male subjects [103]. Ketoconazole increased the Cmax and

AUC24 of D9THC by 1.2- and 1.8-fold, respectively,

increased the Cmax and AUC24 of 11-OH-THC by 3.0- and

2.6-fold, respectively, and increased the Cmax and AUC24

of CBD by 2- and 2-fold, respectively. Rifampin decreased

the Cmax and AUC24 of D9THC by 40 and 20 %, respec-

tively, decreased the Cmax and AUC24 of 11-OH-THC by

85 and 87 %, respectively, and decreased the Cmax and

AUC24 of CBD by 50 and 60 %, respectively. There were

no effects of omeprazole on the plasma concentrations of

D9THC, 11-OH-THC or CBD. The significant effects of

rifampin and ketoconazole—which are a CYP3A4 inducer

and a CYP3A4 inhibitor, respectively—suggest a major

role of CYP3A4 in the metabolism of D9THC, 11-OH-THC

and CBD. Concurrent use of CYP3A4 inducers and inhi-

bitors could result in significant drug interactions with

cannabis products.

4 Smoking Cessation Products

4.1 Bupropion

Bupropion was initially approved for the treatment of

major depression disorder, with subsequent approval for

smoking cessation. Its mechanism of action in assistance

with smoking cessation is unknown. Bupropion weakly

inhibits uptake of dopamine and norepinephrine, which

may mediate the anti-smoking properties.

4.1.1 Pharmacokinetics

Bupropion is almost completed absorbed, with tmax values

of 1.5, 3 and 5 h for the immediate-release (IR), sustained-

release (SR) and extended-release (ER) formulations,

respectively [104]. Bupropion is administered as a racemic

mixture and undergoes extensive first-pass metabolism to

several active metabolites, with CYP2B6 being the primary

isozyme involved [105]. The apparent oral clearance of (S)-

bupropion is 3-fold faster than those of (R)- and (R,S)-

bupropion, and hydroxylation of (S)-bupropion is used as

an in vivo probe for CYP2B6 [106]. The primary active

metabolite, hydroxyl-bupropion, is approximately 50 % as

potent as bupropion. The Cmax and AUC values of hydro-

xyl-bupropion are 4- to 7-fold and 10-fold higher, respec-

tively, than those of bupropion with oral dosing.

Threohydrobupropion and erythrohydrobupropion are also

active metabolites formed by non-microsomal pathways

and are approximately 20 % as potent as bupropion, with

concentrations fivefold that of bupropion and equal to that

of bupropion, respectively [107]. The t� values of bupro-

pion, hydroxybupropion, erythrohydrobupopion and thre-

ohydrobupropion are approximately 21, 20, 33 and 37 h,

respectively [107]. Bupropion is a substrate for breast
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cancer resistant protein (BCRP) and P-glycoprotein (P-gp)

transporters [108].

4.1.2 Effects of Bupropion on Other Drugs

Clinically, there are several reported interactions between

bupropion and CYP2D6-metabolized drugs. In in vitro

studies in human liver microsomes, bupropion (inhibitory

constant [Ki] 21 lM) and hydroxybupropion (Ki 13.3 lM)

are weak inhibitor of CYP2D6; however, erythrohy-

drobupropion (Ki 1.7 lM) and threohydrobupropion

(Ki 5.4 lM) are more potent CYP2D6 inhibitors and the-

oretically are responsible for the drug–drug interactions

[109]. The effects of steady-state bupropion SR 150 mg

twice daily on the pharmacokinetics of a single 50 mg dose

of desipramine were evaluated in CYP2D6 extensive

metabolizers (n = 15) [107]. Bupropion decreased desi-

pramine clearance and increased the Cmax, AUC and t� by

2-, 5- and 2-fold, respectively. In a case report of a 64-year-

old female on long-term imipramine 150–200 mg/day,

imipramine and desipramine clearance decreased by 57 and

139 %, respectively when bupropion 225 mg/day was

added [110]. In an open-label study in patients receiving

fluoxetine (n = 5), paroxetine (n = 4) or venlafaxine

(n = 7), bupropion SR 150 mg/day was added [111].

Venlafaxine plasma concentration increased 2.5-fold with

addition of bupropion SR. There was no effect on the

steady-state concentrations of fluoxetine or paroxetine. In a

case report, a 22-year-old male, who was genotyped as

CYP2D6*1/*1 and phenotyped with dextromethorphan,

converted to a poor-metabolizer phenotype when receiving

bupropion for smoking cessation [112]. The case report

was followed by a study evaluating the dextromethorphan-

to-dextrorphan metabolic ratio in subjects who were phe-

notypically extensive metabolizers receiving bupropion SR

150 mg twice daily (n = 13) or placebo (n = 8) for

17 days [113]. The ratio increased significantly

(0.012 ± 0.012 versus 0.418 ± 0.302) with concurrent

bupropion treatment. Bupropion phenotypically converted

six of the 13 subjects to poor CYP2D6 metabolizers.

4.1.3 Effects of Other Drugs on Bupropion

Chronic administration of carbamazepine, a broad-spec-

trum inducer of CYP and UGT isozymes, decreased the

bupropion Cmax and AUC24 by 87 and 90 %, respectively

in 12 patients receiving a single 150 mg oral dose of

bupropion [114]. There were significant increases in the

Cmax and AUC24 of hydroxybupropion—71 and 50 %,

respectively. Valproate, an inhibitor of CYP2C9 and

UGTs, did not alter bupropion plasma concentrations in

five patients but increased the hydroxybupropion Cmax by

56 % and AUC by 94 % by inhibiting the sequential

metabolism of hydroxybupropion [114]. The effects of

rifampin, a broad-spectrum CYP inducer, were determined

in 18 healthy male subjects after a single dose of bupropion

SR 150 mg before and after treatment with rifampin

600 mg/day for 7 days [115]. Rifampin increased bupro-

pion clearance by 203 %, decreased the t� by 48 % and

increased the hydroxybupropion Cmax and AUC from 0 to

72 h (AUC72h) by 39 and 43 %, respectively. The effects

of genetic polymorphisms in the pregnane X receptor

(PXR) and CYP2B6 on the induction of rifampin and

bupropion hydroxylation were evaluated in 21 male and 14

female Korean subjects [116]. Subjects received a single

oral dose of bupropion 150 mg before and after 7 days of

rifampin 600 mg daily. The hydroxybupropion AUC from

0 to 36 h (AUC36h) was significantly decreased in subjects

with reduced-function PXR alleles and in CYP2B6*6 car-

riers compared with non-carriers with and without rifampin

treatment.

Both ritonavir and lopinavir are inhibitors of CYP3A,

and ritonavir may also induce CYPC9 [117]. Four male and

nine female healthy subjects received bupropion IR

150 mg alone after 3 days of ritonavir 200 mg three times

daily and after 17 days of ritonavir in a randomized,

crossover study [118]. Ritonavir increased the clearance of

racemic, (R)- and (S)-bupropion by 1.2-fold after 3 days of

treatment and by 1.4-, 1.7- and 1.5-fold, respectively, after

17 days of treatment. In a placebo-controlled crossover

study of seven male healthy subjects receiving a single oral

75 mg dose of bupropion IR, there was no effect of

ritonavir alone, administered as 200 mg twice daily for

2 days, on bupropion or hydroxybupropion pharmacoki-

netics [119]. The lower dose and shorter treatment (200 mg

twice daily for 2 days, compared with 200 mg three times

daily for 3 days) may explain the conflicting results of the

two studies. The effects of 2-week treatment with lopinavir

(400 mg)/ritonavir (100 mg) twice daily on the single-dose

pharmacokinetics of bupropion SR 100 mg were deter-

mined in a crossover study in ten males and two females

[120]. Lopinavir plus ritonavir decreased the bupropion

Cmax by 57 % and the AUC24 by 57 % and decreased the

hydroxybupropion Cmax and AUC24 by 31 and 50 %,

respectively. There was no effect of bupropion on con-

centrations of lopinavir or ritonavir.

A randomized, two-phase study in ten male and three

female healthy subjects evaluated the effects of a single

dose of bupropion SR 150 mg administered with and

without efavirenz 600 mg daily for 2 weeks [121]. Efa-

virenz decreased the AUC from 0 to 48 h (AUC48h) and

Cmax of bupropion by 55 and 34 %, respectively, and

increased the AUC ratio of hydroxybupropion to bupropion

2.3-fold, with no effect on the AUC of hydroxybupropion.

The pharmacokinetics of a single 150 mg oral dose of

bupropion was evaluated alone and after pretreatment with
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CYP2B6 inhibitors, clopidogrel 75 mg daily or ticlopidine

250 mg twice daily for 4 days each in 12 male subjects

[122]. The bupropion AUC72h was increased 60 and 85 %

by clopidogrel and ticlopidine, respectively; the hydroxy-

bupropion AUC72h was decreased 52 and 84 % by clopi-

dogrel and ticlopidine, respectively; and the

hydroxybupropion-to-bupropion AUC ratio was increased

68 and 58 % by clopidogrel and ticlopidine, respectively.

As there was no effect on the t� of bupropion, the inter-

action occurred during first-pass metabolism.

The effects of oral contraceptive (OC) and hormone

replacement therapy (HRT) on CYP2B6 activity, using

bupropion as a probe, were determined in a two-way

crossover study in 12 healthy female subjects [123]. Sub-

jects received a single 150 mg dose of bupropion SR

without pretreatment, OC (ethinyl oestradiol 30 lg/deso-
gestrel 150 lg) and HRT (oestradiol valerate 2 mg/levo-

norgestrel 250 lg) daily for 10 days each. HRT decreased

the hydroxybupropion-to-bupropion AUC ratio by 49 %,

which was due to a 47 % decrease in the AUC72h of

hydroxybupropion. The OC decreased the bupropion

AUC72h by 19 % and decreased the hydroxybupropion

AUC72h by 31 %, with no statistically significant differ-

ence in the hydroxybupropion-to-bupropion AUC ratio.

Although there was only a modest effect on CYP2B6 with

OC treatment, an increase in the bupropion dose may be

needed for both OC and HRT users because of the sig-

nificant decrease in the concentration of the active

metabolite, hydroxybupropion.

The effects of St Johns’ wort (SJW) on bupropion

pharmacokinetics were studied in 18 healthy male Chinese

subjects [124]. A single dose of bupropion was adminis-

tered before and after a 14-day treatment with SJW given

325 mg three times daily. SJW decreased the bupropion

AUC72h by 17 %, with no effect on the t�. Baicalin, a

flavone glucuronide extract, increased the hydroxybupro-

pion Cmax and AUC72h by 73 and 87 %, respectively, and

increased the hydroxybupropion-to-bupropion AUC ratio

by 63 % in 17 healthy male subjects receiving a single oral

dose of bupropion 150 mg with and without a 14-day

treatment with baicalin 500 mg three times daily [125].

There was no effect of baicalin on the oral clearance or t�
of bupropion. Woohwangcheongsimwon, a suspension

composed of 24 medicinal herbs commonly used in Korean

and other East Asian countries, inhibited CYP2B6 [126],

and Ginkgo biloba extract induced various hepatic CYPs,

including CYP2B6, in vitro [127]; however, as has been

observed with many herbal interactions, the in vitro data

did not translate into clinically significant interactions.

There was no effect of treatment with Ginkgo biloba

extract 250 mg/day for 14 days on the single-dose phar-

macokinetics of bupropion SR 150 mg in 14 healthy male

subjects [128]. There was no effect of

woohwangcheongsimwon suspension, administered for

four doses, on the single-dose pharmacokinetics of bupro-

pion SR 150 mg or hydroxybupropion in 15 male subjects

[129].

In conclusion, the overall pharmacological effects of

induction and inhibition of bupropion hydroxylation are

dependent on the relative effects on bupropion and its

major active metabolite, hydroxybupropion (Table 3). As

hydroxybupropion concentrations are 7- to 10-fold higher

after oral dosing, any significant decrease in hydroxy-

bupropion could lead to reduced efficacy. In contrast, a

significant increase could result in toxicity if dosages are

not adjusted.

4.2 Varenicline

4.2.1 Pharmacokinetics

Varenicline, a synthetic analogue of cytisine, is an alpha-4-

beta-2-nicotinic acetylcholine receptor partial agonist,

which binds to nicotine receptors in the brain and is

approved as an aid to smoking cessation. Varenicline is

completely absorbed, with an average tmax of 3–4 h, and

[90 % is eliminated unchanged in the urine, with a t� of

24–33 h after multiple dosing [130]. Active tubular

secretion by human organic cation transporter 2 (hOCT2)

contributes to the renal excretion and theoretically is a

target for drug interactions [131].

4.2.2 Drug Interactions

In a randomized, placebo-controlled study in 24 healthy

adult male and female smokers, there was no effect of

varenicline 1 mg administered twice daily for 14 days on

the pharmacokinetics of a single dose of warfarin 25 mg

[132]. There was also no effect of varenicline on the

pharmacokinetics of digoxin in 16 male and two female

adult smokers receiving digoxin 0.2 mg daily with

varenicline or placebo administered for 14 days in a ran-

domized, crossover study [133]. In a randomized, cross-

over study in eight male and four female healthy adult

smokers, cimetidine (a known inhibitor of hOCT2 [134]),

administered in a dosage of 300 mg four times daily con-

currently with a single 2 mg dose of varenicline, signifi-

cantly decreased the renal clearance by 25 %, resulting in

an increase in the AUC from 0 to 92 h (AUC92h) of 29 %

[131]. There was no effect on either metformin or vareni-

cline pharmacokinetics when they were administered con-

currently to 30 heathy adult smokers receiving metformin

500 mg twice daily and varenicline 1 mg twice daily for

7 days, in comparison with monotherapy [130].
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4.3 Cytisine

Cytisine, a plant alkaloid and a partial agonist of a4b2
nicotinic receptors, is widely used in Eastern and Central

European countries as a smoking cessation agent [135,

136]. The pharmacokinetics of a single oral dose of cyti-

sine 3 mg was determined in seven healthy male subjects

who were current cigarette smokers [137]. Peak concen-

trations occurred 2 h after oral administration, with an

average t� of 4.8 h. Only unchanged cytisine was detected

in the urine. The role of active renal tubular secretion in

renal excretion of cytisine has not been determined. Cyti-

sine is not a substrate of P-gp or BCRP efflux transporters

[138]. In rats, the low brain exposure to cytisine compared

with varenicline, even with the small differences in their

molecular properties, suggests that cytisine is a substrate

for other non-P-gp or BCRP efflux transporters [138].

There have been no published drug interaction studies.

4.4 Other Treatment Options for Smoking

Cessation

Clonidine and nortriptyline are considered second-line

therapies for smoking cessation because of the limited

number of available randomized, controlled trials and lack

of data to demonstrate their long-term efficacy [139, 140].

Clonidine is a centrally active antihypertensive agent,

which has also been found to have analgesic and antise-

cretory effects in the gastrointestinal tract. About half of

the administered dose is excreted renally unchanged. There

Table 3 Bupropion drug interactions

Proposed mechanism Effect on concentrations References

Bupropion as precipitant drug CYP2D6 inhibition : Desipramine [107]

: Imipramine [107, 110]

: Venlafaxine [111]

: Dextromethorphan [111]

Bupropion as object drug

Carbamazepine CYP induction ; Cmax and ; AUC of bupropion

: Cmax and : AUC of hydroxybupropion

[114]

Valproate UGT inhibition $ Cmax and $ AUC of bupropion

: Cmax and : AUC of hydroxybupropion

[115]

Rifampin CYP induction ; Cmax and ; AUC of bupropion

: Cmax and : AUC of hydroxybupropion

[116]

Ritonavir CYP induction ; Cmax and ; AUC of bupropion

$ Cmax and ; AUC of hydroxybupropion

[118]

No effect $ Cmax and $ AUC of bupropion

$ Cmax and $ AUC of hydroxybupropion

[119]

Ritonavir/lopinavir CYP induction ; Cmax and ; AUC of bupropion

; Cmax and ; AUC of hydroxybupropion

[120]

Efavirenz CYP induction ; Cmax and ; AUC of bupropion

$ Cmax and ; AUC of hydroxybupropion

[121]

Clopidogrel

Ticlopidine

CYP2B6 inhibition : Cmax and : AUC of bupropion

; Cmax and ; AUC of hydroxybupropion

[122]

Oral contraceptive therapy CYP2B6 inhibition ; Cmax and ; AUC of bupropion

; Cmax and ; AUC of hydroxybupropion

[122]

Hormone replacement therapy CYP2B6 $ Cmax and ; AUC of bupropion

; Cmax and ; AUC of hydroxybupropion

[122]

St John’s wort CYP induction $ Cmax and ; AUC of bupropion

$ Cmax and $ AUC of hydroxybupropion

[124]

Baicalin CYP induction $ Cmax and ; AUC of bupropion

: Cmax and : AUC of hydroxybupropion

[125]

AUC area under the plasma concentration–time curve, Cmax maximum plasma drug concentration, CYP cytochrome P450, UGT uridine

diphosphate glucuronosyltransferase
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is no established evidence demonstrating a pharmacoki-

netic or pharmacodynamic interaction between clonidine

and smoking. Nortriptyline is a tricyclic antidepressant.

The primary enzymes involved in its metabolism include

CYP1A2, 2D6 and 2C19, with CYP3A4 being a minor

metabolic pathway [141, 142]. Therefore, smoking is

expected to reduce the clinical efficacy of nortriptyline

because of CYP1A2 induction, whereas in a patient who

has been receiving chronic nortriptyline therapy, dose

reduction will likely be necessary when the patient is

undergoing smoking cessation, to prevent adverse drug

events.

5 Conclusion

Both tobacco smoking and marijuana smoking result in

significant upregulation of CYP1A1 and 1A2, which

alters the pharmacokinetics of drugs metabolized by these

enzymes (Table 1). On the basis of limited studies, the

induction potential of chronic marijuana use appears to be

approximately equal to or greater than that of tobacco,

with the combination resulting in the greatest CYP1A2

induction, suggesting that PAHs are the primary inducing

agents for both. The interaction potential of nicotine itself

is less understood, with limited drug interactions involv-

ing CYP2A6 inhibition or induction. Although CYP2C19

is primarily responsible for formation of the active

metabolite of D9THC, 11-OH-THC, the significant effects

of CYP3A4 inducers and inhibitors on the pharmacoki-

netics of D9THC, 11-OH-THC and CBD after adminis-

tration of D9THC and CBD oromucosal spray suggest that

CYP3A4 is a major enzyme responsible for the metabo-

lism of D9THC and CBD. Limited data also suggest that

CBD may significantly inhibit CYP2C19. CYP2B6

inducers and inhibitors significantly alter the pharma-

cokinetics of bupropion. However, the clinical signifi-

cance of the interactions is complex because of the

presence of several active metabolites. The pharmacody-

namic effects of each interaction needs to be determined

separately. Smoking cessation results in rapid downregu-

lation of CYP1A2 enzyme activity, which may require

dose adjustment of some chronic medications to prevent

toxicity. With the increasing use of marijuana and can-

nabis products medically and recreationally, future clini-

cal studies are needed in order to clarify the drug

interaction potential.
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