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Abstract Understanding inter-subject variability in drug

pharmacokinetics and pharmacodynamics is important to

ensure that all patients attain suitable drug exposure to

achieve efficacy and avoid toxicity. Inter-subject variabil-

ity in the pharmacokinetics of therapeutic monoclonal

antibodies (mAbs) is generally moderate to high; however,

the factors responsible for the high inter-subject variability

have not been comprehensively reviewed. In this review,

the extent of inter-subject variability for mAb pharma-

cokinetics is presented and potential factors contributing to

this variability are explored and summarised. Disease sta-

tus, age, sex, ethnicity, body size, genetic polymorphisms,

concomitant medication, co-morbidities, immune status

and multiple other patient-specific details have been con-

sidered. The inter-subject variability for mAb pharma-

cokinetics most likely depends on the complex interplay of

multiple factors. However, studies aimed at investigating

the reasons for the inter-subject variability are sparse.

Population pharmacokinetic models and physiologically

based pharmacokinetic models are useful tools to identify

important covariates, aiding in the understanding of factors

contributing to inter-subject variability. Further under-

standing of inter-subject variability in pharmacokinetics

should aid in development of dosing regimens that are

more appropriate.

Key Points

High inter-subject variability has been reported for

monoclonal antibody (mAb) pharmacokinetics.

The causes of inter-subject variability in mAb

pharmacokinetics are often unexplained or

unexplored in clinical studies.

The physiological reasons for inter-subject

variability in mAb pharmacokinetics are still poorly

understood and further investigation is required.

1 Introduction

Optimal drug dosing requires an understanding of the inter-

subject variability in drug pharmacokinetics and pharma-

codynamics to ensure efficacy and to minimise toxicity in

all patients. Information on variability in the pharmacoki-

netics of therapeutic monoclonal antibodies (mAbs) is still

emerging [1]. For example, trough concentrations follow-

ing multiple dosing of palivizumab, cetuximab and inflix-

imab differed by \10.9-, 18.2- and [70-fold between

subjects, respectively [2–4]. The clearance of endogenous

immunoglobulin also varies widely between populations,

with the reported elimination half-life (t�) ranging from 13

to 32 days in healthy subjects and 7 to 68 days in patients

with various diseases [5–8]. Observed variability in the

pharmacokinetics of selected mAbs are presented in the

Electronic Supplementary Material.

A multitude of factors can play a role in the observed

inter-subject variability in mAb pharmacokinetics, many of

which are still poorly defined. There have been limited
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reports dedicated to describing the sources of variability for

mAb pharmacokinetics [9–11]. The properties governing

exposure to mAbs can be broadly divided into the same

areas as small-molecule drugs, i.e. absorption, distribution,

metabolism and elimination (ADME). However, the

ADME of mAbs differs from that of small-molecule drugs

and has been reviewed extensively [1, 9, 10, 12]. The aim

of this study is to provide a comprehensive review of the

factors that may contribute to the observed high inter-

subject variability in mAb pharmacokinetics.

2 Data Sources

PubMed was used to conduct a structured literature search

on the ADME of mAbs. The aim of the search was to

identify pharmacokinetic parameters that could vary

between subjects and the factors that influence this vari-

ability. Clinical studies as well as population pharma-

cokinetic studies were included. No date restriction was

applied. Additional sources of information included the

manufacturers’ product information as well as Simcyp data

resources.

3 Factors Contributing to Inter-Subject
Variability in Monoclonal Antibody (mAb)
Pharmacokinetics

Body weight/surface area has been correlated with linear

clearance of mAbs, suggesting that smaller subjects clear

mAbs more slowly than larger individuals [13]. However,

the impact of other demographic factors such as age, sex,

and renal or hepatic impairment on mAb pharmacokinetics

is controversial [14]. Age has been inversely correlated

with clearance of adalimumab [15] and efalizumab [16];

however, no correlation has been reported for trastuzumab

or bevacizumab [14]. In addition, age, sex, disease status,

baseline IgG, rheumatoid factors and serum antigen levels

were not correlated with differences in the clearance of an

anti-interleukin (IL)-8 antibody [14]. Alteration in mAb

clearance between ethnic groups [10] and sexes [17, 18]

have been reported, but these may be explained by dif-

ferences in body weight [13, 18]. Various stages and pro-

cesses during ADME of mAbs present the potential for

inter-subject variability. These are depicted in Fig. 1 and

discussed below.

3.1 Lymph and the Interstitial Fluid

The rate of lymph flow influences mAb distribution and the

rate of absorption following subcutaneous or intramuscular

administration. In addition, the volume of lymph may have

an impact on the apparent volume of distribution at steady

state (Vss) of mAbs, where distribution is confined to the

blood, lymph and interstitial space. There are multiple

factors that may lead to differences in the lymph flow rate

and/or volume between subjects. However, data relating to

inter-subject variability in lymph flow and volume are

scarce. Lymph flow rate and volume are altered in several

disease conditions such as rheumatoid arthritis (RA) and

cancers [19–26], and hence differences in the co-morbidi-

ties of the patients may contribute to inter-subject vari-

ability in mAb pharmacokinetics. No data could be found

directly comparing lymph flows or volumes in males and

females. The blood flow to and number and size of cervical

lymph nodes are reported to be similar in Chinese and

Caucasian adults [27]. However, inter-subject differences

in pharmacokinetics due to ethnicity- and sex-dependent

lymph flow rate and volume cannot be ruled out.

Decreased lymph flow has been observed in older adults

[28–30]. However, little is currently known about differ-

ences in subcutaneous lymph drainage between adults and

children and the resultant impact on absorption rate and

bioavailability of mAbs [31, 32]. It has been suggested that

the biodistribution of therapeutic proteins (TPs) may not be

significantly affected by developmental changes in body

composition [31, 33]. However, total body water decreases

with age in young children, due to a sharp reduction in

interstitial fluid volume [34–36], and hence the absorption

rate of mAbs may be higher in very young children than in

adolescents and adults, as observed for palivizumab [37].

Body weight-normalised mAb Vss may also be higher in

young children due to the higher interstitial fluid volume in

paediatric patients [32, 34–36].

For subcutaneous dosing, the site and depth of injection

can influence the absorption and distribution of the mAb

[38, 39]. Therefore, inconsistencies in dosing between

individuals may contribute to the observed variability in

the time to maximum concentration (tmax) and the maxi-

mum concentration (Cmax). The extent of absorption gen-

erally does not differ significantly between dosing sites

[40], but the rate of absorption may vary. Regional dif-

ferences in blood and/or lymph flow may contribute to this

variability. Exercise, heating and rubbing also increase the

local lymph flow rate [41, 42]. In addition, as the rate of

distribution within the interstitial space following dose

administration is dictated by molecular size and physical

and electrostatic interaction with the various components

of the interstitium (e.g. fibrous collagen network and gly-

cosaminoglycanes) [10, 43, 44], regional alterations in the

structure of the interstitium may also contribute to vari-

ability in mAb absorption from different dosing sites.

Population pharmacokinetic studies following subcuta-

neous administration of various mAbs (efalizumab, deno-

sumab, omalizumab, ustekinumab) indicated high between-
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subject variability in bioavailability and the absorption rate

constant, with coefficient of variation (CV) percentages

ranging from 40 to 53 % [45–49].

3.2 Movement of mAbs Through the Endothelial

Wall

As convection is the main driving force for distribution of

mAbs from the capillaries into the interstitial space, any

differences in the endothelial pore size, their abundance

and the structure of the glycocalyx layer between subjects

may contribute to inter-subject variability in mAb absorp-

tion and distribution. Reduced Vss and clearance of mAbs

may be observed in the elderly due to a reduction in the

number of liver endothelial fenestrae, a decrease in endo-

cytosis in the liver endothelium and reduced penetration of

mAbs into the liver endothelial cells [50]. Developmental

changes in the abundance of receptors, such as low-density

lipoprotein receptor-related proteins, asialoglycoprotein

receptors and mannose receptors, which are responsible for

endocytosis of certain TPs in the liver, have been reported

[51–53] and can lead to reduced clearance in newborn

infants compared with older children and adults. Currently,

there are no reports describing paracellular movement of

mAbs in different ethnicities [10] or sexes. Data describing

the size and abundance of pores in endothelial membranes

is currently very limited [54].

Inter-subject variability in the distribution of radiola-

belled IgG has been reported in healthy subjects and

patients with a range of diseases [6]. Disease conditions

can disrupt the endothelial membrane, e.g. the glycocalyx

is shed in inflammation and ischaemia, which will increase

the endothelial permeability and distribution of mAbs [10,

55]. In addition, disease conditions can alter the gly-

cosaminoglycan composition of the glycocalyx [55] and

hence the movement of proteins through the endothelial

membranes. New blood vessel formation at the site of

inflammation may contribute to the apparent increased

Fig. 1 Physiological processes determining monoclonal antibody

pharmacokinetics and contributing factors to population variability.

mAb monoclonal antibody, TMDD target-mediated drug disposition.

represent mAb, anti-drug antibodies, FcRn, cata-

bolic enzymes and target receptors
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vascular permeability of mAbs in inflammatory disease

[56]. Disease has also been shown to change the abundance

of asialoglycoprotein receptors on hepatocytes and hence

endocytosis [57–59]. It is reasonable to assume that disease

state may also affect endocytosis and thus clearance of

mAbs. Disruption of the glomerular or intestinal membrane

in disease can lead to increased renal filtration or loss from

the intestine [15, 26].

Individual variation in tumour anatomy, physiology and

antigen load may influence the local distribution of mAbs

between cancer patients. The hydrostatic pressure in the

interstitial fluid of tumours is raised and highly variable,

leading to reduced distribution of mAbs into the tumour

interstitium [60, 61]. A high concentration of the target

antigen on the cells at the surface of the tumour can also

lead to a ‘binding barrier’, where antigen on the peripheral

tumour cells binds to the mAb and prevents distribution of

the drug further into the interior of the tumour, resulting in

heterogeneous distribution of mAbs in tumours [9, 62, 63].

Differences in antigen concentration on tumour cells

between patients may therefore lead to variability in local

mAb distribution.

3.3 Neonatal Fc-Receptor Binding and Abundance

The neonatal Fc-receptor (FcRn) is important for absorp-

tion of IgG in the suckling rat, accounting for approxi-

mately 80 % of the circulating IgG concentration in rat

pups [64, 65]. FcRn expression in the gut and absorption of

enteral administered IgG changes with age in young rats

[65]. In contrast, FcRn is expressed in the gut throughout

adulthood in primates [66]. FcRn expression in the gut has

only been determined qualitatively in adult and fetal

humans [67, 68]. Changes in FcRn abundance with age

could contribute to variability in mAb pharmacokinetics

between young and adult subjects; however, the limited

data available suggests this may only be important in very

early childhood. Infants have lower serum IgG concentra-

tions and a prolonged t� of IgG absorbed from the mother

(*48 days [69]) than adult values. Therefore, therapeutic

mAbs may also have lower clearance in children [26, 31].

Total clearance of mAbs generally increases in a sub-pro-

portional manner when compared with body weight (i.e.

the increase in clearance is greater than the proportional

increase in body weight); hence, dosage of mAbs on a mg/

kg basis results in lower exposure in paediatric patients

than in adults [31]. This suggests that the non-specific

catabolic clearance of mAbs varies with age, potentially

because of the ontology of FcRn abundance. Unfortunately,

there is very limited pharmacokinetic data published for

mAbs in very young paediatric patients (\2 years) to allow

confirmation of this. There are no reports of FcRn

abundance in elderly subjects and hence its importance for

mAb pharmacokinetic variability in studies that include

elderly patients cannot currently be assessed.

Several disorders affect the elimination of endogenous

IgG [26], e.g. the serum and lymph concentration of

endogenous IgG is 1.6- and 1.9-fold higher in RA patients

than in healthy volunteers [19]. High IgG concentrations

correlate with faster elimination of IgG, presumably due to

saturation of FcRn, and consequently reduced protection

from catabolism [26, 70]. Therefore, in disorders where

endogenous IgG concentrations are high, the t� of

endogenous IgG is short [26]. A similar reduction in mAb

t� values would be expected in patients with high

endogenous IgG levels and saturated FcRn receptors. In

addition, increasing the dose for subcutaneous adminis-

tration may lead to saturation of FcRn binding and subse-

quent protection from degradation at the absorption site

[38, 39].

Currently, the absolute abundance of FcRn and its

variability in the population is unknown [71]. The first

quantitative study of human FcRn messenger RNA and

protein abundance in the intestine showed high inter-sub-

ject variability and also differences in regional expression

along the gut [66]. However, tissue from only three donors

was analysed. Polymorphisms affecting critical amino

acids (E115, E116, D130, W131, L135 and I1, in the a2
domain of human FcRn) necessary for binding to IgG [72]

will lead to inter-subject differences in the binding affinity

of FcRn to mAbs and consequently differences in clearance

[73]. In addition, polymorphisms of the FcRn gene leading

to reduced transcription or translation will result in lower

FcRn abundance. A non-synonymous mutation of B2M

leads to a lack of functional FcRn [74]. This causes

reduced serum IgG (\28 % of normal), due to an increase

in catabolism, rather than a decrease in protein synthesis

[26]. These patients showed a much faster IgG elimination

rate than healthy individuals. Thirty-three genetic variants

of the FcRn gene have been identified in the Japanese

population, with the prevalence of some polymorphism

differing between Japanese and Caucasian populations

[75]. However, the majority of the polymorphisms identi-

fied in Japanese subjects were at locations distinct from the

IgG binding region and hence are not expected to cause

differences between subjects in FcRn binding capacity

[75]. Although binding affinity may not be altered due to

these polymorphisms, it is unclear whether other changes

such as alterations in protein stability, turnover or transport

within the cell could occur and influence the efficiency of

the FcRn recycling mechanism. Ethnic differences in

FcRn-mediated clearance of endogenous IgG have been

observed; however, these can generally be explained by

differing body size [10].

792 K. L. Gill et al.



3.4 Target Levels

The pharmacokinetics of mAb are often non-linear, where

clearance is lower at higher dose levels due to saturation of

the target, and hence the target-mediated drug disposition

(TMDD) elimination pathway [46, 76]. Inter-subject dif-

ferences in target abundance may therefore affect the dis-

tribution and elimination of mAbs where TMDD has a

large impact on their disposition. Increased target levels are

usually found in patients compared with healthy volun-

teers, and hence the importance of TMDD to mAb phar-

macokinetics at a set dose level may differ between the two

populations. In addition, differences in target levels

between disease types, e.g. RA and inflammatory bowel

disease, may lead to variability in mAb clearance between

patients [77, 78].

Many currently approved mAbs are targeted against

antigens where a circulating form is present in the blood-

stream in addition to the membrane-bound antigen; for

example, trastuzumab, which targets HER2 in the primary

tumour and circulating tumour cells, and rituximab, which

is directed against transmembrane and plasma CD20 [79].

Indeed, it has been hypothesised that most membrane-

bound proteins shed their ectodomains [80]. The shed form

of the target in the systemic circulation may bind to the

mAb and reduce the number of antigen binding sites

available to bind to the cell surface target, reducing effi-

cacy [79, 81, 82]. Due to the increased total target levels

(membrane bound and soluble), non-linear pharmacoki-

netics may be observed at higher dose levels. Increased

soluble target levels are usually found in patients compared

with healthy volunteers; thus, the importance of TMDD to

mAb pharmacokinetics may differ between the two popu-

lations. In addition, soluble antigen levels are often highly

variable in patients and for certain conditions are correlated

with disease progression [79, 81–85]. In accordance, mAb

exposures are often lower and clearance is higher in

patients than in healthy volunteers [78, 82, 84–87].

Small differences in protein structure/post-translational

modifications can affect the binding affinity of mAbs to

their target antigen, e.g. glycosylation [10, 88]. These may

occur during production or as a result of the patient’s

disease state. The majority of mAb formulations are not

homogeneous and instead contain proteins with varying

post-translational modifications, which could contribute to

variability in mAb pharmacokinetics between subjects

administered different amounts of drug. Binding affinity of

mAbs and internalisation/elimination rates of the bound

mAb–target complex are usually determined in vitro or can

be allometrically scaled from pre-clinical data; hence, the

extent and impact of inter-subject variability on mAb

pharmacokinetics cannot be assessed. In addition, changes

in the target protein due to polymorphisms are likely to

influence TMDD and efficacy of mAbs [11]. However,

supportive data are extremely limited. A recent study

demonstrated a significant impact of IL-6 receptor single

nucleotide polymorphisms on tocilizumab efficacy [89].

Unfortunately, tocilizumab pharmacokinetic data were not

reported, and hence the importance of target polymor-

phisms on inter-subject variability in mAb pharmacoki-

netics cannot be assessed.

Data on the differences in target-mediated clearance of

therapeutic mAbs in paediatric patients compared with

adults are lacking [31]. In addition, differences in target

levels between sexes or ethnic groups and the impact on

mAb TMDD have not been widely studied. No difference

in sCD20 levels were observed between male and female

chronic lymphocytic leukaemia patients with various

stages of disease [81]. However, it is unknown whether this

may apply to other diseases.

Although target levels are highly variable [90, 91], this

may not always be the cause of high variability in mAb

pharmacokinetics. Mean serum tumour necrosis factor

(TNF)-a levels were 0.0034 ± 0.00018 versus

0.0011 ± 0.00006 pmol/L in early RA patients and age-

and sex-matched healthy donors, respectively [92]. Several

mAbs directed against TNF-a have been approved for

treating RA patients. At recommended therapeutic doses,

the mean steady-state trough concentrations for adali-

mumab ranged from *60 to 80 nmol/L [15], and from 3 to

5 nmol/L for golimumab [60]. Trough concentrations of

infliximab were more variable, with a reported range of

\0.1–80 nmol/L in 84 RA patients [77]. The trough con-

centration of adalimumab, golimumab and infliximab are

therefore in significant molar excess to TNF-a levels, and

hence the higher pharmacokinetic variability observed for

infliximab is not likely to be due solely to inter-patient

differences in target levels [79]. However, pre-treatment

TNF-a levels were significantly correlated with infliximab

serum trough concentrations in RA patients in another

study [91]. Due to the importance of target levels for mAb

clearance for certain indications, assessment of target

levels in the population of interest is recommended.

3.5 Immunogenicity

Antidrug antibody (ADA) formation is highly subject

dependent and is thought to be a major contributor to the

high inter-subject variability observed for mAb clearance

[99]. The patient’s immune status, genetic background,

underlying disease, previous exposure to mAbs and con-

comitant medication may influence the potential for ADA

production (Table 1). Reported ADA incidences can vary

substantially, even for the same product within the same

disease population. mAb trough concentrations as well as

efficacy are reported to be lower and clearance is higher in

Potential Sources of Inter-Subject Variability in MAb PKs 793



ADA-positive patients [18, 93–96]. It should be noted that

due to the current limitations in the bioanalytical methods

available for quantification of ADA it isdifficult to compare

ADA effects between different studies and mAbs [31, 97,

98].

The immune response to mAbs at any one time is likely

to be polyclonal, where multiple ADA species are pro-

duced, with variable concentrations, affinities and directed

against different epitopes on the mAb, eliciting different

responses [99]. These multiple ADA species may have

differing impacts on mAb pharmacokinetics and the net

effect of the combination of these different ADA species

will be observed [99]. Hence, differences in the production

of specific ADA species can contribute to inter-subject

variability for ADA-dependent mAb clearance. Not only

are ADA levels highly variable between subjects, they can

also be transient (occurring anytime during treatment and

disappearing again spontaneously), further adding to the

potential to contribute to mAb clearance variability [100,

101]. ‘Affinity maturation’ leads to production of ADA

with higher binding affinity over time and with repeated

drug administration, therefore increasing mAb clearance

over time [97] and potentially contributing to variability in

mAb pharmacokinetics between patients at different stages

of treatment.

Factors relating to the drug formulation (aggregates,

contaminants, etc.) and the structure of the mAb (e.g.

glycosylation) may also affect immunogenicity potential

and contribute to the variability in ADA-dependent clear-

ance of mAbs as evident from Table 1. Production pro-

cesses can influence the extent of glycosylation, impurities

and aggregation of mAbs, which in turn can lead to dif-

ferences in clearance by reticuloendothelial system and

ADA production [98, 102, 103]. Approximately 0.1 % of

patients suffer anaphylaxis when treated with omalizumab,

although the exact mechanism has not been elucidated.

Interestingly, the polysorbate excipient used in the for-

mulation has been linked to hypersensitivity reactions [104,

105]. In addition, formulations of mAbs are not pure and

instead contain multiple isomers of the TP (due to pro-

duction processes). Each isomer may have slight differ-

ences in its pharmacokinetics and ADA potential, and

hence administration of different formulations may add to

the observed inter-subject variability. Without proper

controls, variability due to these external factors may

appear to be inter-subject variability.

A patient’s disease status can influence the immune

response towards a specific mAb. Healthy subjects display

immune tolerance, where their immune system has devel-

oped the ability to ignore minor differences in proteins and

hence less immunogenicity would be anticipated. On the

other hand, patients with a missing gene may also lack the

immune tolerance towards that protein and would have

increased immunogenicity to the TP [98]. In patients with

certain diseases, the immune system is already activated or

suppressed and can influence the likelihood of ADA pro-

duction [99, 106]. Indeed, induction of post-treatment

ADA is more prevalent in disease populations, particularly

RA patients [107]. In contrast, cancer patients are less

likely than patients with other diseases to produce ADA

due to their immune systems being depressed by the dis-

ease or chemotherapy [108].

Pre-existing ADA, observed for several mAbs, have

been linked to differences in mAb pharmacokinetics, tox-

icity and efficacy [107]. However, induction of post-treat-

ment ADA is generally not linked to pre-existing ADA

[101]. Patients who had previously been treated with

infliximab and produced anti-infliximab antibodies were

more likely to also produce ADA again and have reduced

efficacy when treated with adalimumab, which suggests a

genetic predisposition for the immune response [108, 109].

However, due to the inconsistencies between reports, the

importance of pre-existing antibodies for mAb pharma-

cokinetic variability is not clear.

Compared to adults and older children, newborns have a

limited capacity to produce an immune response [32, 110].

Notably, higher ADA incidence was observed in children

than in adults (with the same or adult version of the

Table 1 Factors contributing to immunogenicity (adapted from Schellekens [98] and Ratanji et al. 104])

mAb Formulation Treatment Patient

Size Excipients Duration Genetic background

(immune tolerance)

Type of mAb (humanised or animal) Aggregation Dosing frequency Disease state

Target and biological activity Contaminants

and impurities

Dose route and site Infection

Protein sequence and structure Dose level Previous exposure

to mAbs

Protein modifications (e.g. glycosylation or oxidation

due to handling, storage and manufacturing)

Concomitant medications Age?

mAb monoclonal antibody
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disease) for adalimumab, abatacept and daclizumab, while

similar ADA incidences in children and adults were

reported for etanercept, infliximab and tocilizumab [31].

Inclusion of paediatric patient data may therefore increase

the inter-subject variability in clearance of certain mAbs.

However, differences in the design of adult and paediatric

studies and improvements in assay sensitivity prior to the

paediatric studies commencing may contribute to the

apparent increased abundance of ADA in paediatric

patients [31]. In addition, the lower mAb concentrations in

paediatric patients than in adult subjects is likely to cause

less assay interference with ADA detection [31]. The

limited availability of immunogenicity data for mAbs in

paediatric patients and issues with the current bioanalytical

methods for ADA detection prevents definitive assessment

of the impact of age on inter-subject variability in

immunogenicity-dependent mAb clearance.

3.6 Fcc Abundance

The expression of the Fcc receptors (FccRs) on various cell
types is heterogenous and the receptors display varied

affinity and specificity for different IgG isotypes [14, 111]. In

addition, genetic polymorphisms of the FccRs vary the

abundance and/or alter the affinity of FccR binding to IgG

(Table 2). Psoriasis patients with the low-affinity FccRIIIa
genotype (FccRIIIa-176F, also known as FccRIIIa-158F)
had a better response to anti-TNF therapy following

3 months of treatment. This may in part be due to lower

FccR-mediated mAb clearance in patients with the low-

affinity alleles, and hence higher mAb concentrations and

efficacy over time [112, 113]. The FccRIIIa-176F poly-

morphism reduces the affinity for IgG compared with the

wild-type gene (FccRIIIa-176V, also known as FccRIIIa-
158V) and hence mAb clearance may also be reduced.

Accordingly, a slower elimination rate was observed for

infliximab in patients with the low-affinity allele ([245 vs

160 h) [114, 115]. The impact of the FccRIIIa genotype on
the elimination of infliximab may be twofold: increased

affinity for FccRIIIa leads to increased elimination of

infliximab by the reticuloendothelial system and also an

increase in recruitment of cytotoxic cells by infliximab

bound to TNF-a-expressing cells, leading to increased cell

lysis and elimination of infliximab via TMDD [115]. Pres-

ence of high- or low-affinity FccR alleles may increase or

decrease the elimination of mAbs, respectively, and hence

contribute to inter-subject variability in mAb clearance.

Ethnic differences in the distribution of FccR polymor-

phisms have been reported (refer to Table 2) but the impact

on mAb pharmacokinetics is currently unknown [10, 111].

Therefore, inclusion of subjects from different ethnicities

may lead to inter-subject variability in FccR-dependentmAb

pharmacokinetics. Expression of FccRs may also vary with

age and sex. Abundance of inhibitory Fcc receptor FccRIIb-
positive B cells is similar in male and female RA patients

[116]. However, the expression of FccRIIb on these B cells

was significantly lower in women than in men with RA

(*40 %) [116]. Age-related changes in the populations of

mature immune cells expressing FccR have been shown in

early life [110]. In addition, expression of FccRIIb decreased
with increasing age in women but not in men [116]. Abun-

dance of FccRs also differs in disease. RA patients have

significantly lower numbers of B cells, with decreased

expression of inhibitory FccRIIb, than the healthy controls

[116]. In contrast, patients with juvenile idiopathic arthritis

have increased numbers of monocytes, with higher expres-

sion of activating FccRII and FccRIII, compared with age-

and sex-matched healthy controls [117]. Thermal injury and

injection of endotoxins has been shown to reduce the FccR-
mediated uptake of IgG-coated erythrocytes by Kuppfer

cells in the liver, both in vivo and in vitro [118]. Hepatic

impairment or injury may therefore lead to decreased

expression/functionality of FccR and consequently differ-

ences inmAb clearance [13]. Variability in expression levels

of FccRs in tumours, the liver and the general immune sys-

tem between individual patients with differing disease states

may influence mAb exposure and efficacy [119].

3.7 Disease

Renal impairment is not anticipated to influence mAb

clearance due to the high molecular weight of mAbs (un-

less renal impairment affects target levels) [120]; however,

other disease conditions may contribute to differences in

mAb pharmacokinetics. For example, population pharma-

cokinetic studies in patients with kidney [121] and liver

[122] transplants indicated that the basiliximab clearance

was faster in liver recipients. This may be due to the

additional route of basiliximab clearance through drained

ascites fluid in liver transplant patients [122, 123]. In

addition to the influence of disease on factors such as target

abundance, immune status and lymph flow, disease status

has also been shown to impact mAb pharmacokinetics in

other ways. Increased circulating thyroxine in experimental

animals is correlated with an increase in the catabolic

clearance of IgG; similarly, hypermetabolism due to fever

and infection has been associated with increased IgG cat-

abolism in man [26]. A decrease in mAb t� from

182.3 ± 28.2 to 59.4 ± 14.9 h, in combination with

increased endogenous IgG concentrations, has been

reported in mice with induced lupus, which is thought to be

due to an alteration in IgG-FcRn binding or in the FcRn

recycling mechanism [124]. In subjects with normal IgG

levels, inter-subject variability in endogenous IgG con-

centrations is not expected to have an impact on mAb

elimination as the doses of mAbs usually administered are
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too low to increase the total IgG concentration to a level

where its elimination is increased [14]. Endogenous IgG

concentrations are raised and highly variable in inflam-

matory conditions; however, even in such patients a

correlation between steady-state mAb clearance and the

serum IgG concentration was not found [14], again sug-

gesting that the impact of disease on mAb clearance may

not be due to saturation of FcRn protection.

Table 2 Human Fcc receptor polymorphisms (adapted from Rascu et al. [111] and Torkildsen et al. [182])

Receptor

class

Name Allelic variation Functional implications Allele frequency

FccRIa Belgian family

lacking FcyRIa

Termination codon instead of

arginine at position 92 in

first extracellular Ig-like

domain

Unknown

FccRIIa R-H 131

polymorphism

Arginine to histidine at

position 131 in second

(membrane proximal)

Ig-like domain

Reduced binding affinity to

human IgG1, IgG2 and

IgG3, mouse IgG1 and rat

IgG2b

R/R genotype: 23–32 % in Caucasian, 8 % in

Sami Norwegian, 6 % in Japanese, 6 % in

Chinese, 31 % in Asian Indian and 23 % in

African American populations. R/H genotype:

45–54 % in Caucasian, 45 % in Sami

Norwegian, 33 % in Japanese, 44 % in

Chinese, 56 % in Asian Indian and 50 % in

African American populations. H/H genotype:

21–29 % in Caucasian, 47 % in Sami

Norwegian, 61 % in Japanese, 50 % in

Chinese, 13 % in Asian Indian and 27 % in

African American populations

Glu/Trp-27

polymorphism

Glutamine to tryptophan at

position 27 in first

extracellular Ig-like domain

Unknown

FcyRIIb Tyrosine or aspartic acid at

position 11 in cytoplasmic

tail

Differences in receptor

internalisation and capping

characteristics

T232 Isoleucine to threonine at

position 232 in

transmembrane domain

T232 allele frequency: 1 % in Caucasian,

8–11 % in African and 5–7 % Southeast

Asian populations

FcyRIIIa 48L-H-R

polymorphism

Leucine, histidine or arginine

at position 48 in first

extracellular Ig-like domain

Differences in IgG binding

between FcyRIIIa allotypes

Differences in ADCC

capacity between high and

low FcyRILI-expressing

cells

176V/F

polymorphisma
Phenylalanine to valine at

position 158 in second

(membrane proximal)

Ig-like domain

Differential binding of human

IgGl and IgG3

V/V genotype: 14 % in Caucasian Norwegian

and 5 % in Sami Norwegian populations. V/F

genotype: 37 % in Caucasian Norwegian and

32 % in Sami Norwegian populations. F/F

genotype: 49 % in Caucasian Norwegian and

63 % in Sami Norwegian populations

FcyRIIIb IIIb-NAl-NA2 Amino acids at positions 65

and 82 create two extra

glycosylation sites in

IIIb-NA2

Differences in human IgGl

and NgG3 binding, and

phagocytosis between NAl

and NA2

NA1/NA1 genotype: 13–15 % in Caucasian,

27 % in Sami Norwegian and 42 % in

Japanese populations. NA1/NA2 genotype:

45 % in Caucasian, 26 % in Sami Norwegian

and 39 % in Japanese populations. NA2/NA2

genotype: 40–42 % in Caucasian, 46 % in

Sami Norwegian and 9 % in Japanese

populations

NF(?)

associated with

the IIIb-NA2

allele

Alanine or aspartic acid at

position 78

Unknown

ADCC antibody-dependent cellular cytotoxicity, FccR Fcc receptor, NA neutrophil antigen
a Also known as the 158V/F polymorphism
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Measures of disease activity in RA and ankylosing

spondylitis patients were correlated with mAb exposure

and efficacy [15, 125, 126], although similar findings were

not reported in all studies [14]. Target levels were not

measured in these studies. Although increased target levels

with disease severity may be the reason for the increased

clearance, other physiological and biochemical variations

associated with differences in disease status cannot be

ruled out. Physical performance and disease severity scores

(assessed using scoring systems such as the Karnofsky

Performance Scale, the Psoriasis Area and Severity Index

[PASI] and the Bath Ankylosing Spondylitis Disease

Activity Index) are commonly evaluated as covariates in

population pharmacokinetic studies of mAbs used in areas

of oncology and immunology [127–130].

In clinical trials, where the inclusion of subjects with

fever, underlying infections and disease status is tightly

controlled, variability due to these factors may not be

noticeable. For example, blood chemistry tests related to

hepatic and renal function were often evaluated as potential

covariates in the population pharmacokinetic analyses but

were rarely identified as relevant covariates. Interestingly,

population pharmacokinetic analysis of infliximab, per-

tuzumab and ustekinumab in patients found that albumin

was a negative predictor of clearance [131–133]. In addi-

tion to IgG, FcRn also binds and protects albumin from

intracellular catabolism, thereby playing an important role

in the homeostasis of both IgG and albumin [134, 135].

The binding site of albumin is distinct from that for IgG

and hence their binding is non-competitive [134, 135]. The

authors of the infliximab analysis suggested that a higher

albumin concentration could be an indicator of an

increased number of FcRns and a related reduction in the

infliximab t� [131]; however, several other factors may

also alter albumin levels.

In general medical use and larger phase III studies,

patient co-morbidities may vary widely and contribute to

the inter-subject variability in mAb pharmacokinetics. A

number of co-morbidities, including diabetes mellitus,

hypertension and hyperlipidaemia, were investigated as

covariates in a population pharmacokinetic analysis of

ustekinumab in psoriasis patients [133]. This study found

that patients with diabetes had 28.7 % faster clearance and

a 13.2 % larger Vss. The reason behind the effect of dia-

betes on the pharmacokinetics of ustekinumab is uncertain,

but the authors suggested that altered lymphatic flow and

particle transport, altered capillary permeability, increased

interstitial fluid volume and accelerated clearance of the

antibody resulting from increased glycation, could be

potential mechanisms [133]. The potential effect of cancer

type was investigated in a population pharmacokinetic

analysis of panitumumab in patients with various solid

tumours [38]. Patients with non-small-cell lung cancer or

other types of cancer had *13–14 % lower clearance than

patients with colorectal or renal cancer [136]. The reason

for the difference in clearance between the different types

of cancer is unclear.

Time or the duration of treatment may be related to the

target level if administration of a mAb results in down-

regulation of its target over time. A population pharma-

cokinetic/pharmacodynamic analysis in patients with

chronic B cell lymphocytic leukaemia found that alem-

tuzumab exhibited non-linear clearance attributable to

saturation of target-mediated clearance mechanisms [137].

The white blood cell (WBC) count was found to influence

the pharmacokinetics of alemtuzumab, and was a strong

positive predictor of the maximum capacity of the target

(Vmax). Alemtuzumab exhibited both time- and concentra-

tion-dependent clearance [137]. The WBC counts

decreased following repeated administration of alem-

tuzumab. This might be expected, as alemtuzumab targets

CD52, an antigen present on the cell surface of WBCs

(including lymphocytes and monocytes). Reduction of the

WBC count after alemtuzumab treatment leads to a cor-

responding reduction in CD52 density within the body and

hence a change in Vmax, a parameter associated with the

non-linear target-mediated clearance rather than linear

catabolic clearance.

3.8 Concomitant Medication

In general, variability in mAb concentrations due to other

concomitant medications is relatively low when compared

with small molecules, although concentrations of small

molecules may be influenced by mAbs by means of

reversing cytokine (i.e. IL-6)-mediated suppression of

cytochrome P450 (CYP) activities in inflammatory disease

conditions [138, 139]. For example, decreased exposure of

simvastatin and omeprazole by 57 and 28 %, respectively,

after co-administration with tocilizumab has been reported

in patients with RA [140]. Similarly, there was a decrease

in the area under the plasma concentration–time curve for

midazolam, omeprazole and S-warfarin by 30–35, 37–45

and 18–19 %, respectively, after sirukumab administration

in patients with RA [138]. The drug interactions mediated

by cytokines and the potential impact of other endogenous

substances on drug-metabolising enzymes have been

reviewed in depth [141–145] and hence are not in the scope

of this review.

Examples of clinically observed drug interactions where

the mAb is the victim have also been reported. Altered

clearance of mAbs may result from changes in the target

levels due to the concomitant medication, modulation of

FccR expression, altered immunogenicity by a mAb or

small molecule, and altered catabolic clearance [146, 147].

Some evidence exists suggesting an impact of
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immunosuppressive agents on mAb pharmacokinetics,

possibly due to an alteration in the target (expression or cell

number) and/or reduced immunogenicity. An apparent

decrease in mAb clearance was noted when methotrexate

was concomitantly administered with infliximab [148] and

adalimumab [15]. It should be noted that the patients

treated with concomitant methotrexate had a lower rate of

ADA development than patients on adalimumab

monotherapy (1 vs. 12 %). The higher incidence of adali-

mumab ADA resulted in higher clearance of adalimumab,

which was reduced during co-administration with

methotrexate, although a possible role of the FccR in this

interaction cannot be ruled out. It is worth noting that a

down-regulation of FccR by methotrexate is observed in

patients with RA, which may affect mAb clearance during

combination treatment [146–149]. Administration of

methotrexate in combination with infliximab has been

shown to markedly suppress the inflammatory disease

activity in RA patients and the combination therapy also

appears to promote immunologic tolerance to infliximab

therapy [148]. Similarly, a combination of azathioprine and

cyclosporine (ciclosporin) or mycophenolate and cyclos-

porine decreased the clearance of basiliximab by 22 and

51 %, respectively [122]. Drug interactions could be pos-

sible via altered expression of target levels by small

molecules, e.g. administration of paclitaxel in combination

with trastuzumab resulted in a 1.5-fold increase in trastu-

zumab serum concentrations [150]. This type of interaction

could be possible via both drugs competing for the same

target; however, the mechanism remains to be fully eluci-

dated. To date, there has been no evidence of any clinical

TP drug interactions via altered catabolic clearance path-

ways. This is a high capacity clearance pathway for mAbs

and is unlikely to be affected by small molecules.

There appears to be limited evidence of drug interac-

tions mediated by non-specific clearance mechanism for

mAbs in combination, e.g. there was no alteration in

pharmacokinetics when rituximab was combined with

bevacizumab [151]. In contrast, tumour uptake of trastu-

zumab was decreased with concomitant administration of

an anti-VEGF antibody. However, mechanistic studies

suggest that the observed changes in tumour uptake were

attributable to the reduction in both tumour blood flow and

vascular permeability to macromolecules [152] rather than

changes to non-specific clearance. Understanding many of

these pharmacokinetic drug interaction mechanisms is still

evolving and an in-depth understanding of the clearance

pathways involved in the disposition of victim drugs and

the pharmacological effects of perpetrator drugs in the

specific disease setting is needed to get more insight into

this emerging field. There have been some retrospective

attempts to quantitatively predict TP drug interactions

using in vitro–in vivo extrapolation-linked physiologically

based pharmacokinetic/pharmacodynamic modelling in

patients with RA, surgical trauma and leukaemia [90, 153].

In population pharmacokinetic studies, with the exception

of bevacizumab [17], concomitant medication was not

identified as a covariate for many mAbs [127, 128, 130,

154]. When bevacizumab was administered with the bolus

irinotecan/fluorouracil/leucovorin regimen, its clearance

was 17 % lower than when it was used concomitantly with

other chemotherapy regimens, but no different from when

it was used as monotherapy.

4 Key Demographic Factors Evaluated
in Population Pharmacokinetic Studies

4.1 Body Size

Since pharmacokinetic parameters such as clearance and

volume are often functions of body size [155], the mea-

sures of body size (i.e. body weight, body surface area)

could influence the pharmacokinetics of therapeutic mAbs

and lead to pharmacokinetic variability observed in many

population pharmacokinetic studies [156]. For example,

smaller subjects have lower linear clearance of mAbs than

larger individuals [13]. In addition, body size was reported

to be positively correlated with panitumumab Vmax, sug-

gesting that body weight can influence the non-linear tar-

get-mediated clearance as well as linear clearance [136]. In

larger subjects, the volume of plasma and interstitial fluid

will be greater than in smaller subjects, contributing to an

increased volume of distribution. Hence, body size is tested

as a covariate in the majority of population pharmacoki-

netic analyses performed for mAbs [11, 156] and it is

identified as a significant covariate more frequently [11,

156]. Body size-normalised dosing is often used to reduce

variability in pharmacokinetics and pharmacodynamics.

However, a population pharmacokinetic analysis compar-

ing pharmacokinetic variability following simulations

using fixed dosing or body size-normalised dosing in adults

for 12 mAbs found similar results for both dosing strategies

[157].

4.2 Sex

The effect of sex on the pharmacokinetic variability of

mAbs does not appear to be clinically significant in some

studies, e.g. sex had only a small influence on the phar-

macokinetics of ustekinumab and infliximab [128, 133,

158]. In contrast, in the population pharmacokinetic anal-

yses of bevacizumab and rituximab, the evaluation of sex

as a covariate showed that males had higher clearance and

volume of distribution (i.e. apparent volume of the central

compartment in a two-compartment model), ranging from
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17 to 39 % higher [17, 154]. In contrast, another larger

analysis with more than 2000 RA patients did not find an

effect of sex on rituximab pharmacokinetics [158]. Cur-

rently, no dose adjustments for sex are recommended [158,

159]. Differences in mAb pharmacokinetics between the

sexes may stem from multiple sources, including differ-

ences in lymphatic drainage, endocytosis, immunogenicity

and FccR-mediated clearance. However, the data relating

to these aspects are either very limited or currently

unavailable (see Sects. 3.1, 3.2, 3.5, 3.6) [13, 17, 18]. In

addition, target levels in specific diseases could differ

between the sexes, which would lead to variability in non-

linear clearance, although there is no direct evidence for

this to date (see Sect. 3.4).

4.3 Ethnicity

Although limited data are available, population pharma-

cokinetic studies using bevacizumab, cetuximab, per-

tuzumab, alemtuzumab and palavizumab suggest that

ethnicity does not influence the pharmacokinetics of the

studied mAbs. However, the number of non-Caucasian

subjects in these studies was small. Similarly to issues with

explaining differences in mAb pharmacokinetics between

the sexes, data for ethnic differences in lymphatic drainage,

endocytosis, immunogenicity and target-mediated clear-

ance are sparse (see Sects. 3.1, 3.2, 3.4, 3.5). Ethnic dif-

ferences in the distribution of FccR polymorphisms have

been reported, but the impact on mAb pharmacokinetics is

currently unknown [10, 111]. Any reported differences in

mAb clearance between ethnic groups [10] can generally

be explained by differences in body weight [13, 18], sug-

gesting ethnic differences in these clearance mechanisms

are minor. In the population pharmacokinetic analysis of

ustekinumab in psoriasis patients [133], volume of distri-

bution was found to be 11.1 % smaller in non-Caucasian

patients than in Caucasians after accounting for body

weight, but this effect was not clinically relevant.

4.4 Age

Age was found to have an opposite effect in population

pharmacokinetic studies of efalizumab and panitumumab

[46, 136]. Age was positively correlated with clearance in

the efalizumab analysis, but negatively correlated with

Vmax in the panitumumab analysis. However, these studies

did not include data from paediatric patients\18 years of

age. As discussed in Sects. 3.1 and 3.2, the lymph flow rate

and endocytosis rate may decrease in old age, leading to

reduced distribution and clearance in the elderly; however,

this was not found in the population pharmacokinetic

studies to date. Physiological changes in early life are more

pronounced due to the maturation of the immune system,

receptor abundance and changes in body composition (see

Sects. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6). Nonetheless, clearance

appears to be similar in paediatric patients and adults once

body weight has been accounted for [31].

5 Physiologically-Based Pharmacokinetic
Modelling of Variability in mAb Disposition

Several physiologically-based pharmacokinetic models

have been developed for describing mAb disposition in

man and experimental animals. Published models include

both whole-body [152, 160–171] and minimal or lumped

models [172–177], incorporating distribution via convec-

tion through endothelial pores with or without diffusion

and endosomal uptake with FcRn recycling. The com-

plexity of the models varies, with the tissue compartments

often being split into sub-compartments representing the

vascular, endothelial and interstitial spaces. In addition, the

impact of TMDD in the plasma and/or interstitial space of

target-containing tissues (i.e. tumours) has been incorpo-

rated into several of the models [152, 161, 162, 166, 167,

172, 176]. Mechanistic models to describe mAb absorption

following subcutaneous and intramuscular administration

have also been reported [38, 39, 178, 179].

Of the published models only two [152, 176] have

simulated mAb (and endogenous IgG) pharmacokinetics in

multiple individuals taking into account population vari-

ability in physiological parameters. Abuqayyas and Bal-

thasar [152] incorporated variability for the target

concentration (100–106 %), mAb–target complex elimi-

nation rate (28 %), binding affinity of mAb for target

(55 %) and the vascular reflection coefficient governing

convective distribution in the tumour (26 %). However, no

variability was included for body weight, tissue volumes

and flows, parameters describing mAb distribution into

normal tissues or linear clearance. Li et al. [176] set the

body weight, age, height, tissue volumes and flows using

population distribution and appropriate covariates [180,

181]. In addition, variability for mAb-/IgG-specific

parameters were assigned randomly using lognormal dis-

tribution, as covariates between these parameters are cur-

rently unknown. The IgG-specific parameters and their

assigned variability include endogenous IgG concentration

(12.6 %), binding affinity to FcRn (10 %) and clearance of

endogenous IgG not bound to FcRn from endosome (10 %)

[176]. To recover the observed variability in endogenous

IgG concentrations and t�, an imposed correlation was

required between a simulated individual’s baseline

endogenous IgG concentration and their FcRn abundance

[176]. For therapeutic mAbs, 20–30 % variability was also

assigned to the association and dissociation rates of the

mAb for its target, baseline target concentrations, the
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degradation rate of the targets and mAb-target complexes

[176]. The simulated values and variability for clearance

and t� for two mAbs were similar to the observed values

from clinical studies.

Although population variability for physiological

parameters has not been included in the other published

physiologically based pharmacokinetic models for mAbs,

many have explored the sensitivity of the predicted plasma

concentration profiles to various parameters. Such analysis

has shown that predicted plasma concentrations are sensi-

tive to the proportion of mAb that is recycled by FcRn,

vascular reflection coefficients for tissue distribution,

endosomal uptake rates, clearance rate of mAbs in the

lysosome, binding affinity to FcRn, lymph flows, target

concentration (and tumour volume for oncology targets)

and target–mAb binding affinity [160–163, 167]. This

would suggest that inter-subject variability in mAb phar-

macokinetics may stem from differences in target abun-

dance, endosomal endocytosis and transcytosis processes,

FcRn abundance and lymph flows. The simulated tmax

following subcutaneous administration was sensitive to the

rate of lymph flow from the dosing site; bioavailability was

also sensitive to mAb clearance during lymph transit from

the dosing site to the plasma [178]. These data imply that

differences in lymph flow and endogenous catabolic pro-

tein clearance in the lymphatics may contribute to inter-

subject variability in mAb subcutaneous absorption.

6 Conclusions

Inter-subject variability in mAb pharmacokinetics is gen-

erally moderate to high and often differs between clinical

studies. Many factors can potentially contribute to the

observed inter-subject variability, including, but not lim-

ited to, body size, age, sex, ethnicity, disease status,

immune status, co-morbidities, endogenous IgG, con-

comitant medication and genetic polymorphisms (e.g.

FcRn or FccR). In addition, differences in target antigen

concentration can be a major determinant of inter-subject

variability in mAb pharmacokinetics, in which increased

antigenic burden is associated with decreased mAb expo-

sure, particularly for mAbs that display non-linear phar-

macokinetics at therapeutic dose levels. For all mAbs, even

those without evident non-linear clearance, ADA concen-

trations may also have a large impact on inter- and intra-

subject pharmacokinetic variability. The complex interplay

of these factors and their clinical impact remains to be

elucidated. Use of population pharmacokinetics and phys-

iologically based pharmacokinetic models can aid under-

standing of the physiological and pathophysiological

processes which contribute to variability in exposure and

response to mAb treatment. Further studies are required to

increase understanding of certain patient characteristics

before they can be linked to patient variability in phar-

macokinetics; for example, the variability in FcRn abun-

dance in the population has not been determined to date.

Further understanding of the mechanisms causing vari-

ability will aid with accurate predictions of mAb pharma-

cokinetics during clinical development and for selecting

suitable doses for specific patients in the clinic.
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