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Abstract Type 2 diabetes mellitus (T2DM) is a chronic

metabolic disease, which affects millions of people

worldwide. The disease is characterized by chronically

elevated blood glucose concentrations (hyperglycaemia),

which result in comorbidities and multi-organ dysfunction.

This is due to a gradual loss of glycaemic control as a result

of increasing insulin resistance, as well as decreasing b-cell

function. The objective of T2DM drug interventions is,

therefore, to reduce fasting and postprandial blood glucose

concentrations to normal, healthy levels without hypogly-

caemia. Several classes of novel antihyperglycaemic drugs

with various mechanisms of action have been developed

over the past decades or are currently under clinical

development. The development of these drugs is routinely

supported by the application of pharmacokinetic/pharma-

codynamic modelling and simulation approaches. They

integrate information on the drug’s pharmacokinetics,

clinically relevant biomarker information and disease

progression into a single, unifying approach, which can be

used to inform clinical study design, dose selection and

drug labelling. The objective of this review is to provide a

comprehensive overview of the quantitative approaches

that have been reported since the 2008 review by Lander-

sdorfer and Jusko in an increasing order of complexity,

starting with glucose homeostasis models. Each of the

presented approaches is discussed with respect to its

strengths and limitations, and respective knowledge gaps

are highlighted as potential opportunities for future drug–

disease model development in the area of T2DM.
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Key Points

The dynamic interplay between biological system,

disease and drug effects, both beneficial and

harmful, is usually complex, and its assessment

requires the concerted use of experimental and

model-based analysis techniques. These

techniques can be used to evaluate the cause–

effect relationship at different levels of

organizational complexity and range from

observational and descriptive (pharmacometric) to

completely mechanistic (systems pharmacology)

approaches via the use of biomarkers.

Several quantitative modelling approaches have been

developed since the 2008 review in Clinical

Pharmacokinetics to assess the efficacy and safety

profiles of novel antihyperglycaemic drugs. These

models vary in their level of complexity, depending

on the stage of drug development. Prior scientific

knowledge, pathophysiological information and

disease-specific predictive biomarkers are used to

develop and qualify these models.

There is no one-size-fits-all model. All drug–disease

models should be fit for purpose, i.e. developed and

qualified to provide answers to the question(s) of

interest.

Tailoring drug–disease models to long-term

treatment outcomes and special populations, and

accounting for genetic and non-genetic covariates,

can further enhance their predictive performance for

quantitative decision making and personalized

medicine applications in therapy for type 2 diabetes

mellitus.

1 Introduction

The objective of pharmacokinetic/pharmacodynamic

modelling and simulation approaches is to characterize and

predict the effects of drugs in living organisms under

physiological and pathophysiological conditions [1–3].

Pharmacokinetic/pharmacodynamic approaches have

evolved in recent years from a descriptive, empirical dis-

cipline to a mechanistic science, which has increasingly

been employed in all phases of drug development as the

theoretical basis for (1) the selection of drug candidates;

(2) lead optimization; (3) the optimization of early proof-

of-concept clinical trials; (4) dose optimization; and

(5) optimization of clinical trial design [1, 4–6]. Respective

models can be established at different levels of spatial and

temporal complexity, ranging from observational and

descriptive (pharmacometric; drug-centric models) to

completely mechanistic approaches (systems pharmacol-

ogy; network-centric models) but should always be fit for

purpose, i.e. provide answers to the question(s) of interest.

They should also be developed with a well-characterized

knowledge of basic physiology and basic biochemistry in

order to sufficiently depict reality. As a consequence,

mechanism-based or physiology-directed (enhanced phar-

macokinetic/pharmacodynamic; pathway-centric) models

have been gaining popularity in recent years. They differ

substantially from descriptive models, as they contain

specific expressions that characterize—in a strictly quali-

tative and quantitative fashion—processes along the causal

pathway between drug administration and effect [2].

However, further advancement of the discipline is neces-

sary to better inform drug development and regulatory

decision making. The predictive performance of pharma-

cokinetic/pharmacodynamic models is reliant upon bio-

marker response analysis. A biomarker is defined as ‘‘a

characteristic that is objectively measured and evaluated as

an indicator of normal biologic processes, pathogenic

processes, or pharmacologic responses to a therapeutic

intervention’’ [7]. As a consequence, they can be used to

study the dynamics of a disease system, to compare the

effect of new and existing treatments, to develop new drug

candidates and to inform regulatory decision making.

Drug–disease models developed for diabetes mellitus use a

plethora of quantitatively predictive and clinically relevant

biomarkers. The respective biomarker panel is not limited to the

conventional biomarkers fasting glucose (FG), fasting serum

insulin (FSI) and glycosylated haemoglobin (HbA1c) as the

approvable endpoint; rather, it includes a whole variety of

pharmacodynamic measurements, which are used to assess

target engagement, glycaemic control, b-cell function and

insulin sensitivity, as well as the impact of disease progression

and different therapeutic interventions. The choice of bio-

marker depends on the specific research question, the drug’s

mechanism of action and the duration of the trial, as well as the

stage of the drug development program [8].

Landersdorfer and Jusko [9] summarized frequently

employed type 2 diabetes mellitus (T2DM) modelling and

simulation approaches in their review, published in 2008,

which encompassed models for diagnostic purposes, glu-

cose homeostasis models, ancillary biomarker models and

drug–disease models. The objective of our review is to

provide a comprehensive update on key drug–disease

models developed for T2DM, with a particular focus on

models published since 2008 (Table 1). To that end, we

first discuss models that characterize glucose homeostasis

at the glucose–insulin level before step-wise expanding the
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model scope using the underlying (patho)physiology. A

respective literature search was performed in PubMed and

primarily considered articles in the English language,

published after 2008. A list of the drug classes with their

proposed mechanisms of action and relevant biomarkers is

shown in Table 2.

2 Glucose Homeostasis Models

T2DM is characterized by chronically elevated glucose

concentrations (hyperglycaemia), which can result in the

dysfunction of multiple organs over time [10]. In healthy

subjects, the body maintains tight blood glucose control via

the complementary effects of two hormones, insulin and

glucagon, which interact via negative feedback loops [11,

12]. While an increase in insulin concentrations results in a

decrease in glucose concentrations, an increase in glucagon

concentrations results in an increase in glucose concen-

trations. Both hormones are produced in the pancreas:

glucagon in a cells and insulin in b cells [13]. As a con-

sequence, the functional activity of the pancreas plays a

critical role in glycaemic control.

de Winter et al. [14] published a semi-mechanistic

model to describe longitudinal changes in fasting plasma

glucose (FPG), FSI and HbA1c in T2DM patients, using

three turnover models: one each for FPG, FSI and HbA1c.

These biomarkers are not independent of each other but are

connected via feedback and feed-forward loops, i.e. (1) a

rise in glucose concentrations gives rise to insulin

Table 1 Summary table of type 2 diabetes mellitus (T2DM) models and their features

First author Year Model Feature

de Winter [14] 2006 Model for FSI, FPG and HbA1c relationship Estimation of disease status (remainder of insulin sensitivity

and b-cell function in patients) and rates of progression

Choy [15] 2013 Expansion of de Winter model (2006); three transit

compartments for HbA1c, separate turnover

compartment for body weight

Incorporation of body weight on insulin sensitivity and

disease progression

Lledo-Garcia

[17]

2013 IGRH Incorporation of change in haemoglobin glycosylation

dependent on RBC lifespan

Ribbing [19] 2010 Model for FPG, FSI, insulin sensitivity and pancreatic

BCM

Incorporation of BCM instead of b-cell function to describe

dynamics of insulin secretion over time

Naik [23] 2013 Model for GPR40 agonist Indirect response model to estimate drug effects on glucose

and HbA1c

Tess [25] 2011 Systems pharmacology model for GPR119 agonist Linked effects of incretins, insulin, glucose and glucagon to

evaluate GPR119 agonist drug effects

Schneck [27],

Zhang [28]

2012 Integrated GIG model for GKA Estimation of GKA drug effects on insulin secretion and

inhibition of HGP; used for clinical trial simulations

Lau [37] 2009 Model for GRA mAb Estimation of impacts of competitive inhibition of glucagon

receptor signalling on glucose and glucagon concentrations

Kjellsson [39] 2013 Linked IGRH and IGI models Repurposing of two separate models to prospectively predict

long-term treatment-related HbA1c response, using short-

term data

Chen [40] 2013 TMDD model for GLP-1 agonist Estimation of exenatide pharmacokinetics involving target-

mediation endocytosis

Chen [41] 2013 Preclinical-to-clinical allometric scaling of TMDD

model for GLP-1 agonist

Scale-up of exenatide pharmacokinetic model using body

weight-based allometric scaling following IV and SC

administration

Kim [43] 2013 Model for DPP-4 inhibitor Estimation of indirect DPP-4 inhibitor drug effect on GLP-1

concentration

Landersdorfer

[44]

2012 TMDD model to link GLP-1 effect on insulin Estimation of oral DPP-4 inhibitor drug effect on indirect

stimulation of insulin-dependent glucose utilization

de Winter [47] 2013 Model for SGLT2 inhibitor Linking of acute SGLT2 inhibitor drug effect on renal

glucose reabsorption to long-term glucose control (HbA1c)

Gao [50] 2012 Model for adverse drug effect Inclusion of weight gain with rosiglitazone therapy as a

separate turnover compartment wherein the drug inhibits

the weight loss process

BCM b-cell mass, DPP dipeptidyl peptidase, FPG fasting plasma glucose, FSI fasting serum insulin, GIG glucose–insulin–glucagon,

GKA glucokinase activator, GLP glucagon-like peptide, GPR G-protein-coupled receptor, GRA glucagon receptor antagonist, HbA1c glycosy-

lated haemoglobin, HGP hepatic glucose production, IGI integrated glucose–insulin, IGRH integrated glucose–RBC–HbA1c, IV intravenous,

mAb monoclonal antibody, RBC red blood cell, SC subcutaneous, SGLT sodium/glucose cotransporter, TMDD target-mediated drug disposition
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secretion; (2) a rise in insulin concentrations results in a

decrease in glucose concentrations; and (3) a sustained

increase in glucose concentrations results in an increase in

HbA1c concentrations. The model also accounted for dis-

ease progression through the use of two empirical mono-

tonic functions, each characterizing the decrease in b-cell

function and insulin sensitivity. In addition, the treatment

effect was incorporated as step functions (EFB = treatment

effect on b-cell function, EFS = treatment effect on insulin

sensitivity). While the model by de Winter et al. [14]

provides a physiology-directed framework for character-

izing changes in biomarkers from baseline as a function of

disease progression and three drug treatments (pioglita-

zone, metformin and gliclazide), it faces several limita-

tions. The main limitations are that (1) drug input was

estimated as a step function of time rather than via a dose–

concentration–response model, as different dose levels of

these drugs were used in clinical trials; (2) the monotonic

disease progression functions that were employed are

strictly empirical and may not accurately reflect the

dynamics of the underlying disease processes; (3) the first-

order elimination rate constant (kout) for FSI was set at 1,

which is unlikely to accurately reflect the biomarker’s half-

life and thus the system’s dynamics; and (4) the direct

linear relationship between fast biomarker FPG and slow

biomarker HbA1c is unlikely, since this relationship is

based on the glycosylation of haemoglobin to HbA1c which

is non-linear in nature. The model by de Winter et al. [14]

was consequently expanded by several investigators to

address these limitations by accounting for processes that

drive the dynamics of the biomarkers.

For example, Choy et al. [15] expanded the de Winter

model [14] by characterizing changes in HbA1c over time

through the use of three transit compartments, which

account for the delay in changes in HbA1c concentrations

from baseline relative to those in FPG concentrations.

Body weight is recognized to have an inverse relationship

with insulin sensitivity and thereby affects disease pro-

gression, which was accounted for by a separate turnover

model for body weight. The impact of diet and exercise

was characterized as an inhibitory effect on the generation

of body weight, and respective changes in body weight

were used as a predictor of EFS. Other investigators took

the glycosylation pattern of red blood cells (RBCs), i.e. the

mechanistic basis for HbA1c formation, into stronger con-

sideration. An earlier mechanistic model for the production

of HbA1c proportional to plasma glucose concentrations

was developed by Benincosa and Jusko [9, 16]. Later

publications added more detail, such as differences in RBC

aging. For example, Lledo-Garcia et al. [17] published an

integrated glucose–RBC–HbA1c (IGRH) model, which

quantitatively describes RBC aging. In addition, they

included reduction in RBC lifespan with increasing glucose

concentrations as an empirical power function in the

model. Information on glycosylation rate constants and the

mean RBC lifespan, as well as the mean lifespan of RBC

precursor cells, was obtained from the literature and used

as priors to compute respective average glucose (AG)

concentrations. The authors assumed for their analysis that

glycosylation is ongoing throughout the lifespan of RBCs

at a rate that is proportional to AG and non-glycosylated

haemoglobin concentrations. Their findings indicated that

HbA1c is formed faster in diabetic individuals than in

healthy subjects, which is due to higher AG concentrations

and thus a higher glycosylation rate in diabetics (Fig. 1).

The altered RBC dynamics between diabetic and healthy

individuals are reflected by the fact that the corresponding

mean age of RBCs was lower in patients (49 days) than in

healthy subjects (59 days). It should also be noted that this

inverse relationship between RBC lifespan and AG lacks a

Fig. 1 Fractions of a red blood

cell (RBC) cohort remaining in

circulation at different times

following their production and

the glycosylated haemoglobin

(HbA1c) formed, for a diabetic

(diab.) patient (average glucose

concentration 373 mg/dL) and a

non-diabetic (Non-diab.) subject

(average glucose concentration

85 mg/dL), based on simulation

from the final model. HbA1c

concentrations at steady state

(HbA1css) are also illustrated.

(Figure and legend modified

from Lledo-Garcia et al. [17])
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mechanistic basis and thus will face limitations with respect

to their predictive performance beyond the studied AG

range. The RBC lifespan model by Lledo-Garcia et al. [17] is

conceptually similar to the model developed by Hamren

et al. [18]. Both models differ in the number of transit

compartments used (Lledo-Garcia et al.: 12; Hamren et al.:

4) but concur in that the relationship between glucose (FPG,

AG) and HbA1c is nonlinear and that the fraction of glyco-

sylated RBCs increases as they become older. It should be

noted, though, that the number of transit compartments does

not correspond to the number of cells at different stages of

maturation. The transit compartments describe RBC aging

and represent different age stages; each compartment will

have a distribution of RBCs of different ages, which transi-

tion to the next one until the cell dies in the last compartment,

giving the number of compartments the shape of the distri-

bution of lifespans for an RBC cohort in an individual. At any

given age stage, the cell can become glycosylated, resulting

in a delay in cause and effect—in this case, between changes

in FPG and changes in HbA1c.

In addition to the RBC lifespan, these models can also be

expanded on the basis of mechanisms involved in disease

progression. While, for example, the de Winter model [14]

assumed a monotonic decline in both b-cell function and

insulin sensitivity, other investigators, such as Ribbing et al.

[19], used more mechanistic approaches to characterize

disease impact. In this example, Ribbing et al. incorporated

information on FPG, FSI, insulin sensitivity and clinical

measures of b-cell mass (BCM) into a unifying model to

characterize changes in these biomarkers at various stages of

disease. These interindividual differences in disease state

contribute, at least in part, to the substantial interindividual

variability in biomarker response to therapeutic interven-

tion(s). These interindividual differences were handled in the

Ribbing et al. model [19] by allowing for subpopulations of

non-diabetic, insulin-resistant and long-term-treated T2DM

patients. The impact of the disease state on b-cell adaptation,

i.e. the ability ofb cells to increase insulin output to maintain

glycaemic control, was implemented as an offset in b-cell

adaptation (OFFSET), which leads to a higher set point for

FPG in T2DM patients, as shown in the following equation:

dBCMit

dt
¼ �d0 þ R1 � FPG0

it � R2 � FPG02
it

� �
� BCMit

ð1Þ

FPG0
it ¼ FPGit � OFFSETit ð2Þ

where d0 is the glucose-independent rate of b-cell apoptosis;

R1 is the rate of change in b-cell replication as a function of

glucose concentrations; FPG0
it is the offset-corrected FPG

for the ith individual at time t; and R2 is the glucose toxicity

to b cells, i.e. the extent of b-cell dysfunction due to chronic

exposure to high glucose concentrations.

The relationship between insulin clearance and insulin

sensitivity (S) was incorporated according to:

kit ¼ kH � Sit

SH

� �RELk�S

ð3Þ

where Sit and kit are the insulin sensitivity and insulin

elimination rate constants, respectively, in the ith individ-

ual at time t; SH and kH are the values for the typical

healthy subject; and RELk–S is the nonlinear relation

between S and k.

The developed model was then applied to data on

tesaglitazar, a dual peroxisome proliferator–activated

receptor (PPAR)-a/c agonist, using clinical phase 2 and 3

data. Tesaglitazar increases insulin sensitivity in liver, fat

and skeletal muscle cells, as well as peripheral glucose

uptake, and decreases hepatic glucose output. The effect of

tesaglitazar was incorporated into the model as an indirect

stimulatory effect on insulin sensitivity and on b-cell

adaptation. Given that only FPG and fasting insulin (FI)

values were collected, it was assumed that (1) FPG and FI

were at steady state at the subject’s first visit; and that

(2) BCM and Sit were in equilibrium. The authors also

assumed that b-cell function per unit of BCM is the same in

T2DM patients and healthy individuals in the fasted state.

They also did not attempt to quantify disease progression,

because of the short duration of the study (6 months).

Another limitation of the model is the generalized

assumption that the only difference between T2DM

patients and normal subjects is an offset in b-cell adapta-

tion, lower insulin sensitivity and lower insulin clearance.

The employed hyperbolic function for BCM also indicates

that healthy subjects, who have glucose concentrations

below the physiological set point value, would experience a

decline in BCM, which is of limited physiological mean-

ingfulness. Nevertheless, the incorporation of b-cell

dynamics is an important aspect of the model to enhance

understanding of the interaction between the drug, disease

and biological system.

In the models presented so far, b-cell function or BCM

have been used as surrogates for disease progression.

However, the pancreas itself is also a target for therapeutic

interventions and/or drug effects. For example, G-protein-

coupled receptor (GPR) agonists engage the upstream

receptor present mainly on pancreatic b cells to increase

insulin secretion, whereas glucokinase activators (GKAs)

influence the glucokinase enzyme, which plays a role in

regulating glucose concentrations [20].

2.1 G-Protein-Coupled Receptor Agonists

GPRs are highly expressed on pancreatic b cells and have

been shown to play an important role in insulin secretion.
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There are a number of different GPRs, of which GPR40

and GPR119 have served as druggable targets.

GPR40 (free fatty acid receptor-1) downstream sig-

nalling by coupling to the Gaq/11 subunit of G-proteins

results in increased intracellular calcium concentrations

and phospholipase activation, which in turn results in

increased insulin secretion [21, 22]. TAK-875, a GPR40

agonist drug candidate, was developed as an adjunct to diet

and exercise to improve glycaemic control in T2DM

patients. Naik et al. [23] published a pharmacokinetic/

pharmacodynamic model for TAK-875 to guide dose

selection for clinical trials. The pharmacokinetic model

consisted of a two-compartment model with an oral

absorption compartment. Indirect response (IDR) models

were utilized for the turnover of glucose and HbA1c,

wherein the rate of HbA1c production was directly linked to

changes in glucose concentrations. Systemic drug con-

centrations were used to characterize pharmacodynamics,

using a maximum effect (Emax) model. The drug effect was

modelled as a stimulatory effect on glucose utilization.

Given that the drug primarily affects insulin secretion, an

expansion of the model in order to account for insulin

dynamics and food effects may have been worthwhile. The

model may also face limitations with predicting long-term

treatment effects, because it does not characterize the

underlying disease status and progression in terms of b-cell

deterioration or decreasing insulin sensitivity. Baseline

FPG (BFPG) and aspartate aminotransferase (AST) were

found to be influential covariates for the pharmacological

response. Emax was found to increase in an exponential

manner with observed BFPG but was directly proportional

to the AST concentrations. Subsequently, development of

this drug was voluntarily discontinued by the sponsor

because of hepatic safety concerns.

GPR119, a second G-protein-coupled b-cell receptor,

mediates glucose-dependent insulin secretion via increasing

intracellular cyclic adenosine monophosphate (cAMP)

concentrations. It also results in increased secretion of glu-

cagon-like peptide (GLP)-1 and gastric inhibitory peptide

(GIP) in the gut [24]. Thus there is an increasing interest in

developing therapeutic candidates that can take advantage of

the insulin-secretory property of GPR119. The pharmaco-

dynamic effect of a potential GPR119 agonist to induce

insulin secretion can be evaluated by using IDR models for

the various biomarkers involved in the process. In this

regard, Tess et al. [25] presented a systems pharmacology

model to describe the impact of modelling on GPR119

agonist drug development (Fig. 2). In the model, the effects

of incretins, insulin, glucose and glucagon were linked via

cascading turnover models with physiologically based

feedback loops. GPR119 agonist activity was modelled in

two parts: (1) stimulation of incretin, using a sigmoidal Emax

model; and (2) an agonistic effect, along with incretins, on

the production of insulin. The increase in insulin secretion

was subsequently linked to inhibition of gluconeogenesis

and glucagon secretion. This is a representative example of

how semi-mechanistic modelling approaches could be

extended to include ancillary/interim biomarkers, as well as

food effects, in the modelling strategy.

2.2 Glucokinase Activators

Glucokinase, a glucose-phosphorylating enzyme, is another

drug target of interest for developing antihyperglycaemic

medicines, because of its pronounced impact on glucose

homeostasis, which is the result of its glucose-sensing role

on b cells. Signals obtained from this sensor mediate

hepatic glucose clearance and glycogen synthesis. This

control mechanism seems to be impaired in T2DM [26],

which makes glucokinases an interesting drug target.

Schneck et al. [27] and Zhang et al. [28] extended a pre-

viously published integrated glucose–insulin (IGI) model

in order to characterize glucagon dynamics [29–31] and

applied a mechanism-based integrated glucose–insulin–

glucagon (GIG) model in order to prospectively select

optimal oral doses and dosing regimens for a small-mole-

cule GKA candidate (LY2599506) for phase 2 studies

based on phase 1 data. The GIG model incorporated the

feedback mechanisms between glucose, insulin and glu-

cagon, which were based on drug pharmacokinetics, glu-

cose, insulin, glucagon and meal data, obtained from

multiple-ascending-dose studies in T2DM patients for up to

26 days. The drug effect was modelled as a stimulating

effect on insulin secretion, as well as an inhibitory effect on

hepatic glucose production (HGP). In addition, predicted

glucose concentrations from the GIG model were used as a

feed-forward input in a previously published RBC lifespan

model [18] to predict HbA1c concentrations. The authors

performed clinical trial simulations to test the optimal

doses and dosing regimen to maximize the HbA1c-lowering

effect with minimal hypoglycaemia risk. Subsequently,

they confirmed the predictive performance of the model

with actual clinical trial data, which demonstrates the

predictive value of models that consider key hormones

(insulin and glucagon) responsible for glucose homeostasis

and hypoglycaemia.

2.3 Glucagon Receptor Antagonists

In addition to the processes described for b cells, pancre-

atic a cells play an important role in glucose homeostasis,

as they secrete glucagon. Glucagon-mediated effects

counterbalance insulin-mediated affects because they

stimulate HGP via glycogenolysis. As a consequence,

dysregulated glucagon secretion can lead to elevated HGP

and thus contribute to hyperglycaemia in T2DM patients
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[32–35]. As a consequence, inhibition of glucagon sig-

nalling can reduce HGP and thereby help re-establish

glycaemic control in diabetic patients [36]. Lau et al. [37]

reported that a monoclonal antibody (mAb) that blocked

the glucagon receptor had profound glucose-lowering

effects in various animal models. The effect of glucose

homeostasis mediated by the antibody was then studied in

diabetic mice. A pair of semi-mechanistic turnover models

was incorporated to describe the glucose–glucagon inter-

relationship. Glucagon stimulated the production of glu-

cose via glycogenolysis, whereas a subsequent increase in

glucose concentrations provided a negative feedback loop

to inhibit glucagon secretion by the pancreas. The

hypothesized inhibitory effect of the mAb on the glucagon

receptor signalling pathway via competitive inhibition was

included as inhibition of the glucagon stimulatory effect on

HGP. This model was able to describe the stimulation of

glucagon concentrations due to antagonism of the glucagon

receptor by the mAb. Increase in glucagon concentrations

with glucagon receptor antagonism (GRA), in spite of

glucose-lowering effects, have also been observed in

clinical trials, which is believed to be caused by blocking

the negative feedback loop for glucagon secretion [36]. The

dynamic and physiological interplay between insulin and

glucagon is a vital component for maintaining glucose

homeostasis. Even though the current model characterized

the glucagon effect on glucose concentrations, it could be

improved by also incorporating insulin effects on glucose

production and utilization, as discussed for the GIG model

in Sect. 3.2.

3 Models Characterizing Incretin Effects

In addition to the immediate effects of glucose, insulin and

glucagon, maintenance of glycaemic control is heavily

influenced by food intake, which triggers its own hormonal

response in anticipation of rising glucose concentrations

Fig. 2 Pfizer–Rosa

physiological model of diabetes.

The model represents the

physiology, pathophysiology

and pharmacology relevant to

G-protein-coupled receptor

(GPR) 119 agonism. The model

comprises multiple

interconnected modules, which

describe (1) glucose

distribution, storage and

utilization; (2) insulin secretion,

distribution and elimination;

(3) incretin secretion,

distribution and elimination;

(4) glucagon secretion,

distribution and elimination;

(5) nutrient absorption (e.g.

meals) and glucose

perturbations (e.g. oral glucose

tolerance testing); and

(6) pharmacokinetics and

pharmacodynamics of relevant

antidiabetic therapeutics (e.g.

sitagliptin, exenatide,

metformin and glyburide).

(Figure and legend modified

from Tess et al. [25])
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after food intake [38]. Incretins are gastrointestinal hor-

mones that are particularly important for this regulatory

process. They are released upon food intake and stimulate

pancreatic b cells, resulting in the release of insulin in

anticipation of rising glucose concentrations following

meals. The dynamic interplay between glucose, insulin and

incretins has been characterized by various investigators in

order to appropriately capture the impact of food on glu-

cose homeostasis. For example, Kjellsson et al. [39] com-

bined the previously published IGI model for meal

tolerance tests by Jauslin et al. [29] and the IGRH model

(described in Sect. 2). The IGI model comprises system-,

study- and drug-specific parameters, which provides the

flexibility of using the IGI model for different studies and

drugs. It characterized the dynamic interplay between

glucose and insulin over 24 h following an oral glucose

dose (input) considered equivalent to the carbohydrate

content per meal. The incretin effect was modelled as a

positive effect on insulin secretion. Circadian effects on

variations in glucose production, insulin secretion, insulin

sensitivity and insulin elimination were also taken into

consideration during model development. Output from the

IGI model (AG concentrations; Cg,av) was used as input for

the IGRH model. Parameters of the IGI model and drug

effects were estimated using phase 1 data on a GKA. AG

concentrations were simulated according to a phase 2 study

design and used in the IGRH model for prediction of

HbA1c concentrations. The performance of the approach

was assessed by comparing the model-based prediction

with the actual outcome of the phase 2 study. The mod-

elling approach was able to predict the longitudinal HbA1c

response in a 12-week study using only data from a 1-week

study where glucose and insulin concentrations were

measured. However, Kjellsson et al. [39] demonstrated the

predictive performance of a regulatively acceptable late-

stage endpoint (HbA1c), using the short-term biomarkers

glucose and insulin. Moreover, the dynamics of these three

biomarkers have different timescales. Use of previously

published models in combination with new data conse-

quently represents a useful approach for establishing mul-

tiscale link models that integrate different aspects of

glucose–insulin–HbA1c dynamics in order to evaluate

long(er)-term drug effects on the basis of short-term bio-

marker data. However, it is important to note that models

that use short-term (e.g. 12-week) data may face limitations

with predicting long-term (e.g. 52-week) changes in

HbA1c, as the impact of disease progression is not con-

sidered sufficiently. Insufficient information on and/or

consideration of the T2DM trajectory may consequently

result in an overly optimistic prediction of antiglycaemic

effects. It should also be noted that there are different

incretins, which serve both as feedback to the glucose–

insulin system and as therapeutic targets at the same time.

GLP-1 and GIP are two incretins that bind to specific

GPRs, leading to an increase in intracellular cAMP con-

centrations and subsequent release of insulin from pan-

creatic b cells [38].

3.1 Incretin Mimetics or Glucagon-Like Peptide-1

Agonists

Incretin mimetics, also referred to as GLP-1 agonists, are a

class of antihyperglycaemic drugs that mimic the effect of

incretins on insulin secretion. Exenatide is an example of a

subcutaneously administered GLP-1 agonist that is less

susceptible to degradation by dipeptidyl peptidase (DPP)-4

enzymes than endogenous incretins. It was found to have a

longer half-life, as well as enhanced potency, in compar-

ison with endogenous GLP-1. It was reported that exe-

natide does not exhibit linear kinetics in preclinical species,

seemingly because of secondary elimination pathways (e.g.

target-mediated endocytosis) in addition to glomerular fil-

tration, its main elimination route. The impact of this

nonlinear clearance pathway on the elimination of exe-

natide was modelled by Chen et al. [40], using a target-

mediated drug disposition (TMDD) model that was

informed by preclinical data. Corresponding changes in

glucose concentrations were described by a turnover

model, and following drug–receptor complex formation,

the drug effect was incorporated as stimulation of glucose

elimination (Fig. 3a). Once developed and qualified, the

preclinical model was used to predict human exenatide

pharmacokinetics by using a body weight-based allometric

scaling approach using three preclinical species (mouse, rat

and monkey) [41]. It was found that the absorption kinetics

following subcutaneous administration were not adequately

described using a single first-order rate constant. Therefore,

a Michaelis–Menten function using the maximum absorp-

tion rate (Vmax) and substrate amount of drug at the

absorption site when the reaction rate was half of Vmax

(Km) was used to characterize drug absorption. The scaled

preclinical model was able to predict human exenatide

pharmacokinetics following intravenous and subcutaneous

administration reasonably well. It should be noted that

while the majority of model parameters were similar and

shared across species, the receptor density and respective

binding affinities differed. It was observed that human

pharmacokinetics following intravenous administration

were best described by using all shared and monkey-

specific parameter values for receptor density and binding

affinity. However, human pharmacokinetic profiles fol-

lowing subcutaneous administration were best predicted by

using all of the shared and rat-specific Vmax and Km

parameter values. It would provide added insight if one

were to use the predicted human exenatide pharmacoki-

netic information from the TMDD interspecies scaling
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Fig. 3 a Pharmacokinetic–pharmacodynamic model used to charac-

terize exenatide after 2-week treatment in streptozotocin and nicoti-

namide–induced diabetic rats. r t0 RC � dt represents the area under the

drug–receptor complex concentration–time curve. fdisease(kout,t) repre-

sents the change in the elimination rate constant (Kout) over time as a

function of the disease state. (Figure and legend modified from Chen

et al. [40]). b Pharmacokinetic–pharmacodynamic model for sita-

gliptin. Dipeptidyl peptidase (DPP)-4 activity is inhibited by

sitagliptin. Glucose from a meal is absorbed using transit compart-

ments with a single transfer rate constant, Ktr. The zero-order rate

constant for the production of active glucagon-like peptide (GLP)-1

(Kin) is increased by glucose in the gastrointestinal tract (glucose in

the transit compartment), and the first-order rate constant for the loss

of active GLP-1 (Kout2) is decreased by DPP-4 inhibition. S(t) is the

stimulation function, using the amount of glucose in the transit

compartment, and l(t) is the inhibition function, using DPP-4

inhibition (Figure and legend modified from Kim et al. [43]). AT

amount of free drug in peripheral compartment, C concentration, CL/

F oral clearance, Ka absorption rate constant, Kdeg degradation rate

constant for free receptor, Kel elimination rate constant, Kint rate

constant of internalization for drug-receptor complex, Km Michaelis–

Menten constant, Koff first-order dissociation rate constant, Kon

second-order association rate constant, Kout1 first-order rate constant

for the loss of plasma active GLP-1 by the non-DDP-4 pathway, Kpt

first-order distribution rate constant from plasma (central compart-

ment) to peripheral compartment, Ksyn zero-order synthesis rate

constant, Ktp first-order distribution rate constant from peripheral

compartment to plasma (central compartment), Q/F intercompart-

mental oral clearance, R free receptor, RC drug-receptor complex,

S stimulation index of the drug-effect on glucose utilization,

SC subcutaneous, VC volume of drug distribution in the central

compartment, Vmax maximum absorption rate
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approach as the pharmacokinetic input for a clinical

pharmacodynamic model (e.g. Cirincione et al. [42]) to

subsequently determine the clinical pharmacodynamic

response. This would provide a seamless quantitative

workflow from the preclinical setting to the clinical setting.

Such a framework could also be employed for other drugs

that exhibit target-mediated disposition.

3.2 Dipeptidyl Peptidase-4 Inhibitors

DPP-4 is an endogenous enzyme that inactivates GLP-1

and GIP, reducing their insulin-secretory effects. DPP-4

inhibitors, also called ‘gliptins’, were developed as a class

of novel oral antihyperglycaemic drugs during the early

2000s. Sitagliptin is an example of a widely used oral DPP-

4 inhibitor. Kim et al. [43] developed a pharmacokinetic/

pharmacodynamic model for sitagliptin in healthy volun-

teers (Fig. 3b). The pharmacokinetics of sitagliptin were

characterized by a two-compartment model with first-order

oral drug input. Active GLP-1 concentrations were mod-

elled as a turnover compartment with two first-order

elimination rate constants, kout1 and kout2. The drug effect

was incorporated into the model as an inhibitory function

on kout2, using a sigmoidal Emax equation, whereas the

effect of food on GLP-1 was considered a stimulatory

function on GLP-1 production. It was noted by the authors

that active GLP-1 showed biphasic secretions, and because

of lack of appropriate biomarkers for the delayed secretion

of active GLP-1, the developed model for active GLP-1

could not capture the biphasic behaviour observed in the

data. Since the objective of DPP-4 inhibitor therapy is

indirect production of insulin, thereby lowering glucose

concentrations, it would have been worthwhile to expand

this model by linking it to the previously described glu-

cose–insulin–HbA1c model. Such a link between GLP-1

and food effects on insulin was previously described by

Landersdorfer et al. [44] in T2DM patients, wherein DPP-4

inhibition by oral vildagliptin was characterized by a

TMDD model [45, 46], whereas the GLP-1 effect was

modelled as stimulation of insulin-dependent utilization of

plasma glucose.

4 Sodium/Glucose Cotransporter 2 Inhibitors

Given that glucose is an essential source of energy, its

production, as well as its catalytic and unspecific clearance,

is tightly controlled in the body. In healthy individuals,

most of the glucose that is filtered via the kidneys is

selectively reabsorbed via high-capacity sodium/glucose

cotransporter (SGLT) 2, which is located in the proximal

tubule. As a consequence, very little glucose is eliminated

in the urine. However, if this transporter-mediated glucose

reuptake is inhibited, most of the filtered glucose is elim-

inated via the urine. As such, SGLT2 inhibitors have

gained popularity because of this potential benefit, not only

for newly diagnosed T2DM patients but also for treating

chronic diabetic patients who respond poorly to other

antihyperglycaemic drugs that are dependent on the insu-

lin-secretory capacity of b cells.

Canagliflozin was the first-in-class SGLT2 inhibitor to

be approved by the US Food and Drug Administration

(FDA) for the treatment of hyperglycaemia in patients with

T2DM. de Winter et al. [47] presented a population phar-

macokinetic/pharmacodynamic analysis of canagliflozin,

which links the direct acute effects of the drug on renal

glucose reabsorption to long-term glucose control (HbA1c),

using 12- to 26-week, phase 2/3 clinical trial data. The

steady-state change in HbA1c was modelled by using a

relationship between systemic exposure to the drug and the

observed reduction in HbA1c as a function of the primary

effect of drug exposure on the renal threshold of glucose

excretion (RTg):

DHbA1c;ss ¼ k � DRTg;max �
Css

Css þ EC50

þ DPBO ð4Þ

where DHbA1c,ss is the steady-state change in HbA1c (%);

DRTg,max is the maximal effect of canagliflozin on RTg;

k is the scaling parameter; EC50 is the drug concentration

producing a half-maximal reduction in RTg; and DPBO is

the placebo-effect on HbA1c, including the effects of diet

and exercise.

In addition, the authors characterized dynamic changes

in HbA1c by using a turnover model:

DHbA1c tð Þ
dt

¼ Ef þ Kin � Kout � HbA1cðtÞ ð5Þ

where Kin is the rate of haemoglobin glycation; Kout is the

rate of erythrocyte cell death; and Ef is the net combined

treatment effect affecting mean plasma glucose exposure,

and thereby haemoglobin glycation, expressed as:

Ef ¼ Kout � Efp þ Efc þ Efgð Þ

� HbA1c; individual baseline � 5

HbA1c; population baseline � 5
ð6Þ

Efc ¼ Emax �
Css

Css þ EC50

ð7Þ

where Efp is the effect of placebo, diet and exercise

counselling; Efc is the primary effect of canagliflozin on

RTg lowering; and Efg is the additional HbA1c-lowering

effect in the gut for a high dose (300 mg).

It was determined that in addition to its main pharma-

cological action of SGLT2 inhibition, canagliflozin may

also exert transient inhibition of intestinal SGLT1-medi-

ated postprandial absorption of glucose. This effect was

observed at canagliflozin doses of greater than 200 mg.
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Therefore, an additional HbA1c-lowering effect in the gut

was included (Efg) for a 300 mg dose compared with a

100 mg dose of canagliflozin. In this study, the authors

seem to have considered a baseline HbA1c value of 5 % as

representative of a healthy normal population. Accord-

ingly, Ef was proportional to the ratio of an individual

patient baseline HbA1c value to the patient population

baseline HbA1c value, both of which were considered as a

change from a healthy HbA1c baseline value of 5 %. This

reflected the impact of baseline hyperglycaemia on efficacy

commonly observed with diabetes treatments. In addition,

the estimated glomerular filtration rate was found to be a

significant covariate on the maximal renal effect of cana-

gliflozin, which indicates that the drug may have an altered

effect in patients with renal impairment. It is important to

note here that although Eq. 5 characterizes the change in

the HbA1c value, the formation of HbA1c was not depen-

dent on the concentrations of glucose and haemoglobin,

and thus lacked a mechanistic basis. In addition to cana-

gliflozin, several other SGLT2 inhibitors have been

approved or are currently under development (Table 1).

Published models for these drugs have evaluated other

important aspects, such as the impact of hepatic and renal

impairment on drug exposure [48]. However, there is a

discrepancy between model-predicted and observed glu-

cose reabsorption following administration of some SGLT2

inhibitors, which is possibly due to the presence of com-

pensatory mechanisms of glucose reabsorption upon

SGLT2 inhibition [49]. Thus it is important to integrate

such compensatory feedback mechanisms in conjunction

with other glucose reabsorption pathways in order to have a

mechanistic yet physiologically relevant model.

5 Challenges and Future Directions

Many therapeutic interventions are inadvertently associ-

ated with adverse drug effects (ADEs). An increase in body

weight is a typical example of an ADE in the T2DM arena.

Gao and Jusko [50] developed a semi-mechanistic phar-

macokinetic/pharmacodynamic model linking rosiglita-

zone systemic exposure to the homeostatic feedback

between glucose and insulin. The drug effect was modelled

as inhibition of glucose production, as well as enhancement

of insulin sensitivity, thus indirectly stimulating the uti-

lization of glucose. In addition, the model also included

weight gain (which is commonly observed for rosiglita-

zone) as a separate turnover compartment, wherein the

drug inhibits weight loss. Thus not only the desired ther-

apeutic effect but also the undesired ADE, i.e. weight gain,

were qualitatively and quantitatively characterized in this

analysis. This study also outlines the possibility of estab-

lishing a drug–disease platform model, which, once

established and qualified, can be used to characterize the

pharmacological effects of single or combination therapy

with drugs that have different mechanisms of action—such

as DPP-4 inhibitors, incretin mimetics, GPR40, GPR119,

GRAs, GKAs or SGLT2 inhibitors—by incorporating

interim and ancillary biomarker data related to disease

status and progression, as well as long-term treatment

effects. However, given that several antihyperglycaemic

drugs—such as DDP4 inhibitors, GLP-1 agonists and

SGLT2 inhibitors—have only recently been approved,

long-term and postmarketing safety data are frequently still

lacking for these drugs. For example, recent reports suggest

that the observed cardiovascular benefits of GLP-1 (an

indirect result of DDP4 inhibition), based on immediate

(short)-term data, may have been overly optimistic [51].

Scirica et al. [52] reported that even though DPP-4 inhi-

bition by saxagliptin did not alter the rate of ischaemic

events, the rate of hospitalization for heart failure was

increased, according to the large, international SAVOR-

TIMI 53 trial. More recently, a literature-based meta-

analysis of randomized clinical trials of DDP4-inhibitors

(the keywords for the literature search included ‘vilda-

gliptin’, ‘sitagliptin’, ‘saxagliptin’, ‘alogliptin’, ‘li-

nagliptin’ and ‘dutogliptin’) found that the overall risk of

acute heart failure was higher in patients treated with DPP-

4 inhibitors than in the placebo/active comparator arms

[53]. Moreover, the current preferred method of empirical

clinical research is hindered by the high development costs

and lengthy timeline required to bring a new medicine to

the market. Thus, there is a high unmet need to integrate

long-term clinical outcomes data into short(er)-term drug–

disease models in order to be able to predict desired and

undesired long-term treatment outcomes as early as pos-

sible in the drug development process. There are already a

number of promising approaches available—such as the

Archimedes� model [54] (http://archimedesmodel.com/),

the UKPDS model [55] (https://www.dtu.ox.ac.uk/

outcomesmodel/) and ECHO-T2DM [56]—that attempt to

meet this challenge by incorporating treatment-, trial-,

health- and pharmacoeconomic-outcomes data into an

overarching modeling and simulation framework.

Despite the progress made in the treatment of T2DM,

large interindividual differences in responses to therapeutic

interventions continue to pose a serious challenge for drug

developers, regulatory decision makers and practitioners.

While the sources of variability in the pharmacokinetics of

anti-hyperglycaemic drugs are typically well characterized

at the end of a drug development program, respective

sources of variability impacting the pharmacodynamics of

a drug, as well as the individual disease trajectory, are in

many cases less well understood. However, sufficient

understanding of these factors is critically important when

attempting to optimally treat a patient suffering from
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T2DM, because of the chronic, progressive nature of the

disease. In particular, a more detailed understanding of

interindividual pharmacogenetic differences between

patients and how they relate to differences in disease pro-

gression and treatment response is seen as an opportunity

to optimize T2DM therapy [57]. It also highlights the fact

that not all patients within a heterogeneous T2DM popu-

lation are likely to respond equally well to a given thera-

peutic intervention (responders versus non-responders),

which delineates the need for individualized single and

combination therapy.

This challenge seems to be amplified in special patient

populations, such as paediatric or geriatric populations,

where, for example, enzyme or transporter ontogenies or

comorbidities play a critical role. Regulatory agencies

around the globe have responded to this challenge by

updating their guidances. For example, the US FDA Safety

and Innovation Act (FDASIA) 2012 requires sponsors to

submit a paediatric drug development plan at the end of

phase 2 studies [58], whereas a Paediatric Investigation

Plan is required earlier in Europe at the end of phase 1

studies [59, 60]. The establishment of these paediatric

development plans is challenging in many cases because of

the lack of clinical data and the incomplete understanding

of the drug’s pharmacokinetics/pharmacodynamics in

children. Yet respective paediatric development pro-

grammes are likely to become more important in the

T2DM arena because of the emergence of childhood dia-

betes since the 1990s and the limited treatment options

[61]. Insulin and metformin are the only anti-hypergly-

caemic medications approved by both the FDA and the

European Medicines Agency (EMA) for use in children to

date, since glimepiride failed non-inferiority testing when

compared with metformin monotherapy [62]. This may be

in part due to the fact that paediatric dosing regimens are

frequently developed under the assumption that disease

progression and response to therapeutic interventions are

the same in adults and children. However, this may or may

not be universally true for T2DM drugs, and it outlines the

need for better understanding of the relevant pathophysi-

ological processes in adults and children. One way of

addressing this challenge is the use of physiologically

based modelling and simulation platforms—such as Sim-

CYP, GastroPlusTM, PKSim� or SimBiology�—which

integrate information on the underlying pathophysiology,

as well as genetic information on drug-metabolizing

enzymes, into a single, unifying approach. Once estab-

lished and qualified, these physiologically based models

can be used to evaluate clinically unstudied scenarios and

thus to ‘de-risk’ a drug molecule prior to it reaching the

bedside. In isolation, however, physiologically based

pharmacokinetic models are of limited meaningfulness and

need to be expanded to physiologically based

pharmacokinetic/pharmacodynamic models when attempts

are made to characterize and predict the impact of disease

progression and therapeutic interventions over an extended

period of time, particularly in special patient populations.

6 Conclusion

T2DM presents a huge socioeconomic burden and

adversely affects patients’ quality and duration of life. Any

improvement in alleviating this burden, and perhaps even

preventing the onset or delaying the progression of the

disease, would undoubtedly be highly beneficial for

patients and society. Given the complexity of the under-

lying physiological processes, a plethora of factors arise

that need to be considered when attempts are made to

optimally treat a patient. Simultaneous assessment of all of

these factors is difficult, if not impossible, to achieve in

head-to-head clinical trials, because of the required sample

size and cost. Mathematical and statistical modelling and

simulation approaches have been gaining popularity in the

last two decades for drug development and regulatory

decision making, because they allow for the integration of

in vitro, animal and clinical data into a single, unifying

model, which can be used to characterize and predict the

impact of disease progression and therapeutic interventions

on clinically relevant biomarkers.

Respective models can be established at various levels

of spatial and temporal complexity, ranging from obser-

vational and descriptive (pharmacometric; drug-centric) to

completely mechanistic (systems pharmacology; network-

centric) approaches. Both approaches have advantages and

limitations. Pharmacometric models are routinely

employed to characterize treatment effects (changes from

placebo/baseline), support dose selection and inform clin-

ical trial design. However, they face limitations with

respect to their ability to characterize complex, multilevel

(disease) processes and the impact of the patient’s disease

status on the treatment response. Systems pharmacology

models, on the other hand, are currently used to charac-

terize the pertinent pathophysiology (comprising the key

pathways or targets of interest), quantitatively integrate

relevant biology across systems and explore the impact of

(novel) therapeutic interventions on the system. They too

face limitations—for example, with respect to their ability

to identify and estimate respective model parameters from

clinical data—because of the inherent complexity of the

model. Quite frequently, systems pharmacology models are

not set up to predict long-term clinical outcomes, which

hinders their applications in late-stage drug development

and regulatory decision making. In addition, their param-

eter values are frequently derived from the literature or

from different experimental settings, which can result in
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high variability and thus increased uncertainty in systems

pharmacology models. These advantages and limitations of

pharmacometric and systems pharmacology models have

given rise to mechanism-based (enhanced pharmacoki-

netic/pharmacodynamic; pathway-centric) approaches,

which start out simple and become increasingly complex to

sufficiently characterize changes in clinically relevant

biomarkers as the result of disease progression and thera-

peutic interventions. Although these enhanced pharma-

cokinetic/pharmacodynamic models have improved

properties with respect to their ability to characterize the

dynamic interaction between the drug(s), the biological

system and the disease at multiple biomarker levels, they

too can face limitations with characterizing multiple

pathways that contribute to a clinical condition, as well as

capturing the heterogeneity of T2DM. As a consequence,

there is no one-size-fits-all model. All drug–disease models

should be fit for purpose and hence should be set up to

provide answers to the questions of interest, which

invariably are related to evaluating and establishing the

balance between efficacy and safety. Figure 4 illustrates a

paradigm wherein the uncertainty and variability

associated with a trial—for example, uncertainty and

variability in dose response, trial design and execution, and

data analysis—are taken into consideration to set decision

criteria and make informed decisions. Moreover, tailoring

drug–disease models to long-term treatment outcomes and

special populations, and accounting for genetic and non-

genetic covariates, can further enhance their predictive

performance for quantitative decision making and person-

alized medicine applications in T2DM therapy.
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