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Abstract

Introduction Monitoring of drug concentrations in

breathing gas is routinely being used to individualize drug

dosing for the inhalation anesthetics. For intravenous

anesthetics however, no decisive evidence in favor of

breath concentration monitoring has been presented up

until now. At the same time, questions remain with respect

to the performance of currently used plasma pharmacoki-

netic models implemented in target-controlled infusion

systems. In this study, we investigate whether breath

monitoring of propofol could improve the predictive per-

formance of currently applied, target-controlled infusion

models.

Methods Based on data from a healthy volunteer study,

we developed an addition to the current state-of-the-art

pharmacokinetic model for propofol, to accommodate

breath concentration measurements. The potential of using

this pharmacokinetic (PK) model in a Bayesian forecasting

setting was studied using a simulation study. Finally, by

introducing bispectral index monitor (BIS) measurements

and the accompanying BIS models into our PK model, we

investigated the relationship between BIS and predicted

breath concentrations.

Results and Discussion We show that the current state-of-

the-art pharmacokinetic model is easily extended to reli-

ably describe propofol kinetics in exhaled breath. Fur-

thermore, we show that the predictive performance of the a

priori model is improved by Bayesian adaptation based on

the measured breath concentrations, thereby allowing fur-

ther treatment individualization and a more stringent con-

trol on the targeted plasma concentrations during general

anesthesia. Finally, we demonstrated concordance between

currently advocated BIS models, relying on predicted

effect-site concentrations, and our new approach in which

BIS measurements are derived from predicted breath

concentrations.

Key Points

On-line measurements of exhaled propofol

concentrations improve the predictive performance

of the current state-of-the-art pharmacokinetic

model.

Individually predicted exhaled propofol

concentrations provide an easy target to

individualize anesthetic dosing regimens.

1 Introduction

In anesthesiology, pharmacokinetic (PK) modeling is used

extensively to develop target-controlled infusion (TCI)

systems. These systems use an established population PK
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model to estimate the required dosing regimen to be given

to an individual patient to achieve and maintain a prede-

fined target plasma (or effect-site) concentration. Although

its use is becoming standard of care for the administration

of intravenous anesthetics such as propofol, concerns

remain with respect to the accuracy of these systems.

Monitoring of drug concentrations in combination with

a Bayesian adaptation of the a priori model could poten-

tially address these concerns. Motamed et al. [1] and

Maitre et al. [2] showed in a retrospective study that for

rocuronium and alfentanil, respectively, Bayesian fore-

casting, based on timely plasma measurements, could

improve the predictive performance of intraoperative

plasma concentrations.

For propofol, clinical trials evaluating the predictive

performance of currently used TCI models are ongoing

[3, 4]. In addition to identifying the shortcomings of

currently implemented propofol PK models (i.e., Marsh

[5], Schnider [6], and/or Eleveld [7]), these studies could

distinguish whether a Bayesian forecasting based on

intermittent plasma sampling using conventional [3] or

bedside measurement systems [4] could improve the

predictive performance of current TCI systems. Recently,

as step-up to these iterative blood sampling strategies,

several groups focused on developing a measurement

system that could detect propofol in exhaled breathing gas

in real time.

Although not conventionally applied to intravenous

anesthetics, monitoring of drug concentrations in breathing

gas is not new. Moreover, it is routinely being used to

individualize drug dosing for the inhalation anesthetics

(isoflurane and sevoflurane) [8, 9]. One of the advantages

of following up on the exhaled drug concentration is that in

this way the arterial concentration, which is proportional to

the alveolar concentration, is controlled throughout the

anesthetic procedure.

Unlike other intravenous anesthetics, propofol has a

very high vapor pressure (3.1 9 10-3 mmHg at 25 �C).

Fentanyl, for example, another intravenous agent, has a

100,000-fold lower vapor pressure (5.5 9 10-8 mmHg at

25 �C). This physicochemical property allows propofol to

readily distribute from the arterial (capillary) blood into the

alveolar gas, thereby facilitating its possible detection in

breathing gas.

At the moment, research is ongoing to develop the

necessary detection systems as well as the accompanying

control systems/PK models necessary to implement online

breath analysis for propofol. Several groups [10–14], using

a variety of detection systems from ion mobility spec-

trometry (IMS) and ion molecule reaction mass spec-

trometry (IMR-MS) to electrochemical sensors, showed

that it is possible to detect propofol in breathing gas during

clinically relevant dosing regimens.

To date, to the best of our knowledge, three groups

explored the possibility of applying compartmental mod-

eling to describe propofol breath kinetics. Kreuer et al. [14]

and Ziaian et al. [10] described propofol breath kinetics in

human volunteers (n = 1 and 17, respectively) using a

compartmental pharmacokinetic model and a ‘PT1 model’,

respectively. The latter is also known as a ‘low-pass filter’

and is frequently used in acoustics engineering.

Varadarajan et al. [11] used a compartmental modeling

approach to describe propofol breath kinetics in pigs. In

these studies, propofol breath concentrations were mea-

sured using IMR-MS [11], IMS [14], and an electro-

chemical sensor [10], respectively.

To integrate the breath concentration measurements

with the plasma PK of propofol, two of these authors

(Varadarajan et al. [11] and Kreuer et al. [14]) used pre-

dicted propofol plasma concentrations (Marsh model [5]),

whereas Ziaian et al. [10] used post hoc estimates of the

Marsh model [5], tailored to measure propofol plasma

concentrations, to serve as inputs for their breath models.

None of the papers explored population PK modeling as a

tool to simultaneously describe propofol plasma and breath

kinetics, nor did these authors investigate the potential

clinical utility of monitoring propofol breath concentra-

tions to predict plasma PK.

Therefore, using data from a healthy volunteer study, we

set out to (i) develop an extension, to the current state-of-

the-art propofol plasma PK model, capable of describing

the exhalation kinetics of propofol and (ii) evaluate

Bayesian forecasting based on measured propofol breath

concentrations as a potential tool to improve the predictive

performance of intraoperative propofol plasma concentra-

tions. Furthermore, the usefulness of predicted breath

concentrations as a predictor for the cerebral effects of

propofol, as measured by the bispectral index monitor

(BIS), was explored by comparing against frequently used

BIS models.

2 Methods

2.1 Study Design

The study was approved by the institutional review board

and was carried out in concordance with the International

Conference on Harmonisation Guidelines for Good Clini-

cal Practice (NCT01191021). After written informed con-

sent, 20 healthy volunteers (American Society of

Anesthesiologists status I, age[18 years) underwent gen-

eral anesthesia with propofol (Diprivan� 1 %, London,

UK). The volunteers received 0.4 mg kg-1 min-1 propofol

via a venous catheter for 10 min followed by a 20-min

recovery period. Afterwards, administration was resumed
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using a TCI, based on Schnider et al. [6]. The TCI protocol

consisted of four target plasma concentrations (2, 3, 4, and

5 lg mL-1), which were maintained for 15 min each.

Ninety minutes after the start of the experiment the infu-

sion was stopped and the study subjects were left to recover

from anesthesia.

2.2 Propofol Measurements in Plasma (Cplasma)

Arterial blood samples were centrifuged immediately after

drawing. Blood plasma was then separated and frozen at

-20 �C temperature. The plasma samples were analyzed

within 8 weeks after the experiments using an in-house-

developed method. Propofol plasma concentrations were

determined with a liquid-chromatography tandem mass

spectrometry assay. The lower limit of detection and

quantification of the method were 60 and 100 ng mL-1,

respectively.

2.3 Propofol Breath Measurements (Cbreath)

Breathing gas was sampled at 50 mL/min through a

T-piece attached to the laryngeal mask of the study par-

ticipants. An IMR-MS (V&F Medical Development

GmbH, Absam, Austria) [15] was used to measure propofol

in the sampled gas within 500 ms. To distinguish between

inspiratory and expiratory air, a second mass spectrometry

system based on electron impact-determined carbon diox-

ide concentrations 10 times/s was used. Expiratory propo-

fol data were extracted as the median expiratory breath

signal of 30-s intervals from the recorded breath data as

described previously [15].

2.4 Determination of Propofol Cerebral Drug Effect

(BIS)

The effect of propofol on the brain was determined with the

BIS (BIS Vista system, Covidien, Boulder, CO, USA). The

BIS transforms the electroencephalogram into a dimen-

sionless index ranging from 100 (fully awake individual) to

0 (deep anesthesia with isoelectric EEG activity). BIS

smoothing time was set to 10 s and BIS values were

recorded every second.

2.5 Available Data

The final dataset included a median of 22 (range 19–23)

arterial plasma propofol concentrations, 208 (range

118–272) propofol breath concentrations, and 300 (range

220–379) BIS measurements per subject. An overview of

the characteristics of the healthy volunteers in our study is

given in Table 1.

To reduce the computational burden during model

development, we reduced the number of propofol breath

and BIS measurements per subject. At the same time, we

applied a median filter (span equal to 5 s) to reduce the

influence of outlying data during model development. In

summary: the first out of every 10 consecutive median-

filtered datapoints were retained in the dataset, resulting in

a median of 22 and 30 measurements for the breath and

BIS data, respectively.

For the prospective evaluation of the applicability of the

Bayesian forecasting approach, all of the available breath

concentration measurements were used.

2.6 Model Building of the PK Model to Describe

Propofol Breath Kinetics

We used the first-order conditional estimation algorithm

with interaction as implemented in NONMEM� (version

7.3; Icon Development Solutions, Hanover, MD, USA) to

fit different breath models to our dataset. As a starting point

for our model building, we used the individual PK

parameters (IPP) approach [16]. For this approach, indi-

vidual post-hoc PK parameters (CL, Q2, Q3, V1, V2, and V3)

were derived from the Eleveld [7] model and were fixed for

each individual during the subsequent evaluation of dif-

ferent breath models.

Our choice for the Eleveld model as an a priori model,

rather than developing a PK model specific for this study

population or using another published propofol PK model,

was based on the model’s documented general applicability

and superior predictive performance in a wide variety of

patient populations [7], making it, at the moment, state of

the art.

Model building started with a structural model similar to

the model proposed by Ziaian et al. [10]. This model was

implemented using an effect compartment (ke0Lung) and a

scale parameter (K). The former was used to correct for the

reported hysteresis between propofol plasma and breath

concentrations, whereas the latter was used to accommo-

date a.o., the unit conversion from lg/mL for the plasma

measurements to parts per billion (ppb) for the measured

breath concentrations.

Table 1 Characteristics of the study population. All included

patients had American Society of Anesthesiologists status I

Characteristic Mean (range)

Age (years) 27 (22.8–33.3)

Weight (kg) 74.1 (63.8–83.0)

Height (cm) 168.0 (162.2–178.5)

Sex (n, male/female) 9/11
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Different modifications to this structural model were

compared using the Akaike Information Criterion (AIC).

Furthermore, as a safeguard to over-parameterization, cross-

validation was performed to compare the goodness-of-fit

(GOF) of the different breath models. Once population

parameter estimates were obtained by fitting the breath

models to the training cohort, the GOF of the post-hoc esti-

mates of these model were evaluated in the validation cohorts.

This process was repeated four-fold, each time allocating �
and � of the dataset to the validation and training cohort,

respectively. Care was taken such that each subject in the

dataset was allocated to a validation cohort once.

GOF, in terms of propofol breath concentrations in the

validation cohort, was evaluated graphically in R� (R

Foundation for Statistical Computing, Vienna, Austria) and

numerically using the median prediction error (MdPE) and

the root mean square error (RMSE).

2.7 Application of Bayesian Forecasting to Predict

Intraoperative Propofol Plasma Concentrations

To evaluate the clinical utility of the final model (i.e., the

potential to improve the predictive performance of the a priori

model), we conducted a simulation study. In this study, similar

to the cross-validation described earlier, the final model was

first fit to the training set. At this stage, the population PK

parameters & data approach [16], which is known to produce

less biased parameter estimates as compared with the IPP

approach (at the expense of computing time), was used. In

other words, during the estimation process the population

parameters from the Eleveld model were fixed whilst allowing

the parameters from the breath model to be estimated.

Next, using the parameter estimates for the breath model

from the training set, the predictive performance was evalu-

ated in a validation cohort in which the Cplasma were removed

(i.e., the model was blinded for the measured propofol plasma

concentrations to mimic the clinical situation where these

concentrations are generally unknown). To study the change

in predictive performance over time, this process was repeated

for several datasets, differing from each other in the number of

breath measurements that were used to predict propofol

plasma concentrations (32 datasets in total, containing 1 min

up until 100 min of breath concentration measurements).

Predictive performance, during the propofol infusion regi-

mens (i.e., the intraoperative timeframe), summarized in

terms of MdPE and RMSE, was calculated by contrasting

Cplasma with the predicted propofol concentrations.

2.8 PKPD Model for the Cerebral Effects

of Propofol

As a final evaluation towards the usefulness of continuous

monitoring of propofol breath concentrations, we explored

to what extent these breath concentrations could be used to

explain/predict the cerebral effects of propofol. To this end,

as a reference PKPD model, a simplified version of the

model proposed by Bjornsson et al. [17] was added to our

final model. The simplification consisted of using a single-

rather than a double-effect compartment to model the

hysteresis between Cplasma and BIS measurements. In line

with the model proposed by Bjornsson et al., the predicted

effect side concentration (Ce) was used as a predictor in a

sigmoid Emax model to describe changes in BIS (Eq. 1):

BIS ¼ BLBIS � Emax �
Cc
e

EC
c
50 þ C

c
e

ð1Þ

To evaluate the correlation between the individually

predicted breath concentrations (IPREDbreath) and the BIS

measurements, we fitted an additional model in which the

IPREDbreath from our final model were used in the sigmoid

Emax model (Eq. 1) instead of the Ce (this model required 1

parameter less, i.e., the ke0BIS associated with the Ce).

3 Results

3.1 Model Building

As a starting point, we decided to model propofol breath

kinetics using a structural model similar to the model

proposed by Ziaian et al. [10]. Subsequently, several

modifications to this structural model were explored

(Fig. 1). Addition of a parameter describing inter-individ-

ual-variability (IIV) on K significantly improved the

model’s GOF (DAIC: -246.0).

Furthermore, to correct for a significant time-varying bias

in the residual plots, four different modifications were

explored. Model 4 assumed that K changes over time, an effect

that could be expected from propofol effects on the ventila-

tion-perfusion status of a patient. Initially, we implemented

this using an indirect response model, linking the propofol

blood concentrations to the stimulation/inhibition of a latent

variable which, in turn, drives a change in K (an approach

similar to the latent variable approach in Troconiz et al. [18]).

Nevertheless, based on the data, this was reduced to a simple

linear time-dependent change in K over time.

Model 5 explored the possibility of a baseline drift in the

measurement system owing to for example, a gradual built-

up of propofol, a compound that is known to have a high

affinity for plastics because of its high lipophilicity [19].

Model 6 explored the possibility of a time-varying ke0Lung.

This is in line with Bjornsson et al. [17], who showed that

propofol plasma kinetics were time dependent. Finally,

model 7 evaluated whether a non-linear detector response

could be at the origin of this time-dependent bias in the

residuals.
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All four tested models significantly improved the mod-

el’s GOF, leading to a decrease in AIC of 245.0, 163.0,

66.3, and 46.7, respectively. However, as shown in Fig. 2,

only model 4 successfully removed the residual bias across

the entire observation period. Finally, to model 4, another

random-effect parameter was added to allow IIV on the

time dependency of K (denoted by a ‘slope’ parameter),

thereby further lowering the MdPE and RMSE to 0.2 %

and 2.1 ppb, respectively. The GOF for the final model

(i.e., model 8 in Fig. 1) is shown in Fig. 3, parameter

estimates are given in Table 2.

3.2 Application of Bayesian Forecasting to Predict

Intraoperative Propofol Plasma Concentrations

Figure 4 shows the Cplasma (for which the model was

blinded) and the first 30 min of measured propofol breath

concentrations for a representative individual from our

study. From this figure, it stands out that for this individual

the predicted plasma concentrations from the a priori

model (solid line) are somewhat biased, thereby underes-

timating the Cplasma. After 30 min, we used the measured

Cbreath up until that point to produce the post hoc predic-

tions from our final model (dashed lines). When comparing

the predicted plasma concentrations against the Cplasma for

both approaches, it stands out that, for this individual, the

post hoc predicted plasma concentrations from our final

model are in closer resemblance to the Cplasma then the a

priori predictions, thereby emphasizing the validity of our

proposed approach.

Next, to fully explore the potential of this approach, this

process was repeated using different time-frames of breath

concentrations to predict the intraoperative propofol

plasma concentrations, i.e., concentrations up until the last

propofol infusion was stopped. Figure 5 shows the change

in predictive performance when including increasing

amounts of breath concentrations.

From this figure, it is seen that the overall MdPE in the

study population (red line in Fig. 5) decreases from

42.8 %, when no breath concentrations are used (i.e., the a

priori MdPE), to an MdPE of -1.05 % when more than

35 min of breath concentrations are used. This indicates

that, on a population level, our approach succeeds in

reducing the apparent bias that is present in the a priori

model. On an individual level, for 11/20 of the volunteers

in our study, the initial bias is reduced (mean reduction

31.5 %, range 1.3–78.4 %) and for the nine subjects the

bias slightly increases (mean increase 11.8 %, range

2.9–31.0).

When looking at the RMSE (bottom panel of Fig. 5), a

performance metric related to the precision of the predic-

tions, we see that on a population level it reduces from

1.63 lg/mL, for the a priori predictions, to 1.39 lg/mL,

when using the full time course of the Cbreath to predict the

intraoperative propofol plasma concentrations. On an

individual level, the subjects whose bias was reduced

Fig. 1 Model building

hierarchy
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benefit from an average decrease in RMSE of 0.8 lg/mL

(range 0.1–1.3), whereas the other nine subjects show an

average increase in RMSE of 0.6 lg/mL (range 0.1–2.3).

3.3 Predicted Breath Concentrations vs Ce

as a Predictor for Propofol Cerebral Drug

Effects

To study whether IPREDbreath could be a useful surrogate

to the traditional predicted propofol effect-site concentra-

tions (Ce), as implemented in the model proposed by

Bjornsson et al. [17], we compared two different PKPD

models for the BIS measurements (a graphical presentation

of both models is given in Fig. 6).

As seen from Table 2, judging from the similar residual

error standard deviations (0.47 and 0.45 for Ce and

IPREDbreath model, respectively), both models describe the

change in BIS measurements to a similar degree. Further-

more, from the concordance between all other estimated

parameters (except for EC50, which has different dimen-

sions in both models) and the similarity in AIC (4401 and

4379, for Ce and IPREDbreath model, respectively), it seems

that both the Ce and IPREDbreath from our final model

could be used interchangeably to predict/describe the

effects of propofol on the BIS index.

4 Discussion

Using data from a healthy volunteer study, we set out to

develop an extension, to the current state-of-the-art propofol

plasma PK model [7], capable of describing the exhalation

kinetics of propofol. The final parameter estimates for ke0Lung

and K (0.152 min-1 and 3.56 ppb mL lg-1, respectively),

respectively, describing the hysteresis and the proportional

difference between Cplasma and Cbreath, are very similar to the

work of Ziaian et al. [10] who reported a median ke0Lung (in

the paper referred to as kL10) of 0.155 min-1 and medianK of

2.71 ppb mL lg-1.

Although the clinical conditions (i.e., the propofol

infusion regimen) were fairly similar in their study, it

inspires confidence that Ziaian et al. [10] reported similar

parameter estimates based on the detection of propofol

breath concentrations using a chemical sensor rather than

Fig. 2 A plot of the

conditionally weighted residuals

(CWRES) vs time for the

different models evaluated to

correct for the observed time-

dependent model

misspecification. Only model 4,

which consists of a linearly

increasing K over time, is able

to completely reduce the

residual time-dependent bias
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IMR-MS. On the contrary, Kreuer et al. [14] reported

different parameter estimates. Although their estimated

ke0Lung (referred to as k1L in the publication) is slightly

similar to ours (0.209 min-1), their estimate for K is very

different (K was calculated from their publication as kL1/

k1L and was 0.66 ppb mL lg-1). The latter difference is in

line with the differences in measured propofol breath

concentrations between their study (maximum in between

0.6 and 0.8 ppb) and ours (maximum equals 53 ppb).

Although we cannot provide a clear explanation for this

discrepancy, it seems that causes other than the propofol

dosing regimen (at their 3 lg/mL TCI target, propofol

breath concentrations are[10 ppb in our study), such as

intrinsic issues with the IMS detection system, the systems

used for calibration, or the fact that they only studied a

single subject rather than a population, might explain the

difference in the parameter estimates.

An important part of our model building was devoted

to the exploration of potential mechanisms that could give

rise to a time-dependent model misspecification. Models 5

and 7 showed that correcting for intrinsic detector-related

issues, such as drift (model 5) and detector non-linearity,

were not sufficient to remove the apparent bias. Further-

more, a correction for the potential time-dependent

kinetics of propofol, an approach earlier proposed by

Bjornsson et al. [17], only slightly improved the model’s

GOF without completely reducing the model misspecifi-

cation. Model 4, which incorporates a linearly increasing

K over time, was the only model that could completely

remove the observed time-dependent bias in the residual

plots.

In our opinion, there are several possible mechanisms

that could explain this time dependency. First, an instru-

ment-related issue causing the sensitivity of the detector to

increase over time, might explain this phenomenon. Sec-

ond, the time-dependent bias might originate from the

propagation of a model misspecification in the plasma PK

part of the model, i.e., the Eleveld model. Indeed, when we

look at the conditionally weighted residuals for the Eleveld

post-hoc plasma concentration predictions for our subjects,

a qualitatively similar pattern is observed (figure not

shown). However, when we fit a custom three-compart-

mental PK model combined with our proposed breath

model to the data, the CWRES plot for the plasma

Fig. 3 Goodness-of-fit plot of

the final model (model 8).

Parameter estimates, obtained

using the individual

pharmacokinetic parameters

approach, as described in the

Sect. 2, are given in Table 2.

The top-left panel shows the

apparent bias in the a priori

model, which is passed on to the

population predictions for the

breath concentrations (CBreath)

of the final model. The bottom

panels show the absolute

individually weighted residuals

(iWRES) vs individual

predictions and the

conditionally weighted residuals

(CWRES) vs time
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concentrations normalize but the time-dependent bias for

the breath concentrations remains.

Finally, complex underlying physiological phenomena,

such as e.g., venous-arterial mixing, which have been

hypothesized in the past to play a role during the first few

minutes of propofol dosing [20, 21] and which are currently

not addressed in our compartmental PK models might cause

this time dependency. Physiologically based PK models,

which have been used extensively in the past to describe

exhalation kinetics of environmental pollutants [22, 23] or

organic solvents [24, 25] and have been applied in the con-

text of propofol PK [26–28], might address these hurdles in

the future. Although these models provide superior insights

into the physiology behind pharmacokinetic processes in

comparison to compartmental PK models, their level of

complexity often hinders the clinical implementation.

One of our objectives was to evaluate whether a Baye-

sian forecasting based on measured propofol breath

concentrations could improve the predictive performance

of intraoperative plasma concentrations. Figures 4 and 5

clearly show that our proposed approach outperforms the

most recent state-of-the-art model available for propofol.

Although not all subjects benefit equally from our proposed

approach, we showed that the magnitude of the improve-

ments in MdPE and RMSE in the subjects who improved

quantitatively outweigh the negative corrections for those

who do not benefit from this approach. Overall, on a

population level, the bias (MdPE decreased from 42.8 to -

1.05 %) as well as the prediction error (RMSE decreased

from 1.63 to 1.39 lg/mL, i.e., a 15 % reduction) decreased

significantly, demonstrating the clinical usefulness of our

proposed approach.

Judging from Fig. 5, no significant improvements are

attained beyond 30 min. This effect is most likely

explained by the propofol dosing regimen used through-

out this study. The initial fast infusion, resulting in a

Table 2 Final parameter estimates and associated standard errors for

our final model (model 8), which was obtained using an individual

pharmacokinetic parameters approach (IPP) approach where breath

concentrations were modeled, keeping the plasma pharmacokinetic

parameters fixed to the post-hoc estimates of the a priori model.

Furthermore, parameter estimates are shown for two models evalu-

ating the cerebral effects of propofol as a function of a modeled

plasma effect-side concentration (Ce) and predicted breath concen-

trations (IPREDbreath), respectively

Parameter Model 8 BIS–f(Ce) BIS–f(IPREDbreath)

Cplasma (IPP) and Cbreath Cplasma (IPP) and Cbreath & BIS Cplasma (IPP) and Cbreath & BIS

Estimate RSE (%) Estimate RSE (%) Estimate RSE (%)

Ke0Lung (min-1) 0.152 5.7 0.152 5.7 0.146 9.0

Ke0BIS (min-1) 0.107 12.3

K (ppb mL lg-1) 3.56 6.7 3.56 6.7 3.81 9.0

Slope [ppb mL (lg min) -1] 0.022 8.8 0.022 8.8 0.017 20.7

BLBIS 94.3 1.0 95.0 1.0

Emax 80.9 7.3 77.6 5.6

EC50 2.71 lg/mL 11.0 12.4 ppb 8.2

c 2.43 20.0 2.49 18.6

IIV_K (%)a 23.7 37.6 23.7 37.6 25.8 37.4

IIV_Slope (%)a 40.9 38.2 40.9 38.2 50.8 50.0

IIV_E0
d 0.716 30.0 0.656 29.1

IIV_EC50 (%)a 28.7 37.1 25.9 42.5

rPlasma, proportional (%)c 21.6 21.6 21.6

rBreath, proportional (%)c 11.7 11.7 10.3

rBreath, additive (ppb)b 0.982 0.982 1.40

rBIS, additive
b 0.47 0.45

ke0Lung rate constant for the lung effect compartment, ke0BIS rate constant for the BIS effect compartment, K scaling parameter for the lung

compartment, Slope time dependency on K, BLBIS typical value for the BIS at baseline, IIV inter-individual variability, IIV_E0 inter-individual

variability in baseline BIS, r standard deviation of residual unexplained variability, RSE relative standard error, BIS bispectral index monitor

a CV(%) is calculated according to:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ex � 1
p

� 100 %
b Residual unexplained variability expressed as a standard deviation
c Residual unexplained variability expressed as a relative standard deviation
d IIV expressed as a variance in logit domain
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Fig. 4 Individual plot of a

representative individual

showing the measured plasma

concentrations (Cplasma) [gray

diamonds] and model

predictions for the a priori

model (solid line) and the post-

hoc prediction of our final

model (dashed line). The

Bayesian adaptation of the a

priori model was implemented

30 min into the treatment, using

the first 30 min of breath

concentration measurements

only. Of note, during this

process the model was blinded

for the Cplasma. To give the

reader an impression of the

dosing regimen used throughout

this study, we used gray-shaded

areas to show periods when no

drug was infused

Fig. 5 The change in predictive

performance of our proposed

approach as a function of the

time frame in which breath

concentrations are monitored

(as indicated in the x-axis). The

median prediction error (MdPE)

and root mean square error

(RMSE) for the different

individuals in our study are

shown with a gray solid line.

The solid red lines depict the

overall change in predictive

performance in our study

population
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well-defined breath concentration peak, appears to be

sufficiently informative to individualize the a priori

model predictions. Therefore, a different clinical setting,

in which this first informative phase is absent, might

require a prolonged collection of breath concentrations to

achieve the maximum improvement in predictive

performance.

At this point, we would like to acknowledge that the

current study might overestimate the potential of our pro-

posed approach. Although we used a cross-validation

approach to build our model as well as to conduct our

simulation study, some of the components, such as the

linear time-correction in K, might be study specific and

might not extrapolate well to other studies. A thorough

validation of this approach under different clinical regi-

mens (i.e., different dosing, shorter/longer procedures) as

well as in different patient populations (as opposed to the

healthy volunteers in this study) should inform on the

general applicability of this approach.

Finally, we wanted to validate the utility of predicted

propofol breath concentrations by investigating the corre-

lation with a measure of propofol pharmacodynamics, i.e.,

BIS, frequently used in the clinic. By comparing two

PKPD models, one relating BIS to IPREDbreath and one,

more classical approach where BIS is linked to a Ce (both

approaches shown in Fig. 6 and in Table 2), we showed

that predicted propofol breath concentrations could serve

as a surrogate to the predicted effect-site concentrations,

which are frequently used in the clinic to predict the

cerebral effects of propofol. In this respect, the EC50 of

12.4 ppb might provide an alternative measurable target to

the established hypothetical effect compartment EC50 of

2.71 lg/mL.

5 Conclusions

In this work, we showed that the current state-of-the-art,

propofol plasma PK model is easily extended to allow

prediction of exhaled propofol concentrations. Further-

more, for the first time, we showed that monitoring of

propofol breath concentrations could significantly improve

the predictive performance of intraoperative propofol

concentrations, thereby allowing further treatment indi-

vidualization and a more stringent control on the targeted

plasma concentrations during general anesthesia.

Finally, using two different versions of a PKPD model,

we showed that the predicted breath concentrations are a

suitable alternative to the currently used predicted effect-

site concentrations to describe/predict the cerebral effects

of propofol.
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