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Abstract Drug targets in the central nervous system

(CNS) are numerous and important for drug therapy, e.g.,

of epilepsy or pain. Drugs and other xenobiotics as well as

nutrients cannot freely cross the blood–brain barrier or

freely enter cells across plasma membranes and therefore

require transport systems. This overview summarizes the

current knowledge on the expression of drug transporters in

barriers shielding the CNS from the systemic circulation

and as such controlling the pharmacokinetics of drugs in

the CNS. The main drug transporter families covered are

SLCO, SCL22A, ABCB, and ABCC, as genes of these

families code for numerous drug transporters. While

knowledge on messenger RNA expression in humans, rats,

and mice is remarkable, there is clearly a gap in knowledge

on the subcellular expression of transporters in specific

cells in the CNS and in the barriers shielding the CNS from

the systemic circulation. Recent methodologic develop-

ments including synthesis of drugs and endogenous sub-

stances for imaging will in the future allow the

investigation of the function and physiologic role of

transporters in the CNS including difficult-to-access sys-

tems such as the choroid plexus.

Key Points

The penetration of drugs into the central nervous

system is very limited.

Transport proteins expressed at barriers between the

central nervous system and the systemic circulation

are gate keepers for drugs.

Knowledge on protein expression levels and

localization of transporters is lagging behind

knowledge on messenger RNA expression of

transporters.

Novel imaging methodologies are rapidly

progressing and hold the promise to visualize

individual transporter function in vivo.

1 Introduction

All organs in the mammalian body are connected via the

blood circulatory system, which provides both the supply

of vital nutrients and disposes waste products. In most

instances, drugs also reach their target via the circulatory

system regardless of the route of application. Organs are

separated from the circulatory system by barriers, which

may be leaky such as in the liver or very tight such as in the

brain. The brain is separated from the blood by the blood–

brain barrier (BBB) and from the cerebrospinal fluid (CSF)

by the choroid plexus (CP) [1, 2]. In addition, the brain also

communicates with body extracellular fluids via the

arachnoid epithelium [3], but its pathway only has a minor

contribution to the exchange and is not the subject of this

overview. To cross barriers, which ultimately are always
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plasma membranes, transport systems are needed [4, 5].

Moreover, a tissue-specific expression of transporters

allows the body to accumulate substances, such as drugs in

an organ-specific manner [1, 4]. The tightness of the BBB

severely limits the access of drugs to the brain and presents

a major challenge in the development of drugs with targets

in the central nervous system (CNS) [6–8]. Therefore, the

aim of this review is to summarize the current knowledge

on the expression of drug transporters in the BBB and in

the CP. As the retina is also part of the CNS, we also

address transporters in the blood–retina barrier (BRB).

Furthermore, we highlight the role of the transporters

encountered by drugs and other substances once they have

crossed the barriers surrounding the tissues of the CNS.

2 Drug Transporters

Solutes, like drugs need transporters to enter or exit cells.

Generally, transporters mediating the cellular uptake of

drugs belong to the superfamily of solute carriers (SLC).

The efflux of drugs (or their metabolites) frequently occurs

against a concentration gradient and is often mediated by

members of the adenosine triphosphate (ATP)-binding

cassette (ABC) transporters. Numerous reviews have been

published on both superfamilies of transporters. The SLC

superfamily represents currently 52 families and 395 genes

for individual transporters and has been covered recently in

a special issue [9]. Human ABC transporter genes number

to 48 members and are divided into seven families [10], but

not all of them act as transporters [11]. It is beyond the

scope and space of this review to describe the individual

drug transporter families. This overview focuses on mem-

bers of the SLCO and SLC22A gene families, which are

well known to mediate, in addition to endogenous sub-

strates, the transport of drugs. Among the ABC protein

families, multidrug resistance protein 1 (MDR1) (ABCB1),

ABCG2 (also called breast cancer resistance protein or

BCRP, ABCG2), and members of the ABCC family are

known to be important drug and drug metabolite trans-

porters and are therefore covered here.

Human drug transporters being members of the SLC

superfamily and expressed in cerebral blood–tissue barriers

are listed together with rodent transporters in Tables 1, 2,

3, 4 and 5. Rodent species are included as they are used as

preclinical species in drug development and because they

allow in vivo experiments not possible in humans for

investigating the role of transporters in drug transport in the

CNS. In these tables, a selection of references (we apolo-

gize for omissions) was made and data on transport sys-

tems obtained from microperfusion experiments as well as

from work with microcapillary endothelial cell lines are not

included. Microperfusion experiments are most valuable

for the elucidation of the in vivo situation for drug access to

brain tissue but face the difficulty that many drug trans-

porters have an overlapping substrate specificity [12–14].

Brain capillary endothelial cell lines and very likely also

other established cell lines display altered transporter

expression levels in comparison to their in vivo counter-

parts [15, 16]. It should be realized that there are often

conflicting data in the literature. Good examples are the

members of the ABCC family, about which conflicting data

on the expression in the BBB currently exist [17]. This may

relate to the fact that for animals, within a species, different

strains show different transporter expression. For example,

in mice, mouse multidrug resistance-associated protein 2

(MRP2) could be detected in the BBB of C57BL/6, Swiss,

and SvJ mice, but not FVB mice, while the liver and kidney

showed positive staining in all strains [18]. Similarly, the

expression levels of the mouse monocarboxylate trans-

porter MCT1 in the BBB of C57BL/6J mice were signifi-

cantly lower than in ddY or FVB mice, while the

expression of mBCRP was significantly higher in C57BL/

6J mice compared with ddY or FVB mice when analyzed

by quantitative targeted proteomics [19]. In human studies,

tissue procurement and storage prior to analysis as well as

sampling biases will considerably contribute to variable

data sets. For protein expression, preference to data

obtained from proteomic approaches where available was

given over data obtained by western blotting. Transporter

expression in blood–neural tissue barriers has additionally

been covered in many overviews [17, 20–31].

3 Blood–Brain Barrier

To provide a stable environment for the CNS, the BBB

needs to be able to tightly control the access of substances

to the brain. To this end, the endothelial cells lining the

walls of the brain capillaries form together with tight

junctions an impervious barrier [2]. Brain access of sub-

stances (e.g., nutrients such as D-glucose) is consequently

controlled by transport proteins specifically expressed in

the luminal and/or abluminal membrane of brain capillary

endothelial cells [2]. Nutrients are transported into the

brain by influx systems such as amino acids by members of

the SLC1A family [32]. Many of these transporters are

equilibrative, i.e., they cannot work against concentration

gradients. Extrusion of substances from the brain occurs at

the luminal membrane and is mediated by ABC trans-

porters such as MDR1 [33]. ABC transporters use energy

provided from ATP hydrolysis and can therefore establish

steep concentration gradients. While SLC transporters

expressed in plasma membranes are often uptake trans-

porters, some members act as exchangers of solutes and

consequently may mediate efflux of a substrate in exchange
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Table 1 Expression of SLC transporters at the blood–brain barrier

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

OATP1A2 SLCO1A2 Brain [108, 109] Brain [110] Brain capillary endothelial cells

[110]

OATP1C1 SLCO1C1 Brain [53] Brain capillary endothelial cells

[52]

OATP2B1 SLCO2B1 Brain microcapillaries [32] Brain microcapillaries [111] Brain capillary endothelial cells

[49]

Rat

rOATP1A4 rSlco1a4 Brain [112], brain microcapillaries [113] Brain [114] Brain capillary endothelial cells:

luminal and abluminal [114]

rOATP1C1 rSlco1c1 Brain microcapillaries [115] Brain microcapillaires [116] Brain capillary endothelial cells:

luminal and abluminal [52, 117]

rOATP2B1 rSlco2b1 Brain [118], brain microcapillaries [113] Brain capillary endothelial cells:

abluminal [113]

Mouse

mOATP1A1 mSlco1a1 Brain microcapillaries [119]

mOATP1A4 mSlco1a4 Brain microcapillaries [119, 120] Brain microcapillaries [87, 116,

121–125]

Brain capillary endothelial cells:

luminal and abluminal [87]

mOATP1A5 mSlco1a5 Brain microcapillaries [119] Brain capillary endothelial cells

[119]

mOATP1A6 mSlco1a6 Brain microcapillaries [119]

mOATP1C1 mSlco1c1 Brain microcapillaries [120, 126, 127] Brain microcapillaries [121,

123–125]

Brain capillary endothelial cells

[52]

mOATP2B1 mSlco2b1 Brain microcapillaries [120]

Human

OCT1 SLC22A1 Brain [128] Cultured brain microvessel

endothelial cells: luminal

[129]

Cultured brain microvessel

endothelial cells: luminal [129]

OCT2 SLC22A2 Brain [130] Cultured brain microvessel

endothelial cells: luminal

[129]

Cultured brain microvessel

endothelial cells: luminal [129]

OCT3 SLC22A3 Brain microcapillaries [32, 126] Brain microcapillaries [131] Brain capillary endothelial cells

[131]

OCTN2 SLC22A5 Brain microcapillaris [32], cultured brain

microvessel endothelial cells [132]

Rat

rOCT1 rSlc22a1 Brain [133] Cultured brain microvessel

endothelial cells: luminal

[129]

Cultured brain microvessel

endothelial cells: luminal [129]

rOCT2 rSlc22a2 Brain [133] Cultured brain microvessel

endothelial cells: luminal

[129]

Cultured brain microvessel

endothelial cells: luminal [129]

Mouse

mOCT1 mSlc22a1 Cultured brain microvessel

endothelial cells: luminal [129]

mOCT2 mSlc22a2 Brain [134] Cultured brain microvessel

endothelial cells: luminal [129]

mOCT3 mSlc22a3 Brain microcapillaries [126]

mOCTN2 mSlc22a5 Brain microcapillaries [126]

Rat

rOAT2 rSlc22a7 Brain microcapillaries [135]

rOAT3 rSlc22a8 Brain microcapillaries [136] Brain microcapillaries [123,

125, 135, 137]

Brain microcapillaries: luminal and

abluminal [138]
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for uptake of another substance [9]. Consequently, the

direction of solute transport by such transporters has to be

determined experimentally, ideally in situ in the organ of

interest.

Drug transporters being members of the SLC super-

family and expressed in the BBB are listed in Table 1.

Specifically, the protein expression of several SLC super-

family members involved in drug transport (four organic

anion transporting polypeptides (OATPs) (SLCO), two

organic cation transporters (OCTs) (SLC22A), one organic

cation transporter novel type (OCTN) (SLC22A), one

concentrative nucleoside transporter (CNT) (SLC28A), and

two equilibrative nucleoside transporters (ENTs) (SLC29A)

has been reported for the human BBB (Table 1). SLC

family members are either facilitating uptake transporters

or secondary active transporters capable of working against

concentration gradients [9]. Consequently, drug transport-

ers expressed in the luminal membrane of the BBB are

potential entry sites for drugs or toxins into the BBB. In the

case of non-polar expression (i.e., in the luminal and in the

abluminal membrane of the BBB), these transporters may

allow their substrates to cross the endothelial cells of the

BBB and enter into the brain. The number of substrates

including drugs for SLC family members known currently

is overwhelming and listing them is beyond the scope of

this overview. Lists of substrates can be found in the fol-

lowing (as well as many additional) reviews: for OATPs

[13, 34, 35]; for OATs [36–38]; for OCTs [37, 39]; for

CNTs [40, 41]; for ENTs [41, 42], and for MATEs [43, 44].

Several examples demonstrate indirectly and directly the

pharmacologic and toxicologic role of SLC transporters in

the BBB of humans. Drugs used for the treatment of pain

often need to enter the CNS [45]. Triptans are drugs used to

treat migraine. It was recently demonstrated that several

triptans are substrates of OATP1A2 expressed in the BBB

(Table 1) [46]. Hence, it is reasonable that hydrophilic

triptans may use OATP1A2 to cross the BBB. The relative

transport rate of OATP1A2-mediated transport decreases

from triptans with tertiary amines to triptans with primary

amines in heterologous expression systems [46]. While the

transport of drugs across the BBB is considered to be

beneficial this is not the case for toxins. This is exemplified

by an incidence in Brazil, where 126 patients of a he-

modialysis unit experienced a microcystin intoxication and

60 patients subsequently died [47]. The patients developed

acute neurotoxicity and subacute hepatotoxicity. Express-

ing OATP1A2 in Xenopus laevis oocytes demonstrated that

this transporter mediates uptake of microcystin [48].

Moreover, OATP1A2 expression was required for micro-

cystin to exert its toxic effects on oocytes. Recently, it was

reported that OATP1A2 is expressed in neurons in the

human brain [49]. This finding adds an additional piece to

the mechanistic understanding of microcystin toxicity:

microcystin inhibits protein phosphatases at nanomolar

concentrations [50]. Hence, the expression of OATP1A2 in

neurons may allow microcystein, once it has crossed the

BBB, to enter into neurons followed by impairment of

neuronal functions. Looking at an endogenous compound,

Table 1 continued

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Mouse

mOAT2 mSlc22a7 Brain microcapillaries [126]

mOAT3 mSlc22a8 Brain microcapillaries [120, 126, 136] Brain microcapillaries [121,

124, 137]

Brain microcapillaries: abluminal

[139]

Rat

rCNT2 rSlc28a2 Brain microcapillaries [140]

Human

ENT1 SLC29A1 Brain microcapillaries [32, 123,

141]

Mouse

mENT1 mSlc29a1 Brain microcapillaries [123,

124]

Human

MATE1 SLC47A1 Brain microcapillaries [131] Brain microcapillaries [131] Brain microcapillaires [131]

Expression at the messenger RNA level was demonstrated by northern blot analysis, polymerase chain reaction of isolated brain microcapillaries,

or by in situ hybridization. Protein expression was demonstrated by western blotting or by proteomic methods using isolated brain microcap-

illaries. Cellular localization was demonstrated by immunohistochemistry and in some instances by domain-specific biotinylation experiments

CNT concentrative nucleoside transporter, ENT equilibrative nucleoside transporters, MATE multidrug and toxin extruder, OAT organic anion

transporter, OATP organic anion transporting polypeptide, OCT organic cation transporter, OCTN organic cation transporter novel type, SLC

solute carrier
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thyroid hormones are instrumental for the development of

the brain and in adult life for metabolic adaptation [51].

OATP1C1, which is expressed at the BBB (Table 1) [52] is

a high-affinity thyroid hormone transporter [53] and con-

sequently allows the entry of thyroid hormones into brain.

These examples clearly demonstrate that expression of

transport proteins in the BBB in addition to endogenous

substances allows the entry of xenobiotics into the brain.

Hence, understanding the molecular properties of trans-

porters working in the BBB will contribute to a better

understanding of the penetration of drugs across the BBB

to reach pharmacodynamics targets in the brain. Therefore,

Table 2 Expression of ABC transporters at the blood–brain barrier

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

ABCG2 ABCG2 Brain microcapillaries [142] Brain microcapillaries [32, 123, 141] Brain microcapillaries:

luminal [143, 144]

MDR1 ABCB1 Brain microcapillaries [142] Brain microcapillaries [32, 123] Brain microcapillaries:

luminal [33]

MRP1 ABCC1 Brain microcapillaires [142] Brain microcapillaries [141, 145] Brain microcapillaries:

luminal [146]

MRP2 ABCC2 Brain [143]

MRP3 ABCC3 Brain microcapillaries [142]

MRP4 ABCC4 Brain microcapillaries [142] Brain microcapillaries [32, 123, 141] Brain microcapillaries:

luminal [146]

MRP5 ABCC5 Brain [142, 143] Brain microcapillaries,

luminal [146]

MRP6 ABCC6 Brain microcapillaries [142]

Rat

rABCG2 rAbcg2 Brain microcapillaries [142, 147] Brain microcapillaries [116, 137] Brain microcapillaries:

luminal [147]

rMDR1A rAbcb1a Brain microcapillaries [113, 142] Brain microcapillaries [137] Brain microcapillaries:

luminal [145, 148]

rMRP1 rAbcc1 Brain microcapillaries [142, 149] Brain microcapillaries [116] Brain microcapillaries:

abluminal [113]

rMRP2 rAbcc2 Brain microcapillaries [150] Brain microcapillaries [151] Brain microcapillaris:

luminal [150]

rMRP3 rAbcc3 Brain microcapillaries [152] Brain microcapillaires [116]

rMRP4 rAbcc4 Brain microcapillaires [113, 142] Brain microcapillaries [116, 137] Brain microcapillaries:

luminal [113, 153]

rMRP5 rAbcc5 Brain microcapillaries [113, 142] Brain microcapillaries [116] Brain microcapillaries:

abluminal [113]

rMRP6 rAbcc6 Brain microcapillaries [142] Brain microcapillaries [116]

Mouse

mABCG2 mAbcg2 Brain microcapillaries [120, 142, 154, 155] Brain microcapillaries [19, 123–125, 137] Brain microcapillaries:

luminal [156]

mMDR1A mAbcb1a Brain microcapillaries [120, 157] Brain microcapillaries [19, 121, 124, 125] Brain microcapillaries:

luminal [18]

mMRP1 mAbcc1 Brain microcapillaries [142] Brain microcaplliaries:

abluminal [18]

mMRP3 mAbcc3 Brain microcapillaires [142] Brain microcapillaries [158]

mMRP4 mAbcc3 Brain microcapillaries [120, 142] Brain microcapillaries [19, 121, 123, 125] Brain microcapillaries:

luminal [153]

mMRP5 mAbcc5 Brain microcapillaries [142] Brain microcapillaries:

luminal [18]

mMRP6 mAbcc6 Brain microcapillaries [142]

Expression at the messenger RNA level was demonstrated by northern blot analysis, polymerase chain reaction of isolated brain microcapillaries,

or by in situ hybridization. Protein expression was demonstrated by western blotting or by proteomic methods using isolated brain microcap-

illaries. Cellular localization was demonstrated by immunohistochemistry and in some instances by domain-specific biotinylation experiments

ABC adenosine triphosphate (ATP)-binding cassette, MDR multidrug resistance protein, MRP multidrug resistance-associated protein
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Table 3 Expression of SLC transporters in choroid plexus

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

OATP1C1 SLCO1C1 Choroid plexus epithelial cells: apical
and basolateral [52]

OATP3A4 (v1
and v2)

SLCO3A4 Choroid plexus epithelial cells:
basolateral [159]

Rat

rOATP1A1 rSlco1a1 Choroid plexus [160, 161] Choroid plexus [160, 161] Choroid plexus epithelial cells: apical
[160]

rOATP1A3 rSlco1a3 Choroid plexus [162] Choroid plexus [163] Choroid plexus epithelial cells: apical
[162]

rOATP1A4 rSlco1a4 Choroid plexus [114, 164–167] Choroid plexus epithelial cells:
basolateral [114]

rOATP1A5 rSlco1a5 Choroid plexus [161, 165, 167] Choroid plexus [161, 163] Choroid plexus epithelial cells: apical
[113, 161]

rOATP1C1 rSlco1c1 Choroid plexus [163, 167, 168] Choroid plexus [117] Choroid plexus epithelial cells:
basolateral and apical [52]

rOATP2A1 rSlco2a1 Choroid plexus [168, 169] Primary choroid epithelial cells: apical
[169]

rOATP2B1 rSlco2b1 Choroid plexus [165] Choroid plexus epithelial cells: apical
[113]

rOATP3A1 rSlco3a1 Choroid plexus [167]

rOATP4A1 rSlco4a1 Choroid plexus [165]

Mouse

mOATP1A4 mSlco1a4 Choroid plexus [119] Choroid plexus [87]

mOATP1A5 mSlco1a5 Choroid plexus [119] Choroid plexus [119] Choroid plexus epithelial cells: apical
[119]

mOATP1A6 mSlco1a6 Choroid plexus [119]

mOATP1C1 mSlco1c1 Choroid plexus [127, 170] Choroid plexus [171] Choroid plexus epithelial cells:
basolateral [171], apical and
basolateral [52]

Rat

rOCT1 rSlc22a1 Choroid plexus [165]

rOCT2 rSlc22a2 Choroid plexus [168, 172]

rOCT3 rSlc22a3 Choroid plexus [165, 172] Choroid plexus epithelial cells [173]

rOCTN1 rSlc22a4 Choroid plexus [165]

rOCTN2 rSlc22a5 Choroid plexus [165, 167]

Mouse

mOCTN1 mSlc22a4 Choroid plexus epithelial cells [174]

mOCTN2 mScl22a5 Choroid plexus epithelial cells [174]

mOCTN3 mScl22a21 Choroid plexus epithelial cells [174]

Human

OAT1 SLC22A6 Choroid plexus epithelial cells [175]

OAT3 SLC22A8 Choroid plexus epithelial cells [175]

Rat

rOAT1 rSlc22a6 Choroid plexus [95, 167, 168]

rOAT2 rSlc22a7 Choroid plexus [95, 165, 168]

rOAT3 rSlc22a8 Choroid plexus [165, 167] Choroid plexus [176] Choroid plexus epithelial cells: apical
[113, 176]

Mouse

mOAT1 mSlc22a6 Choroid plexus [3, 95, 177]

mOAT2 mSlc22a7 Choroid plexus [95]

mOAT3 mSlc22a8 Choroid plexus [3, 177]
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the relevance of the BBB as a selective guard of the brain is

not only recognized by physiologists and pharmacologists

but has also initiated large efforts for developing tools

to study the impact of the BBB early in drug development

[8, 54].

ABC transporters are mostly cellular efflux transporters

and either act as cellular defense systems for substances or

export them from the cytoplasm [9]. They are often located

in strategic organ boundaries including the BBB, where

they are most important for controlling access to body

sanctuaries [55]. The importance of ABC transporters is

further emphasized by the observation that more than 20

(out of 48) human ABC transporters are important in var-

ious acquired and inherited human diseases [56]. Drug

transporters being members of the ABC superfamily and

expressed in the human BBB are listed in Table 2. The

protein expression of several ABC transporter superfamily

members involved in drug transport (one MDR) (ABCB),

four MRPs (ABCC), and one ABCG (ABCG) has been

reported for the human BBB (Table 2). With respect

to drug transport, members of the ABCB, ABCC, and

ABCG family are capable of transporting numerous drugs.

A list of substrates including drugs for transporting ABC

family members can be found in the following reviews

[27, 57–67].

The brain protective role of ABC transporters at the

BBB is best illustrated with the clinical studies aimed at

inhibiting MDR1 in the drug treatment of cancer. For

example, in a phase I trial, co-administration of etoposide

and cyclosporine lead to more severe nausea in some

patients receiving both drugs [68]. In another phase I study

where etoposide and the second-generation MDR1 inhibi-

tor PSC 833 were combined to treat cancer patients, severe

ataxia was observed as dose-limiting toxicity of PSC833

[69]. In this case, the MDR1 inhibitor allowed etoposide to

cross the BBB inducing neurotoxicity. The same toxicity

was later observed in a phase III trial [70]. Similarly, a

high-dose, oral tamoxifen phase I trial in combination with

verapamil revealed dose-limiting neurologic side effects

[71]. Taken together, these few examples in humans

demonstrate the importance of luminal ABC transporters in

the BBB as gate keepers preventing or lowering the

Table 3 continued

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Rat

rCNT2 rSlc28a2 Choroid plexus [165], primary choroid
plexus epithelial cells [167, 178]

Primary choroid plexus
epithelial cells [178]

rCNT3 rSlc28a3 Choroid plexus [165], primary choroid
plexus epithelial cells
[167, 168, 178]

Human

ENT1 SLC29A1 Choroid plexus [179]

ENT2 SLC29A2 Choroid plexus [179]

ENT3 SLC29A3 Choroid plexus [179]

Human

CNT3 SLC28A3 Choroid plexus [179]

Rat

rENT1 rSlc29a1 Choroid plexus [165], choroid plexus
epithelial cells [167, 180]

Primary choroid plexus
epithelial cells [178]

rENT2 rSlc29a2 Choroid plexus [165, 181], primary
choroid plexus epithelial cells
[167, 178]

Primary choroid plexus
epithelial cells [178]

rPEPT1 rSlc15a1 Choroid plexus [165]

rPEPT2 rSlc15a2 Choroid plexus [165, 167, 168, 182] Choroid plexus [163, 183] Choroid plexus epithelial cells: apical
[184], primary choroid plexus
epithelial cells: apical [185]

Mouse

mENT1 mSlc29a1 Choroid plexus [123, 124]

Expression at the messenger RNA level was demonstrated by northern blot analysis, polymerase chain reaction of isolated choroid plexus, or by
in situ hybridization. Protein expression was demonstrated by western blotting or by proteomic methods using isolated choroid. Cellular
localization was demonstrated by immunohistochemistry

CNT concentrative nucleoside transporter, ENT equilibrative nucleoside transporters, MATE multidrug and toxin extruder, OAT organic anion
transporter, OATP organic anion transporting polypeptide, OCT organic cation transporter, OCTN organic cation transporter novel type, PEPT
peptide transporter, SLC solute carrier
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exposure of the brain to potentially neurotoxic agents. In

principle, given the access of a substrate into the BBB,

abluminal ABC transporters should enhance the exposure

of the brain to their substrates. To the best of our knowl-

edge we found no such examples in the literature.

4 Choroid Plexus

The CP is located in the lateral, third and fourth brain

ventricles and produces the CSF. It is a highly vascularized

organ containing in the stroma loose connective tissue and

the fenestrated endothelium. A tight monolayer of CP

epithelial cells connected by tight junctions near the apical

surface forms the blood–CSF barrier (BCSFB) [72–74]. In

addition to its central role in the production of CSF, it also

removes organic anions as well as drugs and drug metab-

olites from the CSF, making the CP an important detoxi-

fying system for the CSF [72, 73].

The protein expression of several SLC superfamily

members involved in drug transport has to date been

reported for CP. In humans, two OATPs and two OATs are

identified in the CP (Table 3) and one member of the

ABCB and two members of the ABCC family have been

demonstrated at the protein level (Table 4). Inferring from

rodent tissues, the two MRPs likely are expressed in the

basolateral membrane of human CP epithelial cells and

consequently mediate export of substances form the CSF

back into the blood after their uptake across the apical

membrane. The individual role of these transporters in drug

Table 4 Expression of ABC transporters in choroid plexus

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

MDR1 ABCB1 Choroid plexus [186] Choroid plexus [145, 187] Choroid plexus epithelial cells [144, 187]

MRP1 ABCC1 Choroid plexus [186] Choroid plexus [145, 187] Choroid plexus epithelial cells [144, 187]

MRP2 ABCC2 Choroid plexus [186]

MRP3 ABCC3 Choroid plexus [186]

MRP4 ABCC4 Choroid plexus [186] Choroid plexus epithelial cells:

basolateral [153]

MRP5 ABCC5 Choroid plexus [186]

MRP6 ABCC6 Choroid plexus [186]

Rat

rABCG2 rAbcg2 Choroid plexus [188, 189] Choroid plexus [189]

rMDR1A rAbcb1a Choroid plexus [165, 189] Choroid plexus [145, 187] (C219)

[189]

Choroid plexus epithelial cells [187]

(C219)

rMDR1B rAbcb1b Choroid plexus [165, 167] Choroid plexus [145, 187] (C219) Choroid plexus epithelial cells [187]

(C219)

rMRP1 rAbcc1 Choroid plexus [165–167, 188, 189] Choroid plexus [145, 187, 190] Choroid plexus epithelial cells:

basolateral [18, 113, 119, 145, 191]

rMRP2 rAbcc2 Choroid plexus [165, 168, 192]

rMRP3 rAbcc3 Choroid plexus [165]

rMRP4 rAbcc4 Choroid plexus [165, 167, 192] Choroid plexus [163, 188] Choroid plexus epithelial cells:

basolateral [113, 153]

rMRP5 rAbcc5 Choroid plexus [165, 167, 192]

rMRP6 rAbcc6 Choroid plexus [165] Choroid plexus [163]

Mouse

mABCG2 mAbcg2 Choroid plexus [3] Choroid plexus [193] Choroid plexus epithelial cells: apical

[156]

mMDR1A mAbcc1a Choroid plexus [3]

mMRP1 mAbcc1 Choroid plexus [3] Choroid plexus epithelial cells: [194],

basolateral [191]

mMRP4 mAbcc4 Choroid plexus [3, 170] Choroid plexus [153] Choroid plexus epithelial cells:

basolateral [52, 153]

Expression at the messenger RNA level was demonstrated by northern blot analysis, polymerase chain reaction of isolated choroid plexus or by

in situ hybridization. Protein expression was demonstrated by western blotting or by proteomic methods using isolated choroid plexus. Cellular

localization was demonstrated by immunohistochemistry

ABC adenosine triphosphate (ATP)-binding cassette, MDR multidrug resistance protein, MRP multidrug resistance-associated protein
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Table 5 Transporter expression in blood–retina barriers

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

OATP1A2 SLCO1A2 Retina [82] Retina [49] Retinal pigmented epithelial cells [82]

OATP1B3 SLCO1B3 Retina [195]

OATP1C1 SLCO1C1 Choroid plexus epithelial cells: apical and

basolateral [52]

OATP2B1 SLCO2B1 Retina [82] Retina [49] Retinal pigmented epithelial cells [82]

Rat

rOATP1A4 rSlco1a4 Retina [164, 196], retinal pigmented

epithelial cells [197], blood retinal

capillaries [198]

Retina [197, 199] Blood retinal capillary endothelial cells:

abluminal [199], retinal pigmented

epithelial cells, apical [197, 199, 200]

rOATP1A5 rSlco1a5 Retina [164, 197, 201] Retina [197] Retinal pigmented epithelial cells [202]

rOATP1C1 rSlco1c1 Blood retinal capillaries [198] Retina [199] Blood retinal capillary cells: luminal and

abluminal [199], retinal pigmented

epithelial cells, basolateral [199]

rOATP2B1 rSlco2b1 Retina [196]

rOATP3A1 rSlco3a1 Retina [196]

rOATP4A1 Retina [196, 202] Retina [202]

Human

OCT1 SLC22A1 Retinal pigmented

epithelium [203]

OCT2 SLC22A2 Retina [195]

OCT3 SLC22A3 Retina [195]

OCTN2 SLC22A5 Retina [195]

Rat

rOCT1 rSlc22a1 Retina [196]

rOCT2 rSlc22a2 Retina [196]

Mouse

mOCT3 mSlc22a2 Retinal pigmented epithelial cells [204]

mOCTN1 mSlc22a4 Blood retinal capillary epithelial cells

[205]

mOCTN2 mSlc22a5 Blood retinal capillary epithelial cells

[205]

Rat

rOAT2 rSlc22a7 Retina [196]

rOAT3 rSlc22a8 Retina [196], blood retinal capillaries

[206]

Primary cultured blood

retinal capillary

endothelial cells [206]

Blood retinal capillary endothelial cells:

abluminal [206]

Rat

rCNT2 rSlc28a2 Retina [196]

rCNT3 rSlc22a3 Retina [196]

Human

PEPT1 SLC15A1 Retinal pigmented

epithelium [203]

PEPT2 SLC15A2 Retinal pigmented

epithelium [203]

Rat

rENT1 rSlc29a1 Retina [196]

rENT2 rSlc29a2 Retina [196]
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transport cannot be directly assessed in humans despite the

fact that, for example, analgetics and anticancer drugs are

administered to patients via an intrathecal route. Clearance

of such drugs from the CSF is obvious, but in addition to

the CP, the villi of the arachnoids may also be involved in

elimination of substances from the CSF. Drug transporter

expression in arachnoid villi is still a largely uncharted

area. In addition, the hydrodynamics of the CSF, which

may contribute to drug elimination from this body com-

partment is rather controversial [74, 75].

5 Blood–Retina Barrier

The retina is an organ rich in neurons. The retina is

exposed on the anterior side to the vitreous humor and at

the posterior side to the choroid. In the retina, there exists

two BRBs, namely the inner BRB formed by the retinal

capillary endothelial cells and the outer BRB formed by the

retinal pigmented epithelial cells [21, 76]. These two bar-

riers prevent uncontrolled entry of blood constituents into

the eye. Consequently, either one or both of these barriers

needs to be overcome by drugs, which are systemically

administered for the treatment of retinal diseases.

The protein expression of several SLC superfamily

members involved in drug transport (three OATPs, one

OAT, and one member of the ABCB and ABCC families

each) has to date been reported for the human BRB

(Table 5). Direct information on the role of transporters in

drug permeation through the BRB in humans is missing,

but it should be noted that systemically administered

antibiotics reach the vitreous humor, e.g., ciprofloxacin

Table 5 continued

Transporter Gene Messenger RNA expression Protein expression Cellular localization

Human

ABCG2 ABCG2 Retina [195]

MDR1 ABCB1 Retina [195] primary cultured retinal

pigmented epithelial cells [207]

Primary cultured retinal

pigmented epithelial

cells [207]

Retinal pigmented epithelial cells: apical

and basolateral [207]

MRP1 ABCC1 Retina [195], primary cultured retinal

pigmented epithelial cells [208]

Primary cultured retinal

pigmented epithelial

cells [208]

MRP5 ABCC5 Retina [195]

Rat

rABCG2 rAbcg2 Retina [196]

rMDR1 rAbcb1 Blood retinal capillaries [198], retina

[196]

Blood retinal capillary endothelial cells:

[209], luminal [206]

retinal pigmented epithelial cells [209]

rMRP1 rAbcc1 Retina [196]

rMRP2 rAbcc2 Retina [196]

rMRP3 rAbcc3 Retina [196]

rMRP4 rAbcc4 Retina [196]

rMRP5 rAbcc5 Retina [196]

rMRP6 rAbcc6 Retina [196]

Mouse

mABCG2 mAbcg2 Retina [210] Retina [210] Blood retinal capillary endothelial cells:

luminal [210]

mMRP1 mAbcc1 Blood retinal capillaries [211]

mMRP3 mAbcc3 Blood retinal capillaries [211]

mMRP4 mAbcc4 Blood retinal capillaries [211]

mMRP6 mAbcc6 Blood retinal capillaries [211]

Expression at the messenger RNA level was demonstrated by polymerase chain reaction of isolated retinal microcapillaries. Protein expression

was demonstrated by western blotting using isolated retinal microcapillaries and cellular localization was demonstrated by

immunohistochemistry

ABC adenosine triphosphate (ATP)-binding cassette, CNT concentrative nucleoside transporter, ENT equilibrative nucleoside transporters, MATE

multidrug and toxin extruder, MDR multidrug resistance protein, MRP multidrug resistance-associated protein, OAT organic anion transporter,

OATP organic anion transporting polypeptide, OCT organic cation transporter, OCTN organic cation transporter novel type, PEPT peptide

transporter, SLC solute carrier
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[77] or daptomycin [78]. Ciprofloxacin is known to interact

with OATPs [79]. Additionally, prostaglandins are used as

first-line treatment for glaucoma [80] and are substrates of

OATPs [81, 82]. While these examples do not prove that

transport systems are involved in the ocular disposition of

drugs, they are nevertheless strongly indicative, as in par-

ticular daptomycin is rather membrane impermeable.

6 Animal Models for Investigating the Role of Drug

Transporters in the Central Nervous System

Animal models are a potent means to investigate the role of

transporters in the CNS. Such models yield most valuable

information on the function of drug transporters at blood–

tissue barriers in the CNS as well as on their physiologic

role in the CNS. For example, more than 50 years ago it

was demonstrated in a goat model that phenolsulfonph-

thalein (also called phenol red), which at physiologic pH is

a dianionic compound, and the anionic angiographic con-

trast agent diodrast are actively transported out from the

CSF into blood [83]. The understanding and consequent

appreciation of the role of transporters in the BBB changed

with the seminal work by Schinkel and coworkers who

demonstrated that in mice with an inactivated Mdr1a gene,

the tissue concentration of ivermectin in brain was

increased 87-fold in comparison to controls and 22.4-fold

for vinblastine [84]. In addition, the same team found no

negative effect on the physiology of mice when both Mdr1

genes were inactivated indicating that in this species

mMDR1 (Table 2) plays no vital role [85]. In contrast,

mice with a disrupted Abcg2 gene gave conflicting results

on the role of mABCG2 in the BBB (Table 2) [86].

However, if studies were performed in mice, which in

addition to Abcg2 had also disrupted Mdr1 genes, it

became clear that for some drugs Abcg2 contributes to

preventing drugs from crossing the BBB. This example

nicely illustrates the complexity of in vivo studies with

drugs sharing multiple transporters. Furthermore, the role

of mOATPs (Table 1) in penetrating the BBB became

evident in mice with a knockout of Slco1a4 [87], as well as

with the Slco1a/1b locus, as in such animals statins showed

a considerably lower entry into the brain [88].

Genetically modified mice can also be used to study the

efflux of drug metabolites produced in the brain. Osel-

tamivir is an ethylester prodrug for RO 64-0802. The latter

is an inhibitor of neuraminidase and as such is used in the

prophylaxis and treatment of influenza virus infections

[89]. This drug is associated with adverse psychiatric

effects [90]. Oseltamivir is activated by carboxylesterase 1

[89], which is among other organs also expressed in the

brain [91]. Studies with Abcb1 knockout mice showed that

mMDR1 isoforms limit the brain’s access to oseltamivir

across the BBB [92]. Microinjection of RO 64-0802 into

the brain of mice deficient either for Abcc4 or SLC22a8

demonstrated that both mMRP4 (Table 2) and mOAT3

(Table 1) are involved in the elimination of RO 64-0802

from the brain across the BBB [93].

The opposite localization with respect to the lumen of

blood vessels in the BBB (Table 4) and in the CP (Table 5)

of MDR1 and ABCG2 leads to differential effects on the

brain entry of drugs across the BBB and into the CSF. Mice

with an Abcb1 or Abcg2 knockout show an increased

accumulation of topotecan in the brain parenchyma, while

its penetration into the CSF is reduced [94]. In double-

knockout animals, these effects were additive for both

barriers. In mice with an inactivated Scl22a8 gene, accu-

mulation of fluorescein into the isolated CP was greatly

reduced compared with wild-type animals [95]. Hence,

knock-out mice provide a most valuable tool to investigate

the impact of transporters not only in the BBB but also in

the CP [96].

OATP1C1 was identified as a high-affinity thyroxine

transporter [53], which is expressed at the BBB (Table 1)

and in the CP (Table 5). Mice having an inactivated

Oatp1c1 gene showed a significantly reduced brain content

of T4 and T3 with no change in the plasma concentration of

these two thyroid hormones [97], clearly demonstrating the

important role of this transporter for thyroid hormone

supply to the brain. In the same knock-out mice strain,

uptake of sulforhodamine 101 into astrocytes of the hip-

pocampus is severely impaired [98].

7 Outlook

Ample evidence accumulated in recent years indicates the

importance of transporters expressed in the BBB, CP, and

BRB for mediating the passage of drugs as well as nutrients

and metabolites. Great progress has also been made, in

particular in model animals, in the identification and

quantification of transport proteins in these barriers.

However, the depth of knowledge varies considerably

between the different barriers as the availability of the CP

and even more so of the BRB is very limited, in particular

from humans. Hence, alternate tools such as good anti-

bodies are urgently needed for defining the transporter

inventory in these barriers. Importantly, antibodies have a

major advantage in that they are keys to define the sub-

cellular expression of transporters in barriers. As move-

ment of substances across barriers into and out from the

CNS is often unidirectional and in some instances may

occur against concentration gradients, exact knowledge on

the subcellular expression of transporters together with an

understanding of their transport mechanism is key to

understanding the contribution of individual transporters to
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the passage or blockage of compounds across these barri-

ers. Progress in this area may come from a systems biology

approach generating antibodies against a larger number of

human proteins, such as the Human Protein Atlas Project

[99]. In addition, advances in the field of targeted proteo-

mics should certainly help to increase the knowledge

needed for developing pharmacokinetic models for the

uptake of drugs into the brain and for the export of drug

metabolites from the brain [16]. In addition, for developing

novel kinetic models for brain uptake and export, the

contribution of drug metabolism, e.g., in the BBB, has to

be taken into account [23].

Imaging methods and in particular positron emission

tomography (PET) have made rapid and large progress in

recent years such that PET has become a feasible tool for

studying the function of transporters in vivo [100]. First,

studies with healthy subjects [101] and with patients with

epilepsy [102, 103] have clearly provided data demon-

strating that the imaging in vivo function of transporters

not only in animal models but also in humans will soon

become a very valuable tool for understanding drug

transport across barriers shielding the brain. It is important

to note that the transporter function in vivo cannot only be

monitored by PET, but also by single-photon emission-

coupled tomography [104]. The development of novel

imaging probes should in the future certainly help the

development of novel drugs with targets in the CNS, as

their passage through the barriers can be followed in vivo.

This methodology, together with stringent quality control

of the label [105], will certainly also help to address issues

of transporter-based drug–drug interactions at the BBB,

where clearly more information for clinical practice is

needed [20, 106, 107].
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