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Abstract

Background and Objective Organic anion-transporting

polypeptide (OATP)-mediated drug–drug interactions

(DDIs) are among the most important classes of clinically

relevant DDIs. Accurate prediction of the OATP-mediated

DDIs is not successful due to the sequential disposition

pathways of OATP substrates in humans. Intestinal and

hepatic uptake transporters, efflux transporters, and cyto-

chrome P450 (CYP) enzymes are often involved in the

sequential disposition pathways of typical OATP sub-

strates. The aim of this proof-of-concept study is to develop

and validate a novel approach which can be used to predict

OATP-mediated DDIs with significantly increased accu-

racy and decreased false-negatives.

Methods The feasibility of using a disposition pathway-

dependent prediction (DPDP) approach to predict the ratios

of the area under the plasma concentration–time curve

(AUCR) in the presence and absence of the inhibitor was

investigated. A total of 62 clinical DDI studies were

included in this feasibility study. The disposition pathways

governing the outcome of DDIs were first identified for

each substrate using the information within learning sets,

and then substrate-specific algorithms were used to predict

the DDI risks of the external validation set (51 DDIs).

Results The method predicted AUCR within 50–200 %

for 50 studies (98 %), and the false-negative rate was

9.8 %. The DPDP approach showed significant improve-

ment over an existing approach and was used to forecast

the magnitude of 198 DDIs that have not been studied.

Conclusion This approach can be used to avoid unnec-

essary clinical DDI studies during new drug development.

1 Introduction

The pharmacokinetic interactions between an investiga-

tional new drug and other drugs should be defined during

drug development as part of an adequate assessment of the

drug’s safety and effectiveness [1]. Predicting clinical

drug–drug interactions (DDIs) during drug development is

essential to the design of clinical DDI studies and/or the

elimination of unnecessary clinical DDI studies.

Organic anion-transporting polypeptide (OATP) 1B1

(OATP1B1) has, along with OATP1B3, been shortlisted as

a transporter of considerable importance for drug disposi-

tion [2]. In fact, OATP-mediated DDIs are among the most

important classes of clinically relevant DDIs [2]. In order to

avoid unnecessary clinical DDI studies in the drug devel-

opment process, transporter-mediated clinical DDIs should

be estimated from the results of in vitro experiments [1].

The first static model for predicting OATP-mediated

DDIs was recently established and validated by being

applied to a large number of DDI studies [3]. This

impressive model was developed based on in vitro inhibi-

tion potencies and several sets of assumptions. By assum-

ing maximal increase in intestinal availability, maximum

unbound concentration at the inlet to the liver, and inhi-

bition of only the hepatic uptake, the prediction accuracy of

this model was within 50–200 % for 44 studies (76 %);

however, the false-negative prediction was not satisfactory

(28 %). The minimal false-negative predictions were

Electronic supplementary material The online version of this
article (doi:10.1007/s40262-013-0045-x) contains supplementary
material, which is available to authorized users.

Z.-Y. Hu (&)

Department of Clinical Pharmacy, College of Pharmacy,

University of Tennessee, 881 Madison Ave., Room 328,

Memphis, TN 38163, USA

e-mail: zhu13@uthsc.edu

Clin Pharmacokinet (2013) 52:433–441

DOI 10.1007/s40262-013-0045-x

http://dx.doi.org/10.1007/s40262-013-0045-x


obtained (19 %) when the inhibitory effects on both

hepatic uptake and efflux/metabolism were included, but

then the overall prediction accuracy became worse as

compared to the former assumption. In light of these

results, the author hypothesized that the inhibitory effects

on both hepatic uptake and efflux/metabolism should be

considered together for some substrates, while only the

hepatic uptake should be considered for others.

The disposition of OATP substrates in humans often

involves multiple transporters [OATP1, P-glycoprotein,

multidrug resistance-associated protein 2 (MRP2), or

breast cancer resistance protein (BCRP)] and drug-

metabolizing enzymes [cytochrome P450 (CYP) 34A,

CYP2C8, CYP2C9, or UDP-glucuronosyltransferase]. In

addition, the role of uptake transporters, efflux transport-

ers, and drug-metabolizing enzymes involved in the

clearance of OATP substrates are sequential. The predic-

tion for the DDIs involving substrates with parallel path-

ways of clearance (such as typical CYP substrates) has

already been dealt with, and this has been quite successful

[4, 5]. However, the prediction for the DDIs involving the

OATP substrates which have sequential clearance pro-

cesses still requires more effort. The major challenge for

the prediction of OATP-mediated DDIs is how to identify

the specific disposition pathway (or the rate-determining

process) of an OATP substrate that controls the magnitude

of a DDI.

In order to overcome this difficulty, I have used the

information of typical clinical DDIs (a so-called learning

set) to determine the disposition pathways of a substrate

which contribute to the observed DDIs. This idea was

inspired by a recent publication by our group which

showed that an in vivo information-guided prediction

approach is more robust than a purely in vitro data-based

approach [4]. Here, I report the results of a proof-of-con-

cept study, the primary aim of which was to develop and

validate a disposition pathway-dependent prediction

(DPDP) approach which can predict OATP-mediated DDIs

with significantly increased accuracy and decreased false-

negatives. The second objective of this study was to fore-

cast with confidence the magnitude of a large number of

drug interactions that have not been studied.

2 Methods

2.1 Data Source

The relevant data of clinical DDIs associated with OATP

substrates were mainly retrieved from a single recent

report which is based on studies extracted from the Pub-

Med database [3]. Whenever available, additional data

from the literature were included. The clinical DDIs that

involved intravenously administered inhibitors were

excluded. The following information was abstracted from

the literature: doses of the inhibitors, inhibition constant

(Ki) of reversible inhibitors, concentration of inhibitor

required to achieve half-maximal inactivation (KI) and

kinact (maximal rate constant of enzyme inactivation) of

mechanism-based inhibitors, intestinal availability (Fg) of

the substrates, the ratios (AUCR) of the area under the

plasma concentration–time curve (AUC) in the presence

and absence of the inhibitor, transporters and metabolic

enzymes involved in the disposition of substrates, and

estimated maximum unbound concentrations of the

inhibitors at the inlet to the liver [I]. An algebraic mean of

the AUC increase was used in the calculation when

multiple studies were available for a single combination of

substrate and inhibitor (if the same dose of inhibitor was

used in these studies).

2.2 Assumptions for the Disposition

Pathway-Dependent Prediction (DPDP) Approach

Although disposition sites other than liver and intestine can

play roles in the clearance pathway of substrates, only

hepatic and intestinal transporters or enzymes were

assumed to contribute to the observed DDIs. The fraction

of the substrate transported by way of the specific uptake

transporter (OATP1B1 or 1B3), efflux transporter [multi-

drug resistance protein 1 (MDR1), MRP2, or BCRP], the

fraction absorbed (Fa) of the substrates and inhibitors, and

the blood-to-plasma concentration ratio value of inhibitors

were assumed to be 1.0. Only one primary uptake or efflux

transporter was considered in the prediction of each DDI.

2.3 Initial Prediction Models

Thirteen OATP substrates were divided into six classes

based on the transporters and metabolic enzymes involved

in their disposition in humans [3]. Initial prediction models

for each class of substrates were derived (Table 1) based

on the reported static prediction models for OATP- and

CYP-mediated DDIs [3, 5, 6], and the disposition infor-

mation from the literature [3]. The generic algorithm used

to calculate AUCR is listed below (Eq. 1). All of the

potential contributing factors (CYP enzymes, uptake, and

efflux transporters in the liver and intestine) are included in

this algorithm, and the consecutive pathways of disposition

are addressed by it. The first part of Eq. 1 indicates the

contribution of hepatic OATP transporters; the second part,

the contribution of hepatic efflux transporters; the third

part, the contribution of hepatic CYP enzymes; the last

part, the contribution of the intestinal CYP3A enzyme and
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efflux transporters which determine the intestinal avail-

ability (Fg).

AUCR ¼ 1þ
Xn

j

½I�j
oatKij

� �� �
� 1þ

Xn

j

½I�j
eKij

� �� �

� 1

CRCYP

1þ
Pn

j

½I�j
cypKij

� �þ ð1� CRCYPÞ

� 1

Fg þ
1� Fg

1þ
Pn

j

½Ig�j
cypKij

� �
þ
Pn

j

½Ig�j
eKij

� �
ð1Þ

where cypKi is the inhibition constant of the CYP enzyme,

[Ig] is the concentration if the inhibitor in the gut and oatKi

is the inhibition constant for OATP1B1 or 1B3. For the

contribution of a particular hepatic CYP enzyme to an

observed DDI, a novel parameter was introduced (named

as CRCYP) in the prediction models (Table 1). CRCYP

reflects the apparent contribution ratio of the specific

hepatic CYP enzyme to an observed DDI. CRCYP is not

necessarily equal to fmCYP, which is the contribution of the

specific hepatic CYP to the total clearance of a substrate.

In theoretical considerations, CRCYP (0 B CRCYP B fmCYP)

is equal to fmCYP when the specific hepatic CYP contributes

‘completely’ to the DDI. CRCYP is less than fmCYP if the

specific hepatic CYP contributes partially to the DDI, and

it is assumed to be 0 when the inhibition of CYP by the

inhibitor has no impact on the DDI involving an OATP

substrate. With regard to the calculation method, fmCYP was

often estimated from the in vitro phenotyping and mass bal-

ance studies; in contrast, CRCYP was estimated from the in vivo

information (a reported clinical DDI). A similar parameter for

the hepatic efflux transporter was also introduced (CRE).

However, for the sake of simplicity, only two possible values

were set for this parameter (0 and 1). The value of CRE was

tentatively set to 1.0 for the initial prediction models.

A recent study revealed an equal contribution from

CYP2C8 and CYP3A to the metabolism of repaglinide [7]

and, therefore, both enzymes were taken into account for

repaglinide. The contribution of gut metabolism and efflux

to a DDI was only considered for atorvastatin, pravastatin,

rosuvastatin, and bosentan because the Fg of these sub-

strates is relatively low (0.39, 0.50, 0.43, and 0.47,

respectively) [3, 8]. Although the Fg of fimasartan was not

reported, the contribution of gut metabolism to the DDI

was also considered for fimasartan because CYP3A is

Table 1 Initial prediction models for the OATP-mediated drug–drug interactions

Substrates Disposition pathway Initial prediction model

Atorvastatin OATP1B1

CYP3A

MDR1

AUCR ¼ 1þ
Pn

j

½I�j
oatKij

� �� �
� 1

CRCYP

1þ
Pn

j

½I�j
cypKij

� � þð1�CRCYPÞ
� 1

Fgþ
1�Fg

1þ
Pn

j

½Ig �j
cypKij

� �
þ
Pn

j

½Ig �j
eKij

� �

Fimasartan

Bosentan

OATP1B1

CYP3A
AUCR ¼ 1þ

Pn
j

½I�j
oatKij

� �� �
� 1

CRCYP

1þ
Pn

j

½I�j
cypKij

� � þð1�CRCYPÞ
� 1

Fgþ
1�Fg

1 þ
Pn

j

½Ig �j
cypKij

� �

Cerivastatin

Fluvastatin

Glibenclamide

Glimepiride

Nateglinide

Irbesartan

OATP1B1 (or 1B3)

CYP2C9 (or 2C8)
AUCR ¼ 1þ

Pn
j

½I�j
oatKij

� �� �
� 1

CRCYP

1þ
Pn

j

½I�j
cypKij

� � þð1�CRCYPÞ

Pitavastatin OATP1B1

BCRP
AUCR ¼ 1þ

Pn
j

½I�j
oatKij

� �� �
� 1þ

Pn
j

½I�j
eKij

� �� �

Pravastatin

Rosuvastatin

OATP1B1

MRP2 (or BCRP)
AUCR ¼ 1þ

Pn
j

½I�j
oatKij

� �� �
� 1þ

Pn
j

½I�j
eKij

� �� �
� 1

Fgþ
1�Fg

1þ
Pn

j

½Ig �j
eKij

� �

Repaglinide OATP1B1

CYP2C8

CYP3A

AUCR ¼ 1þ
Pn

j

½I�j
oatKij

� �� �
� 1

CRCYP2C8

1þ
Pn

j

½I�j
cypKij

� � þð1�CRCYP2C8Þ
� 1

CRCYP3A

1þ
Pn

j

½I�j
cypKij

� � þð1�CRCYP3AÞ

AUCR ratio of the area under the plasma concentration–time curve (AUC) in the presence and absence of the inhibitor, BCRP breast cancer

resistance protein, CYP cytochrome P450, CRCYP apparent contribution ratio of the specific hepatic CYP enzyme to a observed drug interaction,

cypKi inhibition constant for CYP enzyme, eKi inhibition constant for efflux transporters MDR1, MRP2, or BCRP, Fg intestinal availability,

[I] estimated maximum unbound concentrations of the inhibitors at the inlet to the liver, [Ig] the concentration of an inhibitor in the gut, Ki

inhibition constant, MDR1 multidrug resistance protein 1, oatKi inhibition constant for OATP1B1 or 1B3, OATP organic anion-transporting

polypeptide
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responsible for the metabolism of this drug. Consequently,

the Fg value of fimasartan was estimated in the development

of the final prediction models. All four of these substrates

are CYP3A, MDR1, MRP2, and/or BCRP substrates. Both

reversible and irreversible CYP inhibitors were included in

the analysis. Only the equations for reversible inhibitions

are shown in Table 1. For the irreversible inhibitions, Eq. 2

was used to replace the corresponding part (Eq. 3) of the

equations in Table 1. kdeg is the enzyme degradation rate

constant (0.000481 min-1 for intestinal CYP3A and

0.00097 min-1 for CYP2C8) [5, 9].

R ¼ 1þ
Xn

j

½I�j � kinactj

kdeg � ð½I�j þ KIjÞ
ð2Þ

R ¼ 1þ
Xn

j

½I�j
cypKij

� �
: ð3Þ

2.4 Final Prediction Models

The final prediction models were developed based on the

key disposition information and selected learning sets of

these OATP substrates (Table 2). For atorvastatin and

bosentan, hepatic uptake via OATP is the rate-determining

process for drug clearance [10, 11]. Therefore, inhibition

of the hepatic efflux/metabolic processes was not consid-

ered in the final prediction model for atorvastatin and

bosentan (CRCYP = 0). The contribution of CYP2C9 to

the observed DDI of glibenclamide cannot be determined

due to the lack of relevant data. In order to enable

avoidance of false-negative predictions to a great extent

and rationally exclude unnecessary clinical DDI studies,

CYP2C9 was included in the final prediction model for

glibenclamide. The CRCYP2C9 value was assumed to be

the same as fmCYP2C9 (0.60) [12], which was estimated

using the pharmacogenetic method [4]. For the other

OATP substrates, a reported DDI (learning set) was

selected for each substrate (Table 2). CRCYP, CRE, and Fg

values were estimated based on the data of the learning set

in combination with the initial prediction model (Table 1).

In order to best estimate the CRCYP, CRE, or Fg value of a

OATP substrate, the criteria of selection of the learning

set was defined as follows: (1) the AUCR of a DDI was

C1.25 and (2) the inhibitor of a DDI shows relatively

potent inhibition on a CYP enzyme and/or a efflux

transporter.

The maximum unbound concentrations of the inhibitors

at the inlet to the liver [I] is estimated by Eq. 3, where ka is

the absorption rate constant (0.03 min-1, an assumed

average value [13]), D is the dose of the inhibitor, Qh is the

liver blood flow (1,240 mL/min) [3], and fu is the unbound

fraction of drug in plasma. [I] of inhibitors were directly

obtained from the literature [3] (calculated based on Eq. 4)

except for sildenafil and ketoconazole, whose [I] were

calculated in house using Eq. 3.

½I� ¼ fu � Cmax þ
ka � Fg � D

Qh

� �
ð4Þ

The concentration in the gut, [I]g, was defined by Eq. 5,

where Qg is the enterocytic blood flow (248 mL/min) [6].

½I�g ¼
ka � Fa � D

Qg

ð5Þ

2.5 Assessment of the Predictive Performance

To evaluate the performance of the prediction models, the

prediction accuracy was defined as the proportion of DDI

studies in which the predicted AUCR was within a twofold

range of the observed AUCR. If the observed AUCR of a

DDI was C1.25 and the predicted AUCR was\1.25, then it

was defined as a false-negative prediction. This threshold

was selected in accordance with U.S. Food and Drug

Administration standards for ‘weak’ inhibition [1]. The

prediction bias of each assumption was calculated as an

average deviation (AD) of the predicted versus observed

AUC ratios (Eq. 6). The precision of each assumption was

calculated as the root-mean-square error (RMSE) (Eq. 7).

AD ¼
P
ðpredicted� observedÞ
no: of predictions

ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðpredicted� observedÞ2

no: of predictions

s

ð7Þ

3 Results

3.1 Collection of Clinical Drug-Drug Interaction (DDI)

Studies

A total of 62 studies involving 13 OATP substrates and 20

inhibitors were included in this study. Among these, 24

studies showed a greater than threefold increase in the

AUC of substrate drugs, and 14 studies showed a greater

than fivefold increase. A total of 11 studies were selected

as the learning set, and the remaining 51 studies were

included in the validation set.

3.2 Prediction of the Ratio of the Area

Under the Plasma Concentration-Time

Curve Using the DPDP Approach

The details of the data of 62 clinical studies are provided in

the Electronic Supplementary Material. The method suc-

cessfully predicted AUCR within 66–150 % of the

observed AUCR for 38 studies (75 %, 38/51 studies) and
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within 50–200 % for 50 studies (98 %, 50/51 studies)

(Fig. 1). The number of false-negative predictions was only

five (9.8 %, 5/51 studies). The predictive error (AD) and

precision (RMSE) were -0.09 and 2.58, respectively. The

predictive performance of the DPDP approach shows sig-

nificant improvement over the existing approach. For

example, the prediction accuracy of the published model

was within 50–200 % for 44 studies (76 %), whereas the

false-negative prediction was 28 % [3]. The predictive

precisions ranged from 3.46 to 15.6 [3].

3.3 Forecasting the Magnitude of DDIs That Have

Not Yet Been Studied

The AUCR values of 260 possible interactions between the

13 substrates and the 20 inhibitors were estimated

(Fig. 2a). Only a small proportion (24 %) of all possible

combinations between substrates and inhibitors have as yet

been studied in humans. Gemfibrozil, clarithromycin,

protease inhibitors, rifampicin, and cyclosporin are the

most potent inhibitors. According to the sums of AUCR

values (the ‘drug interaction number’—given in following

text after each drug in parenthesis), atorvastatin (78),

bosentan (66), fimasartan (63), and repaglinide (57) are the

OATP substrates most sensitive to inhibition (Fig. 2b), and

pitavastatin (42), rosuvastatin (42), and glimepiride (39)

are the least sensitive substrates. In general, there was an

association between the drug interaction number and the

disposition pathway of OATP substrates (Fig. 2b).

OATP1B1 and CYP3A double substrates were found to be

the most easily inhibited by inhibiting drugs, with

OATP1B1 and CYP2C8/CYP2C9/MRP2 double substrates

moderately inhibited. OATP1B1 single substrates were

also moderately influenced, but to a lesser extent. In

addition to OATP1B1, CYP3A appears to be the most

important factor influencing the outcome of a DDI

involving OATP substrates.

4 Discussion

The primary finding of this study is that the DPDP

approach can accurately predict the DDI risks involving

OATP substrates. The predictive performance of the DPDP

approach shows significant improvement over an existing

approach. Taking advantage of this novel approach, the

magnitude of a large number of drug interactions that have

not been studied were forecasted with confidence.

To my knowledge, this is the first proof-of-concept

study demonstrating that the DPDP approach is a useful

tool for the prediction of drug interaction risks associated

with OATP substrates. Successful prediction of an OATP-

mediated DDI is difficult because the disposition of OATP

substrates in humans often involves multiple intestinal and

hepatic uptake and efflux transporters, as well as CYP

enzymes. What is more, the disposition pathway often

varies from one substrate to another substrate. In order to

overcome these difficulties, in the DPDP approach, the key

disposition pathways governing the outcome of DDIs were

identified for each substrate using the information from a

newly developed learning set, as well as relevant phar-

macokinetic data. Thereafter, a substrate-specific predic-

tion model was developed for each OATP substrate.

In order to improve decision-making in drug develop-

ment and discovery, the DPDP approach can be used

during the course of new drug development and discovery.

Utilization of a DPDP approach can reasonably preclude

unnecessary clinical DDI studies. If a new drug is a

potential victim drug and the disposition pathway of this

drug in human is already known, the initial prediction

model for clinical DDIs involving this drug can be devel-

oped. One clinical DDI study for this victim drug (co-

administered with a strong inhibitor) is needed to investi-

gate the potential DDI risk [1]. Subsequently, the values of

CRCYP, CRE, and/or Fg can be estimated based on this

clinical study. The final prediction model can be derived

based on the initial model, in combination with the values

of CRCYP, CRE, and/or Fg, and this final prediction model

Observed AUCR
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Fig. 1 Predicted versus observed AUCR values in the external

validation set. Solid, dashed, dotted lines Line of unity, the 66–150 %

range, and the 50–200 % range of the observed AUCR, respectively.

Closed diamond atorvastatin, closed square cerivastatin, fluvastatin,

and pitavastatin, closed triangle pravastatin, closed circle rosuvast-

atin, open circle glibenclamide, glimepiride, nateglinide, and repa-

glinide, open diamond, bosentan, fimasartan, and irbesartan. AUCR

Ratio of the area under the plasma concentration–time curve in the

presence and absence of the inhibitor
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enables the DDI risks of this victim drug to be predicted if

co-administered with other inhibitors. According to the

new Federal Drug Administration draft guidance, if a

strong inhibitor alters the kinetics of this victim drug,

subsequent clinical DDI studies are advised to define

interactions with other less potent inhibitors. However, if

no significant DDI is predicted between this victim drug

and other weaker inhibitors based on DPDP approach, a

secondary clinical study may not be necessary. If a new

drug is a potential perpetrator, a pilot clinical DDI study is

not needed. Most of the DDIs involving this drug can be

readily predicted using the final prediction model of vari-

ous OATP substrates (shown in Table 2).

It is noteworthy that the impact of SLCO (encoding

OATP) polymorphisms was not considered in the predic-

tion models reported here. It has been well documented

that the magnitude of OATP1B1-mediated DDIs is

influenced by the SLCO1B1 genotype. For example, the

effect of cyclosporin on repaglinide AUC was reported to

be 42 % lower in subjects with the SLCO1B1 521TC

genotype than in subjects with the 521TT (reference)

genotype [14]. This finding may be explained by the

reduced activity of OATP1B1 in carriers of the variant

SLCO1B1 c.521C allele. Therefore, the fractional activity

(FA) of OATP1B1 resulting from the combination of

mutated alleles relative to the activity of the reference

genotype could be incorporated into the current prediction

model. Further studies are required to test the predictive

performance of the modified model involving SLCO

polymorphisms.

The limitations of this study need to be considered. The

DPDP approach may not applicable to DDIs involving a

new OATP substrate whose full disposition characteristics

in humans are not clear. In this situation, the DDI can only

Substrates ATO CER FLU PIT PRA ROS GLB GLM NAT REP BOS FIM IRB
Inhibitors Dose/Disp. 1B1/3A/P-gp 1B1/2C8 1B1/2C9 1B1 1B1/MRP2 1B1 1B1/2C9 1B3/2C9 1B1/2C9 1B1/2C8/3A 1B1/3A 1B1/3A 1B1/2C9
Sulfinpyrazone 200 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1
Nisoldipine 10 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.0
Trimethoprim 160 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.0
Eltrombopag 75 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.1 1.1 1.1 1.1 1.1
Mibefradil 80 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
Sildenafil 100 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 2.1 2.0 1.0
Itraconazole 100 2.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 2.1 2.0 1.0
Ketoconazole 200 2.6 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 2.1 2.0 1.0
Fluconazole 100 2.4 1.0 1.6 1.0 1.0 1.0 1.7 2.0 1.4 1.4 2.0 1.9 1.5
Telithromycin 800 2.8 1.6 1.3 1.3 1.3 1.3 1.3 4.0 1.3 2.1 2.4 2.3 1.3
Saquinavir 400 3.7 1.5 1.5 1.5 1.5 1.5 1.5 1.3 1.5 1.6 3.0 2.9 1.5
Gemfibrozil 600 1.3 5.5 1.4 1.3 1.3 1.3 1.4 1.5 1.4 7.7 1.3 1.3 1.4
Clarithromycin 500 4.6 1.9 1.9 1.9 1.9 1.9 1.9 1.5 1.9 2.1 2.8 2.7 1.9
Darunavir 600 5.6 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.3 2.7 4.7 4.5 2.3
Tipranavir 500 5.0 2.6 2.6 2.6 2.6 2.6 2.6 1.6 2.6 2.7 4.5 4.3 2.6
Atazanavir 300 3.0 3.0 3.4 3.0 3.0 3.0 3.5 3.3 3.3 3.0 3.0 3.0 3.4
Lopinavir 400 6.9 2.8 2.8 2.8 2.8 2.8 2.8 1.2 2.8 2.9 5.4 5.1 2.8
Ritonavir 800 7.9 4.6 4.2 3.1 3.1 3.1 4.4 2.4 3.9 6.8 6.6 5.6 4.0
Rifampicin 600 5.9 6.9 6.1 5.9 5.9 5.9 6.1 6.5 6.0 7.0 5.9 5.9 6.0
Cyclosporin 200 15.3 6.5 6.4 6.4 11.0 6.4 6.4 2.9 6.4 7.3 12.3 11.7 6.4
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Fig. 2 a Predicted AUCR values of organic anion-transporting

polypeptide (OATP) substrates in the presence of various inhibitors.

b Drug interaction number for OATP substrates. Drug interaction

number is the sum of AUCR values for each substrate. The unit for

dose is milligrams. ATO Atorvastatin, 1B1 OATP1B1, 1B3
OATP1B3, 2C8 CYP2C8, 2C9 CYP2C9, 3A CYP3A, CER

cerivastatin, CYP cytochrome P450, FLU fluvastatin, PIT pitavastatin,

PRA pravastatin, ROS rosuvastatin, GLB glibenclamide, GLM glim-

epiride, NAT nateglinide, REP repaglinide, BOS bosentan, FIM
fimasartan, IRB irbesartan, OATP organic anion-transporting poly-

peptide, P-gp P-glycoprotein
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be reasonably predicted if the perpetrator is a pure OATP

inhibitor (without any other effect on transporters or drug-

metabolizing enzymes). The DPDP approach relies on the

data of a learning set (or key pharmacokinetic information)

to establish the final prediction model. Successful appli-

cation of the DPDP approach is therefore not feasible

without these relevant data. However, in this situation, the

initial prediction model with some assumptions (assuming

CRCYP = fmCYP, CRE = 1, Fg = 1) may be used for pre-

dicting OATP-mediated DDIs. While this approach may

overestimate DDI risks, it enables avoidance of false-

negative predictions to a great extent and rationally

excludes unnecessary clinical DDI studies. Indeed, a recent

report on the prediction of OATP-mediated DDIs showed

that the overall prediction accuracy became worse

(although the false-negative prediction decreased) when

the inhibitory effects on both hepatic uptake and efflux/

metabolism were considered [3].

5 Conclusions

A novel approach for the prediction of OATP transporters-

mediated clinical DDIs is proposed. The results suggest

that AUCR can be predicted with more accuracy using this

algorithm than with an existing method. In addition, pre-

dictive distributions for 260 possible DDIs were obtained,

giving detailed information on some drugs or inhibitors

that have been poorly studied to date. The DPDP approach

can be used in the course of new drug development to

reasonably avoid unnecessary clinical DDI studies.
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