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Abstract The chemical structure of any drug determines

its pharmacokinetics and pharmacodynamics. Detailed

understanding of relationships between the drug chemical

structure and individual disposition pathways (i.e., distri-

bution and elimination) is required for efficient use of

existing drugs and effective development of new drugs.

Different approaches have been developed for this purpose,

ranging from statistics-based quantitative structure–property

(or structure–pharmacokinetic) relationships (QSPR) anal-

ysis to physiologically based pharmacokinetic (PBPK)

models. This review critically analyzes currently available

approaches for analysis and prediction of drug disposition on

the basis of chemical structure. Models that can be used to

predict different aspects of disposition are presented,

including: (a) value of the individual pharmacokinetic

parameter (e.g., clearance or volume of distribution),

(b) efficiency of the specific disposition pathway (e.g., bili-

ary drug excretion or cytochrome P450 3A4 metabolism),

(c) accumulation in a specific organ or tissue (e.g., perme-

ability of the placenta or accumulation in the brain), and

(d) the whole-body disposition in the individual patients.

Examples of presented pharmacological agents include

‘‘classical’’ low-molecular-weight compounds, biopharma-

ceuticals, and drugs encapsulated in specialized drug-

delivery systems. The clinical efficiency of agents from all

these groups can be suboptimal, because of inefficient per-

meability of the drug to the site of action and/or excessive

accumulation in other organs and tissues. Therefore, robust

and reliable approaches for chemical structure-based

prediction of drug disposition are required to overcome these

limitations. PBPK models are increasingly being used for

prediction of drug disposition. These models can reflect the

complex interplay of factors that determine drug disposition

in a mechanistically correct fashion and can be combined

with other approaches, for example QSPR-based prediction

of drug permeability and metabolism, pharmacogenomic

data and tools, pharmacokinetic–pharmacodynamic model-

ing approaches, etc. Moreover, the PBPK models enable

detailed analysis of clinically relevant scenarios, for example

the effect of the specific conditions on the time course of the

analyzed drug in the individual organs and tissues, including

the site of action. It is expected that further development of

such combined approaches will increase their precision,

enhance the effectiveness of drugs, and lead to individual-

ized drug therapy for different patient populations (geriatric,

pediatric, specific diseases, etc.).

1 Introduction

The effect of chemical structure on drug pharmacokinetics

and on the resulting pharmacological effects has long been

a topic of major interest, and has been based on empirical

methods for studying structure–activity relationships.

Starting from the first half of the twentieth century, sig-

nificant developments have occurred in analytical chem-

istry, pharmacokinetics, pharmacodynamics, and other

scientific fields, revealing the major mechanisms that

determine drug activity [1, 2]. Detailed understanding of

the processes of drug absorption and disposition (i.e., dis-

tribution and elimination) is required nowadays for effec-

tive development of new drugs and for more efficient use

of existing ones. Therefore, several approaches for inves-

tigating these processes have been developed, reflecting
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advances in the understanding of the pharmacokinetic

behavior of drugs (Table 1). These approaches differ in

many respects, including the chemical nature of the source

data (diverse vs. homogeneous), the complexity of the

model (the number of parameters), outcome (static or

dynamic, e.g., the value of clearance vs. time course of

drug concentration), prediction accuracy (absolute or rel-

ative deviation of predicted from observed data), etc.

Approaches to analysis and prediction of drug pharma-

cokinetics can be classified on the basis of the source and

in-vivo reliability of the analyzed data. As shown in

Table 1, methods for analysis of quantitative structure–

activity relationships (QSAR) or quantitative structure–

property or structure–pharmacokinetics relationships

(QSPR), for example multiple linear-regression analysis or

artificial neural networks (ANN), can be used to analyze

the relationship between drug’s chemical structure and the

analyzed pharmacokinetic data without any mechanistic

description of their connection. In-vitro experimental sys-

tems (cell-free, sub-cellular, or cell-based) can reflect

certain mechanistic aspects that affect the value of a spe-

cific pharmacokinetic parameter. The physiological and/or

mechanistic reliability of the model is maximum if ex-vivo

or whole-body (in-vivo) models are used.

All of these approaches can be applied empirically or

physiologically. For example, one or two-compartmental

pharmacokinetic models can be used to describe drug dispo-

sition; however, these give limited insight into the mecha-

nisms of drug disposition and their dependence on drug

chemical structure. Physiologically based pharmacokinetic

(PBPK) models that include numerous organs and tissues may

provide more detailed and mechanistically based information

about drug disposition behavior. However, such detailed

PBPK models may not be required in some cases, because it

has been shown that for many drugs the majority of the organs

can be ‘‘lumped’’ together to 2 or 3 compartments with distinct

shapes of drug concentration vs. time curves [3]. Indeed,

‘‘lumped’’ (or ‘‘hybrid’’ or ‘‘minimal’’) PBPK models can be

successfully used to describe and predict the time course of

drug concentrations in selected organs of interest [4, 5].

The physiological and/or mechanistic relevance of the

specific prediction approach is important because of the

complex interrelationships of the factors that determine drug

pharmacokinetics (Fig. 1). The value of a pharmacokinetic

parameter is determined by the drug’s chemical structure

(which can be described by use of molecular descriptors),

physiological data, and, occasionally, also by the formula-

tion/administration properties (level 0). Mechanistic physi-

ologically based understanding of basic pharmacokinetic

parameters (level 1) will lead to better prediction of the

values of the higher-level parameters (levels 2 and 3) and the

resulting time course of drug concentrations (level 4).

Models used to predict pharmacokinetics are seldom

based directly on the chemical structure or molecular

descriptors (Table 2) of the drug. Many models are based

on indirect parameters derived from the drugs’ chemical

structure (e.g., drug solubility and/or permeability, or val-

ues of pharmacokinetic parameters that were measured in

animal studies). For example, the rate-limiting step in oral

drug absorption can be predicted on the basis of the water

solubility and intestinal bioavailability (termed ‘‘perme-

ability’’ by the US FDA) of the molecule, which serve the

basis for the biopharmaceutics classification system (BCS)

[6] that has been adopted by the FDA. These solubility and

intestinal bioavailability parameters can either be measured

(in in-vitro and in-vivo experimental settings, respectively)

or predicted on the basis of the drug’s chemical structure

by use of one of the available software suites or QSPR

models [7–9].

Historically, empirical methods, for example allometric

scaling of clearance or volume of distribution parameters

from in-vivo animal data, have been used extensively for

prediction of drug disposition [10]. Recently, there has

been a clear shift toward more extensive use of physio-

logically based models (PBPK; Fig. 2) [11–14], which are

expected to reduce the uncertainty and increase the

robustness of pharmacokinetic predictions [15–17].

The complexity of the models used to predict drug

disposition is constantly increasing. Therefore, significant

statistical, algorithmic, and computational challenges still

remain to be overcome. Specifically, lack of standardiza-

tion in the terminology that is used to report model preci-

sion (e.g., regression coefficient r2, root mean square error

Table 1 Types of approach used to predict drug’s pharmacokinetics

Type of approach Examples of source data, in addition to the drug

molecular descriptors (physicochemical

properties)a

In-silico (QSPR) Values of the individual pharmacokinetic data/

processes (e.g., drug clearance or brain

permeability)

Cell-free in-vitro

systems

Drug retention on HPLC columns

Drug interaction with artificial membranes

Sub-cellular in-

vitro systems

Drug metabolism by liver microsomes

Cellular in-vitro

systems

Drug permeation of cell monolayers

Drug accumulation in red blood cells

Ex-vivo systems Drug elimination by the perfused liver

In-vivo

experiments

Organ/tissue weights, permeability coefficients,

perfusion rates

HPLC high-performance liquid chromatography, QSPR quantitative

structure–property (or structure–pharmacokinetics) relationships
a Interspecies scaling can be performed for most of these approaches

on the basis of pre-clinical data (usually from mice, rats, or dogs) with

or without allometric scaling factors [16, 17]
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[RMSE], cross-validated correlation coefficient q2, etc.)

can obscure the differences between the individual

approaches. Critical analysis and comparison of the major

approaches on the basis of the precision of their predictions

for a defined set of analyzed compounds can help over-

come this problem [16–18].

In this review the major advances in prediction of

drugs’ disposition on the basis of their chemical structure

are analyzed. The focus of the review is on pharmaco-

logical agents (and not on toxic compounds) and on

prediction of their disposition (distribution and elimina-

tion, but not absorption) in human subjects (and not in

animals, when data are available). This review does not

describe in detail all the approaches available. Instead, the

major direct and indirect approaches used to predict

drugs’ pharmacokinetics on the basis of their chemical

structure are discussed, and recent advances and trends in

this field are summarized. The contents of the review are

organized according to the output of any specific

approach: the values of individual pharmacokinetic

parameters, the efficiency of the specific disposition

pathway, accumulation in a specific organ or tissue, etc.

(Table 3). In addition to analysis of low-molecular-weight

(MW) compounds, recent advances in prediction of

disposition of ‘‘non-classical’’ drugs are presented (bio-

pharmaceuticals and drugs encapsulated in specialized

drug-delivery systems [DDSs]).
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Fig. 1 The pyramid of factors that determine drug disposition

(adapted from Mehvar [101]). Different levels of factors/parameters

affect the pharmacokinetic behavior of the drug. Three groups of the

underlying factors are the physicochemical properties of the drug, the

physiological parameters of the body, and features related to drug

administration (level 0). The interplay of these variables determines

the values of the 1st level of pharmacokinetic parameters. For

example, permeability coefficient (KP) of drug accumulation in a

specific tissue is determined by the drug size and/or lipophilicity and

tissue composition and/or perfusion. Values of the volume of

distribution and clearance (2nd level) reflect interplay of the

underlying variables. For example, perfusion- or permeability-limited

elimination of the drug by the liver depends on liver perfusion, the

extent of binding to plasma proteins, and intrinsic clearance of the

drug by the metabolic systems of the liver. Drug’s volume of

distribution and clearance govern its half-life, affect its input function

after pre-systemic administration, and determine the time course of

drug concentration (levels 3 and 4). The dotted line indicates pre-

systemic first-pass metabolism of the drug, which can limit its

systemic bioavailability (e.g., after oral administration). For simplic-

ity, most of the variables which affect drug bioavailability are not

shown. Cmax maximum plasma drug concentration, Cmin minimum

plasma drug concentration, Css steady-state plasma drug concentra-

tion, CL the total body clearance of the drug, CLint intrinsic clearance

that reflects the expression levels and activity of the drug-metabo-

lizing enzymes in the specific elimination organ and/or tissue,

E extraction ratio of the drug from the blood and/or plasma in the

specific elimination organ and/or tissue, F drug bioavailability, fuT

unbound fraction of the drug in the specific organ and/or tissue, fuP

unbound fraction of the drug in the plasma, KP permeability

coefficient, which reflects the affinity of a drug for a specific organ

and/or tissue, Q perfusion in the individual organ and/or tissue, t�
elimination half-life of the drug, V volume of drug distribution in the

body, V1 initial volume of drug distribution (usually, the volume of

blood and/or plasma and the highly perfused tissues), VT volume of

the individual organ and/or tissue

Table 2 Examples of drug molecular descriptors that can be used to

predict drug disposition

Molecular descriptors

Size (MW)

Shape

Molecular or polar surface area

logP

pKa

Specific functional groups

logP partition coefficient, pKa acid dissociation constant, MW
molecular weight
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2 Prediction of Major Disposition Data for Low-

Molecular-Weight Drugs

2.1 Volume of Distribution

Volume of drug distribution is a major pharmacokinetic

parameter that relates total plasma (systemic) drug con-

centration to its amount in the body. The volume of drug

distribution indicates the extent of drug extravasation from

the systemic circulation and its relative accumulation in

peripheral organs and tissues, which is determined by

simple diffusion, facilitated diffusion, active (transporter-

mediated) mechanisms, and binding to blood and tissue

constituents (e.g., plasma protein binding), etc. Although

the volume of drug distribution does not provide direct

information about drug accumulation in the individual

organs and tissues of the body, it is commonly used in drug

discovery, development, and clinical practice as a measure

of drug distribution [19]. In clinical settings, calculation of

drugs’ volume of distribution is not a routine task, because

it requires intravenous dosing and measurement of drug

concentrations in the systemic circulation. After extravas-

cular dosing, volume of distribution can be determined

a   Scheme of the whole-body physiologically based PK model
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Fig. 2 The structure of the whole-body physiologically based

pharmacokinetic (PBPK) model. a Schematic diagram of the whole-

body PBPK model. For simplicity, only some of the body organs that

are usually included in a model are shown. The characteristics of the

individual organs include size (volume), perfusion (blood flow), and

affinity for the drug (permeability coefficient). The organs can be

classified according to their perfusion into low-perfused (usually fat,

skin, and muscle) and highly perfused organs. The drug can be

administered by several routes, undergoes distribution to the individ-

ual organs and tissues, and is eliminated by the liver (CLH; hepatic

clearance) and the kidneys (CLR; renal clearance). b Schematic

diagram of the major processes occurring in the individual distribu-

tion organ and/or tissue. The factors affecting the kinetics of the

individual processes (marked with arrows) include the drug’s

physicochemical properties, affinity for proteins/lipids/phospholi-

pids/other blood or tissue components, affinity for transporters,

perfusion/convection, etc. As a result of these factors, accumulation

of a drug in a specific organ/tissue can be perfusion- or permeability-

limited. c Schematic diagram of the major processes occurring in the

elimination organ (with kidney as an example). In addition to the

factors presented in b, the drug undergoes urinary excretion and

metabolism. For clarity, arrows representing drug metabolism and the

fate of the metabolites formed are not shown. D drug, DP drug

complex with proteins or other blood or tissue components (lipids,

phospholipids, etc.), ECF extracellular fluid, GFR glomerular filtra-

tion rate

Table 3 Disposition data that can be predicted on the basis of drugs’

physicochemical properties

Disposition data Examples

Volume of distribution and

individual distribution

pathways

Steady-state volume of distribution

Plasma–protein binding

Permeability coefficients

Accumulation in the red blood cells

Clearance: total body clearance

and the individual disposition

pathways

Total body clearance

Hepatic clearance

Biliary excretion

Renal clearance

Metabolism by specific enzymes

(e.g. CYP3A)

Transport by specific transporters

(e.g. Pgp)

Distribution to the individual

organs/tissues

Permeation via the blood–brain

barrier

Permeation via the placenta

Accumulation in milk

Distribution within the specific

organ/tissue

Intratumoral distribution of the

drug and/or DDS

CYP cytochrome P450, DDS drug-delivery system, Pgp
P-glycoprotein
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from plasma drug concentration only if drug bioavailability

is known. For this reason, many different approaches for

prediction of volume of drug distribution in human subjects

on the basis of pre-clinical experimental data have been

developed. These approaches usually furnish values of

steady-state volume of distribution (Vss), a parameter that is

frequently used in clinical pharmacokinetic calculations,

e.g., of maintenance drug doses for an individual patient. It

should be noted that the value of the apparent volume of

distribution can increase or decrease as a result of drug

redistribution between the plasma/blood and the extravas-

cular fluids/tissues. For example, during multiple intrave-

nous bolus administration of the drug, apparent volume of

distribution fluctuates after each dose between the lower

initial values (V1, which are more appropriate than Vss for

calculation of loading doses), through Vss, to the highest

values (Vz, which reflect the pseudo-steady state between

the central circulation and the extravascular fluids/tissues

during the elimination phase). Gradual/prolonged drug

absorption to the central circulation (e.g., in multiple oral

dosing of drugs) can reduce or abolish these fluctuations

and make Vss values more relevant for calculation of drug

doses.

Some of the approaches developed for prediction of

human Vss are based solely on the molecular descriptors of

the drug. For example, QSPR approaches based on 2–4

molecular descriptors, such as partition coefficients, dipole

moments, and the number of aromatic carbon atoms were

developed for a dataset of 70 drugs [20]. The predictive

power of this model was relatively high with the mean fold

error of 2.01. In another study, 31 molecular descriptors

and a dataset of 384 drugs were used for human Vss pre-

diction, and the geometric mean-fold error of the generated

model was less than 2 [21]. Wajima et al. developed a

hybrid approach based on a set of 64 drugs that combined

partial least-squares analysis of 20 molecular descriptors

and animal Vss data [22]. The best of the developed models

had r2 = 0.85, and the Vss value for 76.6 % of the drugs

was predicted with less than twofold error.

Human Vss can also be predicted on the basis of in-vitro

drug binding to albumin and/or to artificial membranes.

High-performance liquid chromatography-based measure-

ment of human serum albumin binding and immobilized

artificial membrane partitioning of 179 drugs revealed

substantial correlation with human Vss values (r2 = 0.76)

[23]. In another study, data reflecting in-vitro interaction of

121 analyzed compounds with the immobilized artificial

membrane, their plasma protein binding and degree of

ionization, and Øie–Tozer equation [19] were used to

predict the human Vss values (r2 = 0.82; mean fold error

less than 1.72) [24].

Most of the approaches used for prediction of Vss are not

based directly on the chemical structure or molecular

descriptors of the analyzed drugs, but rather on collection

and extrapolation of data obtained in vitro (in vitro–in vivo

extrapolation, IVIVE) or from experimental animals. These

approaches can be empirical in nature, with application of

allometric scaling (without or with correction of inter-spe-

cies differences in individual distribution factors, for

example plasma protein binding of the drug). Alternatively,

approaches based on the physiologically based parameters

(tissue–plasma partitioning, tissue volumes, and blood

flows) can be used. For example, approaches for prediction

of human Vss based on tissue-to-plasma partition coeffi-

cients (Kp) of muscle and fat [25], or muscle alone [26] have

been developed. In-vitro experimental data in the form of

unbound red blood cells partitioning, in combination with

the tissue and/or plasma partition coefficients from animal

studies and other supporting data, have been used by Poulin

et al. [27] to predict the human Vss of basic drugs.

Recently, several studies have attempted to classify and

rank the performance of available methods for human Vss

prediction. Fagerholm [28] reviewed eight methods for

prediction of human Vss, including in-silico, allometric, and

physiologically based models. The Pharmaceutical Research

and Manufacturers of America (PhRMA) group launched an

initiative on predictive models for human pharmacokinetics

[29], and analyzed and compared 24 different methods for

prediction of human Vss. The authors classified these into

empirical (allometric approaches without or with correction

based on animal studies), semi-mechanistic (multicompart-

ment PBPK models based on animal data with correction for

inter-species differences in physiology), and mechanistic

(whole-body PBPK) methods [16]. Lombardo et al. [30]

analyzed and compared different approaches used to predict

human Vss on the basis of animal data.

Outcomes of these comparison studies indicate that

current animal data-based approaches for human Vss pre-

diction are superior to in-silico (QSPR) or in-vitro (e.g.,

artificial membrane-based) methods. Apparently, the latter

approaches can be successful for drugs that are distributed

by passive diffusion but provide less accurate predictions

for drugs with transporter and/or carrier-mediated distri-

bution processes [28]. Thus, in-silico and in-vitro-based

approaches can be recommended for use at the initial stage

of drug development. Upon accumulation of in-vivo (pre-

clinical and clinical) data, physiologically based allometric

and PBPK approaches should preferably be used to predict

the Vss and individual disposition pathways of the investi-

gated drug (i.e., its plasma protein binding, permeability

coefficients in individual tissues, etc.) [16]. It should be

noted that there is no single approach that performs best for

all drugs, and the accuracy of the individual approach can

be highly dependent on the structure of the molecule ana-

lyzed (e.g., acidic, basic, or neutral compound). The choice

of the approach used for Vss prediction should be based,

Prediction of Drug Disposition 419



therefore, on available data and on the structural similarity

of the drug to other compounds that have previously been

analyzed (e.g., for a basic drug use methods that performed

best for this group of compounds).

2.2 Clearance

Drug clearance (CL) is a major pharmacokinetic parameter

that reflects the efficiency of elimination of the drug from

the body. Several mechanisms can contribute to drug

elimination, but low-MW drugs are usually assumed to be

eliminated solely by the liver (via metabolism and biliary

excretion) and kidneys (elimination in the urine, that can

involve also renal metabolism). Efficiency of drug elimi-

nation is determined by the availability and intrinsic

activity (CLint) of specific metabolizing enzymes and the

drug permeability (e.g., into the urine and metabolising

organs), which depends on simple diffusion, facilitated

diffusion, or active (transporter-mediated) mechanisms,

and are affected by the drug binding to plasma proteins (fu;

Fig. 1). Different methods for prediction of drug clearance

have been developed (reviewed elsewhere [10]). Similarly

to prediction of Vss (discussed in the section ‘‘Volume of

Distribution’’), most of these approaches are based not

directly on drug structure, but rather on in-vitro or animal

experimental data.

For prediction of the hepatic metabolic component of

the drug elimination, several allometric scaling approaches

have been proposed, with or without correction for inter-

species differences in intrinsic clearance and drug plasma

protein binding (CLint and fu, respectively). Alternatively,

physiologically based IVIVE approaches can be used; these

are based on in-vitro drug metabolism by microsomes, liver

slices, or isolated or cultured hepatocytes (human or other

species) [31, 32]. Fagerholm [33] reviewed five methods

for prediction of human hepatic metabolic clearance and

their modifications (correction using fu and scaling factors)

and concluded that physiologically based IVIVE approa-

ches based on human or rat hepatocytes enabled accurate

prediction (maximum *twofold error; \25 % error for

half of compounds) whereas the performance of allometric

and microsome-based approaches (with or without modi-

fications) was poor.

Several methods for prediction of renal clearance (CLR)

have been also proposed, including allometric and physi-

ologically based IVIVE approaches; they are, however,

generally characterized by poor performance (reviewed

elsewhere [34]). This outcome stems from the multifacto-

rial pathways of renal clearance that may include passive

and active tubular transport mechanisms (in both direc-

tions, from the blood to the urine and vice versa), and

cytochrome P450 (CYP) and uridine diphosphate-glucur-

onyltransferase (UGT)-mediated metabolism, etc. Under

these conditions, methods that are based on molecular

descriptors alone or on in-vitro data, can provide inaccurate

predictions [10]. Improved predictions can be achieved by

developing new physiologically based IVIVE methods that

incorporate corrections for several factors, for example fu,

pH differences, and active transport mechanisms [34]. For

example, Paine et al. [35] recently compared different

approaches for prediction of human renal clearance on the

basis of a dataset of 36 drugs and concluded that accurate

predictions can be made on the basis of dog renal clearance

data corrected for differences in plasma protein binding

and kidney blood flow between dogs and humans

(r2 = 0.84, average fold error 2.2).

Instead of prediction of drug clearance from individual

organs, total body clearance (i.e., the sum of the clearance

from the liver, the kidneys, and other organs) can be ana-

lyzed by use of different approaches. The PhRMA group

(discussed in the section ‘‘Volume of Distribution’’) com-

pared 29 methods for prediction of total body clearance on

the basis of 19 drugs with available clinical intravenous

pharmacokinetic data (and 89 other drugs with available

extravascular data) [17]. Several of these methods made use

of drugs’ molecular descriptors (MW, logP, etc.), in com-

bination with other data. The authors reported that in-vivo

methods performed slightly better than IVIVE methods for

predicting human clearance (for the 19 analyzed drugs), and

that the fold-error of the best-performing method was below

2 and 3 for 78 and 94 % of the compounds, respectively. In

an even more recent publication, 37 methods for prediction

of human clearance were compared on the basis of intra-

venous pharmacokinetic data from rat, dog, and monkey

studies for approximately 400 compounds (the number of

compounds analyzed for the individual methods ranged

from 39 to 329, depending on data availability) [36]. The

authors concluded that methods that used the monkey

clearance values and a method correcting for differences in

plasma protein binding between the rat and the human yield

the best overall predictions (approximately 60 % com-

pounds with geometric mean fold error B2).

From the studies summarized above, it seems that the

hepatic clearance (CLH) and CLR values are most accu-

rately predicted by use of physiologically based IVIVE

approaches, and total body CL is best predicted by allo-

metric scaling based on in-vivo monkey or rat data. The

performance of models based solely on molecular pre-

dictors can be highly inaccurate for some classes of drug,

e.g., for drugs that are eliminated via active transport

processes in the liver and/or in the kidneys. It should be

noted that there is a trend of increasing use of in-silico

PBPK models for prediction of human clearance that are

based on in-vitro experimental data [10]. These models

can enable physiologically reliable integration of data

from different sources, including the molecular
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descriptors of the analyzed drugs and their metabolism by

the individual CYP and UGT enzymes, and can lead to

more accurate predictions of total drug clearance and of

its components (CLH and CLR).

3 Prediction of Individual Disposition Pathways

of Low-Molecular-Weight Drugs

3.1 Biliary Excretion

Biliary excretion is an important disposition pathway that

is involved in elimination and enterohepatic cycling of

some drugs. Biliary excretion occurs predominantly via

adenosine triphosphate (ATP)-dependent efflux pumps,

including organic anion transporters (OATPs), and its

efficiency is highly dependent on the chemical structure of

the drug (predominantly on the MW and lipophilicity) [37].

The effects of drug structure and biliary excretion have

recently been analyzed by two research groups by use of an

in-silico QSPR approach.

Yang et al. [102] developed equations based on

molecular predictors (2D and 3D) to predict biliary clear-

ance and the percentage of the dose excreted in the bile of

rats and humans. It was found that the efficiency of biliary

elimination depends on the charge of the molecule. MW

threshold values for biliary excretion of organic anions of

400 and 475 g/mol were determined for rats and humans,

respectively; cations or neutral compounds were not char-

acterized by statistically significant MW threshold values.

The values predicted by the QSPR model for biliary

clearance in humans fell within the threefold error range of

observed values, but the fraction of the dose excreted in the

bile was predicted much less accurately.

Chen et al. [38] investigated the correlation of cumula-

tive biliary excretion (measured in bile duct cannulated

rats) and with 2D molecular descriptors of drug structure

by use of a QSPR model. On the basis of analysis of 56

compounds with MWs in the 320–708 g/mol range, a

quantitative equation that included seven molecular

descriptors was developed and validated. The authors

concluded that molecular hydrophobicity is the most

important molecular property affecting cumulative biliary

excretion (higher lipophilicity was associated with lower

biliary excretion) with additional effects of the polarity and

size of a molecule. The prediction performance of the

developed model fell within threefold error range of

observed cumulative biliary excretion for 74 and 60 % of

the analyzed compounds for the training and validation

sets, respectively, and within a fivefold error range for

85 % of the compounds (for both sets).

3.2 P-Glycoprotein Inhibition

P-glycoprotein (Pgp) is an energy-dependent efflux pump

that has important effects on the bioavailability and dis-

position of many drugs. Pgp-dependent transport of a

specific substrate molecule limits its oral bioavailability,

reduces the extent of its body disposition (including its

permeability to the brain, disposition via the placenta,

etc.) and enhances its hepatic and renal excretion.

Therefore, inhibition of Pgp can have a profound effect

on drug pharmacokinetics. Chen et al. [39] analyzed the

correlation between physicochemical properties of 1,273

molecules and Pgp inhibition (data from previous in-vitro

measurements of Pgp inhibition) by use of recursive

partitioning (RP) techniques and Bayesian categorization

modeling. On the basis of molecular solubility, log D (the

apparent partition coefficient at pH 7.4), MW, and other

molecular properties, the authors were able to classify

correctly the compounds into inhibitors (more than five-

fold inhibition of Pgp-mediated transport) and non-

inhibitors classes (less than fourfold inhibition of Pgp-

mediated transport). Prediction accuracy was 81.7 % for

the 973 compounds in the training set and 81.2 % for the

300 compounds in the test set. However, the applied

approach was suitable for classification purposes only,

and not for quantitative analysis of the extent of Pgp

inhibition (e.g., concentration producing 50 % inhibition,

IC50, values). A similar limitation applies also to other

previously developed approaches used to predict Pgp

inhibition (summarized in Chen et al. [39]).

3.3 Cytochrome P450 3A Metabolism

CYP3A is the most abundant CYP in the human intestine

and liver that contributes to the metabolism of drugs and

limits their oral bioavailability (for example cyclosporine,

nifedipine, verapamil, etc.). Thus, prediction of CYP3A-

mediated metabolism can aid in prediction of drug elim-

ination and bioavailability. Heikkinen et al. [40] investi-

gated the intestinal metabolism of 20 CYP3A substrates

by use of the GastroPlus� PBPK model. The authors

compared predictions that were based on two types of

intestinal permeability data. The ‘‘in-silico’’ approach

(based on the combination of molecular predictors with

in situ-rat wall permeability measurements) tended to

underestimate intestinal metabolism with 20 and 65 % of

the compounds falling into the 2- to 5- and 5- to 10-fold

error range, respectively. On the other hand, intestinal

permeability of 95 % of the analyzed compounds fell into

the twofold error range for the ‘‘in-vitro’’ approach (based

on permeability coefficients obtained in Madin Darby
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canine kidney (MDCK) cell culture). By using the

developed PBPK model, the authors were able to predict

the plasma concentration time-course of the studied

compounds and to perform detailed sensitivity analysis of

the factors that affect their intestinal metabolism (e.g.,

drug solubility and dissolution).

3.4 Pharmacokinetic Interactions

Pharmacokinetic models can be used to predict drug–drug

interactions (DDIs) and, thus, the required adjustments of

drug dosing. Specifically, the effect of individual trans-

port/elimination pathways on the time course of drug

concentrations in the presence of other drugs can be

predicted. Currently, prediction of DDIs is usually based

on the outcomes of in-vitro measurements. For example,

induction of CYP3A4 in clinical settings and its contri-

bution to human clinical DDIs has been predicted on the

basis of in-vitro measurements of CYP3A4 induction in

hepatocyte cell culture, plasma and hepatocyte drug

binding, and other parameters [41]. Similarly, in-vitro

models based on suspended hepatocytes, liver micro-

somes, and sandwich-cultured hepatocytes have been

used to determine the intrinsic clearance for 13 com-

pounds and to predict human hepatic clearance and

metabolism and transporter-based DDIs [42]. Complex

interactions that take place in different organs and tissues

can be analyzed by use of these tools [43, 44], taking into

account metabolism and transporter effects, and perme-

ability [45].

In summary, it can be stated that currently existing

methods for prediction of individual disposition pathways

of low-MW drugs are characterized by low accuracy. Some

of these methods are suitable for classification purposes

only, and can only partially suit the needs of the

researchers in drug discovery and development. Most

probably, improved methods for prediction of individual

disposition pathways will come from the field of PBPK

modeling. These models have been increasingly used

during drug development and regulatory review in pre-

dicting the efficiency of the individual disposition path-

ways and their changes as a result of DDIs [46]. It should

be noted that several currently available PBPK software

packages, for example GastroPlus� and Simcyp Simula-

tor�, incorporate molecular predictors for data input, can

be used for assessment of the individual pharmacokinetic

processes, and are suitable for prediction of the concen-

tration time-courses of the studied drugs and their changes

because of DDIs. It is expected that accumulating experi-

mental data on the mechanisms and efficiencies of indi-

vidual disposition pathways will be continuously

incorporated into these models and will increase their

precision and robustness.

4 Prediction of the Distribution of Low-Molecular-

Weight Drugs to Individual Organs and Tissues

4.1 Blood–Brain Barrier Drug Penetration

Reliable estimation of drug permeation via the blood–brain

barrier (BBB) is important for design of drugs acting on the

CNS, and for safety assessment of drugs acting elsewhere

in the body. The BBB is a complex structure and its per-

meation depends on the drugs’ physicochemical properties,

and on transport by means of influx and efflux pumps,

including Pgp, breast cancer resistance protein (BCRP),

OATP, amino acid transport systems, and others. Several

QSPR models have been proposed for analysis of drug

permeation via the BBB and brain accumulation based on

molecular descriptors (summarized in Refs. [47, 48]); these

differ in their structures, the data analyzed (e.g., brain-to-

plasma ratios, cumulative brain accumulation, etc.), and

predictive capabilities.

A QSPR model of passive transport via the BBB based

on data from 178 drugs was recently proposed [47]. The

analysis was based on kinetic drug permeation via the BBB

(as the product of brain permeability and surface area,

logP 9 S) in rats and mice, and did not take into account

plasma protein binding and carrier-mediated effects. The

model predicted experimental data correctly (r2 * 0.83,

RMSE \0.5) and indicated that BBB permeability depen-

ded on the drugs’ octanol/water logP (in a bilinear fashion)

and acid dissociation constant (pKa) values. This approach

was subsequently extended by the authors to incorporate

the effect of drug binding to the brain and plasma con-

stituents and to predict the brain accumulation of the

studied drugs (as the steady-state brain/blood distribution

ratio) [48]. The model was applied to a set of 470 com-

pounds and included the descriptors: octanol/water logP of

neutral species, ion fractions at pH 7.4, and the extent of

drug plasma protein binding. The outcomes of the model

were characterized by a good predictive power

(RMSE = 0.4) and were indicative of a nonlinear, ioni-

zation-specific relationship between the above-listed

descriptors and brain drug accumulation.

Shayanfar et al. [49] developed QSPR models to predict

blood-to-brain concentration ratios separately for ionizable

and un-ionizable compounds. The significant predictors for

the un-ionizable compounds were logD7.4 (the octanol/

water distribution coefficient at pH 7.4) and the MW. The

predictors for the ionizable compounds were logD7.4 and

the number of hydrogen bond acceptors. The developed

models were validated and their prediction capabilities

were within the twofold range for *60 % of the com-

pounds analyzed.

Improved prediction of drugs’ BBB permeability and

brain accumulation can be achieved by combination of
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QSPR models with The Biopharmaceutics Drug Disposi-

tion Classification System (BDDCS) [50]. The BDDCS

classifies the drugs according to the extent of their

metabolism and solubility, and is an extension of the BCS

system (discussed in the Introduction). In a recently pub-

lished study, BDDCS class membership was integrated

with in-vitro Pgp efflux and in-silico permeability data to

categorize 153 drugs into BBB-permeable and imperme-

able classes (on the basis of available human and animal

brain/plasma ratio data) [51]. This prediction was suc-

cessful for more than 90 % of the drugs. Lower prediction

success rate was obtained with a model based solely on

molecular descriptors to predict the brain-to-plasma ratios

of drugs and other chemical compounds in mice [52]. The

authors used partial least-squares (PLS) analysis to identify

five molecular descriptors that enabled correct classifica-

tion of the analyzed compounds to low and high CNS

exposure drugs (with brain-to-plasma ratios below or above

0.3, respectively) in *75 % of cases [52].

Despite these achievements of QSPR models based

directly on drugs’ molecular descriptors, drugs’ BBB per-

meability and brain accumulation in humans are most fre-

quently predicted on the basis of the outcomes of in-vitro

experimental data. Many different types of such approaches

have been developed, by applying artificial membrane

permeability assays (PAMPA), static and dynamic models

based on brain microcapillary endothelial cells (BMEC), or

based on other types of cell originating from different

species (reviewed elsewhere [53]). Currently, these models

reproduce the physiological behavior of the BBB better than

in-silico models, and reflect more reliably the contribution

of active transport systems and metabolic transformation to

BBB drug permeability and disposition. It is expected that

integration of in-silico, in-vitro, and PBPK models will

enable better prediction of drugs permeation across the

BBB and brain accumulation. Several recently published

PBPK models of drug brain disposition [5, 54] are suitable

for this purpose. Such integration is expected to provide a

better understanding of drug-transport mechanisms and

prediction of the kinetics of the processes studied (i.e., the

time course of drug and metabolite concentrations in the

brain, including differences in exposure of different brain

regions to the drug [55]).

4.2 Permeability of the Placenta to Drugs

Despite the clear need for accurate fetal and neonatal health

risk assessment, few methods exist for prediction of pla-

cental permeability on the basis of drugs’ chemical struc-

tures. The ex-vivo human placental perfusion method is the

most popular and reliable method for assessing placental

transfer and metabolism [56] (usually measured as the

placental clearance index or transfer index), despite being

technically complex, time-consuming, and dependent on

the availability of placentae from suitable donors. Several

in-vitro models have been developed for analysis of the

permeability to drugs of the placenta, including primary

trophoblastic cells, immortal cell lines of placental origin,

placental explants, and others, but they only partially reflect

the active transport (influx and efflux transporter-mediated),

metabolism, and tissue-binding mechanisms that occur

in vivo [57].

Several QSPR models have been developed for analysis

of the dependence of the placental transfer (measured by

use of the ex-vivo human placental perfusion method) on

the drugs’ chemical structure, and critical analysis of sev-

eral such models has been performed [58]. The accuracy of

the five models analyzed ranged from poor to good (r2

values from 0.63 to 0.86) and reflected the heterogeneity of

the data set (from high to low, respectively). On the basis

of analysis of these models, the authors concluded that

hydrogen bonding and hydrophobicity were the major

molecular descriptors that determine the transfer of drugs

across the blood–placenta barrier. In addition, QSPR

models can provide inaccurate prediction of the perme-

ability of the placenta to drugs that undergo active transport

or metabolism in the placenta.

Giaginis et al. [59] used a QSPR model to analyze

placental permeability on the basis of a set of 84 com-

pounds. The authors applied multivariate data analysis and

generated a model based on 16 molecular descriptors

that enabled good prediction (r2 = 0.73, q2 = 0.71,

RMSE = 0.15) of relative placental permeability data

(measured as placental clearance index normalized to data

for antipyrine, a reference compound that undergoes pas-

sive diffusion only). According to this model, higher pla-

cental permeability was associated with the molecular

properties (in order of their influence from highest to

lowest) lower polarity, higher hydrophobicity, and larger

molecular size. Generally, currently available QSPR

models seem to be useful for prediction of placental per-

meability to drugs at the early stages of drug design [59],

but confirmation of these predictions by use of ex-vivo

human placental perfusion or animal studies is recom-

mended at later stages of drug development.

4.3 Drug Accumulation in Mother’s Milk

Even fewer data and approaches are available for predic-

tion of the accumulation of drugs in mother’s milk and its

dependence on drugs’ chemical structure. A simple model

for prediction of milk/plasma (M/P) drug concentration

ratios on the basis of pKa, plasma protein binding, and

octanol/water partition coefficients has been applied and

had good prediction characteristics for a set of 10 basic

drugs [60]. However, this model provided unreliable
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predictions of M/P ratios for a set of 69 drugs with more

diverse chemical properties (e.g., acidic, basic, and neutral

compounds, etc.) [61]. Subsequently, Zhao et al. [62]

developed an approach for prediction of M/P ratio classi-

fication (M/P ratio lower or higher than 0.1) based on a set

of 126 drugs. The authors used a support vector machine

analysis method that resulted in *90 % classification

accuracy and identification of the five major classifying

molecular descriptors, the most important being the logP of

the drug (higher logP values were associated with lower

M/P ratios). Unfortunately, this model is suitable for

classification purposes only and does not provide quanti-

tative prediction of the M/P ratio values.

From the above discussion it can be seen that several

approaches have been developed to predict the distribu-

tion of low-MW drugs to individual organs and tissues.

Currently available approaches for prediction of the per-

meability of the BBB and placenta to drugs, and their

accumulation in the mothers’ milk are insufficiently

accurate and do not satisfy the needs of researchers in

drug discovery and development. It should be noted that

there is a high structural resemblance of the processes

that govern drug permeability via the BBB and placenta,

for example expression of drug transporters (e.g., Pgp,

BCRP, OATP, etc.) [63, 64], and their specific resem-

blance with the processes that determine drug accumu-

lation in mother’s milk. Therefore, drug permeation via

all of these barriers can be eventually described by a

single physiologically based model that will reflect the

structural and functional characteristics of the above-

mentioned barriers.

Prediction of drug permeability should not necessarily

focus on a narrow subset of organs/tissues only. Use of

unified algorithms to predict tissue-to-plasma partition

coefficients can be developed on the basis of individual

tissue composition data (abundance of proteins, lipids,

charged phospholipids, etc.) and used for analysis of drug

disposition [65–67]. Furthermore, the same data can be

used to predict drug distribution at the subcellular level in

the individual organs [68].

5 Prediction of the Disposition of Low-Molecular-

Weight Drugs in Individual Patients and Special

Populations

Inter and intra-subject variability in drug disposition is an

additional challenge that should be overcome for efficient

clinical application of prediction methods. To this end,

parametric and nonparametric population-modeling

approaches can be used [69]. The objective is to identify

subpopulations of patients that differ in patterns of drug

disposition and to identify covariates that are associated

with these differences (e.g., age, sex, markers of hepatic

and renal function, etc.). Currently, population-modeling

approaches usually apply compartmental pharmacokinetic

models (e.g., one or two-compartmental model) with a

small number of disposition parameters to analyze in-vivo

experimental data (from animal or clinical studies) [70,

71]. This may limit physiological/mechanistic insights into

the processes of drug disposition that can be obtained from

this analysis.

From the previous sections it is clear that a substantial

amount of knowledge is available on the relationships

between the structure and physicochemical properties of

low-MW drugs, body physiology, and their combined

effects on drug distribution in and elimination from

individual organs and tissues. These data and relation-

ships can be integrated into PBPK models and used in

drug discovery, development, and regulation [11, 12].

Several proprietary modeling software products (for

example Simcyp Simulator� and GastroPlus�) have been

developed that can incorporate the model of drug disso-

lution, absorption, and metabolism in the gastrointestinal

tract, the whole-body PBPK model, data on expression

levels of metabolizing enzymes and transporters, etc.

Users have limited control over the choice of structural

properties and features of these models. Alternatively,

more flexible but less user-friendly tools, for example

general-purpose or biomathematical modeling software

suites (MATLAB�, ADAPT 5, NONMEM, WinNonLin,

etc.), can be used to generate custom-designed PBPK

models [11].

All these tools can be used to analyze the effect of

individual parameters (e.g., parameters related to the

chemical structure of the drug) on drug disposition and to

predict answers to many clinically relevant questions. For

instance, drug disposition in geriatric or pediatric patients,

in patients with compromised hepatic or renal function, in

obese patients, in patients that have specific genotype (that

dictates the activity of drug transporters and metabolic

enzymes), or in other (patho)physiological conditions can

be predicted on the basis of the drugs’ chemical structure

[11, 12]. An example of this approach is the in-silico

prediction of disposition of three model drugs during

pregnancy by use of Simcyp Simulator� PBPK model that

integrates changes in the activity of three CYP enzymes

[72]. This model was developed by applying a database of

physiological, anatomical and metabolic changes that

occur during normal pregnancy [73], and provided good

predictions of changes in the plasma concentration vs. time

curves of the analyzed drugs (that were within twofold of

the observed values) [72].

On the basis of these PBPK models, the effects on drug

disposition of individual variables incorporated into the

model can easily be predicted. However, these predictions
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should be interpreted with caution. For instance, compro-

mised renal function leads to global changes in the drug

metabolism and disposition, including tissue perfusion,

liver metabolic activity, etc. [74]. These changes should be

taken into account for reliable prediction of possible

changes in drug disposition as a result of the acute or

chronic kidney disease. Moreover, the drug’s chemical

structure is commonly incorporated into the PBPK models

indirectly, in the form of solubility, permeability, affinity

for transporters, rates of metabolism by the CYP enzymes,

etc. Therefore, prediction of effect of alteration of the

drug’s chemical structure on its disposition (e.g., during

drug discovery) requires correction of all the drug chemical

structure-dependent parameters that determine the indi-

vidual processes of distribution and elimination.

6 Prediction of the Disposition of Biopharmaceuticals

and Drug-Delivery Systems

The previous sections of this review summarized the

approaches used for prediction of disposition of low-MW

compounds. In recent years, the number of therapeutics has

expanded to include the biopharmaceuticals and drug-

delivery systems (DDSs), which are characterized by dif-

ferent disposition patterns and require development of

specialized prediction approaches that take into account

their unique disposition features (Table 4). These approa-

ches usually are not based directly on the physicochemical

properties of the analyzed drug or DDS, but in some cases

incorporate parameters that reflect the efficiencies of the

individual disposition processes as a function of chemical

structure (e.g., amino acid sequence for protein drugs),

DDS composition, etc.

6.1 Disposition of Therapeutic Antibodies

In recent years, disposition of biopharmaceuticals and, spe-

cifically, of therapeutic antibodies has been a topic of exten-

sive research. It is well known that the major processes of

disposition of therapeutic antibodies are proteolysis (which

can occur in any of the body tissues and fluids), uptake and

partial degradation in the capillary endothelial cells (the pro-

cess that is mediated by the neonatal Fc receptor, FcRn), and

interaction with the target (the antigen) [75]. These disposition

processes are very different from the fate of low-MW drugs

(that are usually assumed to be eliminated by the liver and

kidneys only), and some are non-linear (saturable) in the

therapeutic range of concentrations. To describe the saturable

interaction of the therapeutic agents with their targets, a target-

mediated drug disposition (TMDD) model has been devel-

oped [76] and applied for quantitative analysis and prediction

of the time course of the antibody’s systemic concentrations

[77, 78]. According to the TMDD model, the antibody

undergoes disposition according to the 1- or 2-compartment

pharmacokinetic model, with additional rate constants for

antibody–target association and dissociation (that indirectly

reflect the chemical structure of the FV variable domains of the

antibody). More detailed PBPK models that incorporate

antibody binding to the FcRn (via the antibody’s Fc region) in

the individual organs and tissues have been developed

recently and used to analyze and predict the time course of

antibody disposition [79, 80]. Subsequently, a PBPK model-

ing approach incorporating a catenary sub-model of endo-

somal transport has been used to predict the relationship

between the sequence of an antibody’s Fc region and its

affinity for the FcRn and its whole-body disposition [81].

Engineering of antibodies’ Fc regions has attracted much

attention in recent years because it enables control of the

Table 4 Major disposition pathways for different classes of drugs

‘‘Classical’’ low-MW drugs Therapeutic antibodies Systemically administered DDS

• Binding to plasma proteins or

other blood components

(lipids, phospholipids, etc.)

• FcRn-dependent uptake

and partial recycling by the

vascular endothelium

• Release of the encapsulated drug

• Interaction with endogenous

plasma components (formation of ‘‘corona’’)

• Distribution into individual organs and

tissues, binding to tissue components

• Distribution into individual

organs and tissues
• Degradation in the systemic

circulation

• Hepatic metabolism • Accumulation in the tumor or

in the inflamed tissues (EPR effect)
• Aggregation in the bloodstream

• Uptake by mononuclear phagocyte system (MPS) cells
• Biliary clearance

• Binding to the target
• Uptake by the endothelial cells

• Renal excretion

• Catabolism in the systemic

circulation or at the distribution sites
• Uptake by the red blood cells

• Permeation to the target organ (e.g., the tumor) and local degradation

• Renal metabolism

• Permeation to other organs and tissues and local degradation

DDS drug-delivery systems, EPR enhanced permeability and retention, FcRn neonatal Fc receptor, MW molecular weight
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antibodies’ half-life and can be used to increase the efficiency

of treatment with these agents.

6.2 Tumor-Targeted Delivery of Biopharmaceuticals

In contrast with TMDD models, whole-body PBPK models

enable prediction of the time course of antibody concen-

trations in specific target organs and tumors. For example,

accumulation of the CC49 antibody in the tumor and other

tissues of tumor-implanted nude mice has been quantita-

tively analyzed by use of a specially developed PBPK

model [80]. In addition to the parameters commonly used

in these models (tissue volumes, perfusion, permeability

coefficients), this model included parameters that reflect

the factors that determine accumulation of the antibody in

the tumor tissue (size of the antibody, osmotic coefficient,

tumor antigen concentration, etc.). Thus, this model

includes the major processes that can lead to enhanced

permeability and retention (EPR effect) of antibodies and

other macromolecules in the tumor tissues [82]. The model

has also been used to predict the disposition of divalent and

tetravalent single-chain variable region structures of CC49

in mice and the outcomes of this test were indicative of

good applicability of the model [80].

Detailed modeling analysis of the effects of dose, molec-

ular size, and binding affinity on accumulation of antibodies,

their fragments, and other macromolecules by the tumor has

been performed [83–85], revealing a complex interplay of

these factors. Specifically, intermediate-sized targeting agents

(MW *25 kDa) were predicted to have the lowest tumor

uptake, compared with agents of smaller and larger size. This

analysis suggests smaller agents can accumulate rapidly in the

tumor but require high affinity for the tumor antigens to be

retained whereas retention of larger agents can be high even if

their affinity for the tumor is low [84]. Unfortunately, efficient

accumulation of the agent in the tumor does not necessarily

lead to efficient exposure of the tumor cells to the drug [86,

87]. Specifically, low-MW drugs and biopharmaceuticals

have limited therapeutic penetration depth in the tumor (i.e.,

the region where the cells are exposed to therapeutic drug

concentrations), that can be as low as 1–2 mm [88]. Therefore,

strategies to enhance drug accumulation in the tumor, and,

specifically, permeation of the drug to the ‘‘deep’’ parts of the

tumor (i.e., the cells that are distant from the blood vessels) are

being developed, usually by applying specialized DDSs

(discussed in the section ‘‘Tumor-Targeted Anti-Cancer Drug

Delivery Using DDSs’’).

6.3 Tumor-Targeted Anti-Cancer Drug Delivery Using

DDSs

In the past few decades significant progress has been made

in the development of DDSs intended for targeted delivery

of the drug to its site of action, e.g., in the tumor tissue.

Encapsulation of the drug within the DDS masks its

physicochemical properties and affects the pathways of its

disposition in the body. Therefore, properties of both the

drug and the DDS should be used for prediction of the

disposition of the drug/DDS, and the resulting pharmaco-

logical activity. Quantitative analysis of the disposition of

the drug/DDS, including tumor accumulation and, in some

cases, intratumoral disposition of the drug/DDS also, has

been performed in several studies.

For example, Thurber and Weissleder [89] used a sys-

tems approach to classify systemically administered drug/

DDS into four categories depending on whether their

uptake by tumors is limited by blood flow, extravasation,

interstitial diffusion, or local binding and metabolism.

PBPK models have been used to analyze the disposition of,

and drug release from, long-circulating and temperature-

sensitive liposomes loaded with a positron emission

tomography probe [90], and to study the effects of size and

charge on the disposition of composite (gold–dendrimer)

nanoparticles [91].

Unfortunately, currently existing systemically adminis-

tered DDSs accumulate to a small extent only in the tumor

tissue, and more than 95 % of intravenously administered

DDSs accumulate in other organs, in particular the liver,

spleen, and lungs, and account for toxicity [92]. To

increase drug concentrations in the tumor and limit extra-

tumoral effects, anti-cancer drugs can be delivered directly

into the tumor by use of focally (locally) administered

DDSs. Disposition of the drug/DDS after focal intratu-

moral instillation of a drug-releasing implant has been

analyzed in several studies. For instance, Arifin et al. [93]

used a finite-element 3D model of the brain based on MRI

reconstruction of brain geometry to analyze the role of

convective transport in carmustine intratumoral disposition

after Gliadel� implantation. The authors used the devel-

oped model to predict the effect of drug physicochemical

properties on the efficiency of intratumoral disposition, and

predicted that penetration of the drug into the tumor and

buildup of efficient concentration were in the order pac-

litaxel [ fluorouracil [ carmustine [ methotrexate [94].

However, even paclitaxel failed to penetrate some parts of

the tumor tissue adequately. Fleming and Saltzman [95]

analyzed the intratumoral distribution of carmustine eluted

from Gliadel� implants and identified three pathways of

drug transport. Drug penetration into the tumor was higher

on the first day after implantation (5 mm) and declined on

subsequent days, and simulations based on the developed

models were consistent with these findings. In another

study, simulations of intratumoral drug distribution indi-

cated that paclitaxel released from the hydrogel OncoGel�

and carmustine released from the Gliadel� wafers were

characterized by similar therapeutic penetration depth
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(1–2 mm), but different duration of the effective thera-

peutic concentrations (30 vs. 4 days, respectively) [96].

These and other modeling-based studies provide

important insight into the interactions of factors that

determine the disposition of anti-tumor drug/DDSs and

enable detailed analysis of intratumoral drug disposition,

identification of rate-limiting factors in drug disposition,

choice of drugs and design of DDSs with enhanced

penetration and prolonged duration of effective thera-

peutic concentrations in the tumor tissue. It is expected

that physiologically based models that incorporate

parameters that reflect the chemical structure of the drug

(for example molecular descriptors, or indirectly, such as

affinity, stability, and permeability) and the composition

and properties of the DDS will be increasingly used to

analyze the disposition of drug/DDSs and to develop

DDSs with higher intratumoral permeation and enhanced

anti-cancer efficacy.

7 Conclusions

Several approaches for prediction of drug disposition have

been developed that are based directly or indirectly on its

chemical structure. These approaches differ in their phy-

siological/mechanistic reliance, ranging from QSPR

models that are based on statistical correlations to PBPK

models that contain numerous physiological parameters in

their structure. These differences in structure and com-

plexity, and the availability of experimental data regard-

ing the individual disposition processes, affect the

principal characteristics of the available models: the

chemical space of the analyzed compounds, model pre-

cision, robustness, ease/possibility of model validation,

reliability of model extrapolations, etc. Different models,

even if they analyze the same disposition process, cannot

be easily compared because of the differences in the

analyzed datasets and, sometimes, because different

parameters are used to report prediction accuracy (dis-

cussed in the Introduction). Recently, several attempts

have been made to compare the accuracy of existing

methods (e.g., of Vss or CL, discussed in the section

‘‘Prediction of Major Disposition Data for Low-Molecu-

lar-Weight Drugs’’) that can be helpful in choice of pre-

diction method for a specific drug that is being

investigated.

Most of the available methods focus on analysis of low-

MW drugs and their fate, and tools that enable prediction

of their disposition are generally available for such drugs,

including:

1 the major pharmacokinetic parameters;

2 disposition pathways;

3 accumulation in the individual tissues; and

4 disposition changes in some pathological conditions.

Accurate prediction is usually defined as less than

twofold difference between observed and predicted values

[10]. On the basis of the studies analyzed in this review, the

accuracy of current prediction approaches for low-MW

drugs is insufficient and must be improved for more effi-

cient application in drug discovery, development, and

regulation. Despite the increasing clinical use of biophar-

maceuticals and DDSs, their disposition is much less

PK-PD analysis 
module

Intratumoral drug/DDS 
disposition module

Population 
analysis module

Drug-drug interactions 
analysis module

Whole-body 
PBPK module

Advanced compartmental absorption and 
transit (ACAT) module for analysis of 

gastrointestinal drug absorption

QSPR module for 
prediction of drug:
• logP
• solubility
• substrate of 
individual CYP 
enzymes

• inhibitor of 
individual CYP 
enzymes

• substrate of Pgp
• …

Physiological parameters:
• volumes of organs & 
fluids

• composition of organs
• perfusion
• structure of physiological 
barriers

• gastrointestinal segments: 
length, pH, transition 
rates, …

• …

Formulation/administration 
properties:
• size and shape of DDSs
• composition of DDSs
• rate of drug release
• adsorption of endogenous 
compounds (‘corona’ 
formation)

• …

Individual patient’s data:
• age
• gender
• body weight
• disease state
• pharmacogenomic data:

expression of CYP 
enzymes, transporters, 
target molecules (e.g., in 
the tumor tissue), etc.

Time course of drug 
concentrations and effects

Fig. 3 Multi-component

physiologically based model for

analysis and prediction of the

pharmacokinetics and

pharmacodynamics of drug/

DDS. CYP cytochrome P450,

DDS drug-delivery system,

PBPK physiologically based

pharmacokinetic, Pgp
P-glycoprotein, PK-PD
pharmacokinetic and

pharmacodynamic, QSPR
quantitative structure-property

(or structure-pharmacokinetic)

relationships
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studied than that of the low-MW drugs, and tools for

analysis and prediction of their disposition are under-

developed. Inefficient intratumoral permeability of bio-

pharmaceuticals and DDSs are a major limitation of their

clinical effectiveness in cancer treatment, and calls for the

development of detailed mechanistically based approaches

for analysis and prediction of the effect of formulation

changes on the disposition of drug/DDSs. It is expected

that this field will be the focus of extensive research in the

next decade and that accumulating data on the individual

pathways of disposition of DDSs will contribute to devel-

opment of more precise and robust approaches for analysis

and prediction of the fate of drug/DDS.

Despite their relative complexity, there is a trend for

increased use of more detailed mechanistically based

PBPK models. Such models allow detailed analysis of

clinically relevant scenarios, for example the effect of the

individual parameters on the time course of the analyzed

drug in the individual organs and tissues [97–99], including

the site of action. This trend reflects better understanding of

the mechanisms that determine individual drug-disposition

pathways, the possibility of deep and mechanistically based

analysis of these data by use of the PBPK approach, and

advances in the development of computers and software

that make this analysis feasible. It is expected that the trend

for increased use of PBPK models will continue, and that

complexity of these models will tend to increase to reflect

the complexity of the analyzed pathways and the accu-

mulating experimental data on disposition of drugs and

DDSs. It is plausible that whole-body PBPK models will be

increasingly used in combination with other approaches,

for example QSPR-based prediction of drug permeability

and metabolism, pharmacogenomic data and tools, and

pharmacokinetic–pharmacodynamic modeling approaches,

etc. (Fig. 3).

Eventually, combinations of these tools will enable

prediction of individualized drug therapy for patients from

different populations (geriatric, pediatric, liver and kidney

diseases, etc.), taking into account the efficiency of the

individual disposition pathways and DDIs in the individual

patient. Some of these tools are already available and can

be used in combination with whole-body PBPK models,

e.g., ADMET predictor [40] and ADME Prediction Tool-

box [100]. Because of the limited accuracy of currently

available prediction tools it seems they are best used iter-

atively when in-silico predictions are verified by use of

more physiologically based tools (e.g., in-vitro, ex-vivo, or

in-vivo measurements of the parameters studied), and the

refined data are used in the next prediction–verification

steps. It is expected that the accuracy of all the modules

shown in Fig. 3 will continue to increase, that they will

enable more reliable prediction of the disposition of drug/

DDS on the basis of chemical structure, and they will

contribute to more effective use of drugs in the future.
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