SYSTEMATIC REVIEW

Efficacy and Safety of Direct Oral Anticoagulants vs Warfarin in Patients with Chronic Kidney Disease and Dialysis Patients: A Systematic Review and Meta-Analysis

Hsin-Yu Chen^{1,4} · Shih-Hsiang Ou^{1,4} · Chien-Wei Huang^{1,4} · Po-Tsang Lee^{1,4} · Kang-Ju Chou^{1,4} · Pei-Chin Lin^{3,6} · Yi-Chia Su^{2,5}

Accepted: 18 February 2021 / Published online: 11 March 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract

Background and Objective Systematic reviews and meta-analyses of direct oral anticoagulants (DOACs) for patients with chronic kidney disease (CKD) or dialysis patients are lacking. We aimed to compare the efficacy and safety of DOACs and warfarin in patients with CKD requiring anticoagulation therapy.

Methods We performed a systematic review and meta-analysis of six randomized controlled trials and 19 observational studies, with the inclusion criteria being a comparative study between DOACs and warfarin in patients with CKD or dialysis patients from database inception until August 2020. The efficacy outcomes were stroke, systemic embolism (SE), or venous thromboembolism (VTE), and the safety outcome was major bleeding.

Results Compared with warfarin, DOACs significantly reduced the risk of stroke/SE/VTE by 22% (hazard ratio [HR] = 0.78, 95% confidence interval [CI] 0.64-0.95) and major bleeding by 17% (HR = 0.83, 95% CI 0.71-0.97). On comparing factor Xa inhibitors and dabigatran with warfarin separately, factor Xa inhibitors significantly reduced the risk of stroke/SE/VTE (HR = 0.78, 95% CI 0.62-0.98) and major bleeding (HR = 0.76, 95% CI 0.64-0.91) overall in patients. Comparing each DOACs with warfarin separately, apixaban was associated with a significantly better risk reduction of stroke/SE/VTE (25% risk reduction) and major bleeding (35% risk reduction) than warfarin. Compared with warfarin, DOACs significantly reduced the risk of stroke, SE, or VTE by 19% (HR = 0.81, 95% CI 0.68-0.97) in patients with CKD stage 3 and significantly lowered the risk of major bleeding by 31% (HR = 0.69, 95% CI 0.56-0.85) in patients with CKD stages 4–5. **Conclusions** In pooled, analyzed randomized controlled trials and observational studies, DOACs were associated with better efficacy in early CKD, as well as similar efficacy and safety outcomes to warfarin in patients with CKD stages 4–5 or dialysis

patients. The results of patients with CKD stages 4–5 and dialysis patients were from observational studies. Well-designed randomized controlled trials focused on DOAC use in patients with CKD and dialysis patients are needed.

PROSPERO register number: CRD42020150599, 6 February, 2020.

1 Introduction

The need for anticoagulation therapy is higher in patients with chronic kidney disease (CKD) than in the general population because the prevalence of atrial fibrillation (AF) increases with declining renal function [1–3]. Atrial fibrillation prevalence is <1% in the general population, 7–27% in patients with end-stage renal disease [4, 5], and 18–21% in non-dialysis patients with CKD [6, 7]. Atrial fibrillation

Yi-Chia Su pauleoswu@hotmail.com

Extended author information available on the last page of the article

is a well-known risk factor for thromboembolism [2], and CKD is independently associated with an increased stroke risk after adjusting for conventional risk factors [8–11]. Systematic reviews of numerous randomized controlled trials (RCTs) have shown that dose-adjusted warfarin reduces the risk of stroke in the general population with AF [12, 13]. However, the optimal antithrombotic treatment with warfarin in patients with CKD with AF remains unclear because patients with CKD are excluded in large-scale RCTs [14]. The current recommendations for warfarin use in patients with CKD with AF are mostly extrapolated from RCTs designed for the general population or based on observational studies and have demonstrated conflicting results [15, 16].

Key Points

Direct oral anticoagulants had significantly better efficacy than warfarin in patients with chronic kidney disease stage 3.

The efficacy and safety profiles were similar in patients with chronic kidney disease stages 4–5 or dialysis patients.

Factor Xa inhibitors exhibited significantly better efficacy and safety profiles, especially apixaban when compared with warfarin.

Direct oral anticoagulants (DOACs) including direct thrombin (dabigatran) and factor Xa (apixaban, edoxaban, and rivaroxaban) inhibitors prevent stroke in the general population; these inhibitors do not require routine monitoring and are easy to use [17–21]. Compared with warfarin, DOACs achieved similar risk reductions for stroke and thromboembolism without increasing the risk of bleeding in patients with creatinine clearance (CrCl) of 30–49 mL/min and those with CrCl \geq 50 mL/ min [17–21]. These results were based on subgroup analyses of RCTs, but patients with advanced CKD with CrCl < 25–30 mL/minor serum creatinine > 2.5 mg/dL were excluded. Numerous observational studies and subgroup analyses of RCTs have been conducted to examine the efficacy and safety of DOACs in patients with CKD and end-stage renal disease. However, a systematic review and meta-analysis comparing DOACs with warfarin in patients with CKD and dialysis patients who require anticoagulation therapy are still lacking. Hence, our aim was to conduct a systematic review and meta-analysis to examine the efficacy and safety profile in patients with CKD and end-stage renal disease between DOACs and warfarin.

2 Methods

2.1 Study Design

We conducted a systematic review and meta-analysis comparing the efficacy and safety of DOACs and warfarin for patients with AF or venous thromboembolism (VTE). This systematic review was in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [22] and The Cochrane Collaboration form [23].

2.2 Search Strategy and Eligibility Criteria

PubMed, Embase, and the Cochrane Library were searched for eligible articles from database inception until 31 August, 2020. Searches were performed using keywords and medical subject headings (MeSH) terms without language restrictions. The search keywords were based on the following strategy: "hemodialysis" or "renal dialysis" or "chronic renal insufficiency" or "kidney disease" or "renal insufficiency" or "end stage renal disease" and "dabigatran" or "edoxaban" or "apixaban" or "rivaroxaban" and "warfarin." Full details of the search strategies are available in Table S2 of the Electronic Supplementary Material [ESM]. The reference lists of relevant reports were manually searched to identify any missing relevant research articles or strategies.

2.3 Study Selection

All RCTs or observational studies were included if they reported (1) patients with CKD stages 3–5 or hemodialysis patients; (2) dabigatran, edoxaban, apixaban, or rivaroxaban and warfarin; and (3) stroke, systemic embolism (SE), VTE, or major bleeding. The exclusion criteria were: (1) patients with non-advanced CKD; (2) studies that did not compare dabigatran, edoxaban, apixaban, or rivaroxaban and warfarin, or studies of DOACs or warfarin alone as anticoagulants; and (3) studies without retrievable endpoints. The titles, abstracts, and contents were screened by two authors (YCS and HYC) to determine whether the studies met the inclusion criteria. The full texts of potentially relevant studies were retrieved and then assessed in more detail.

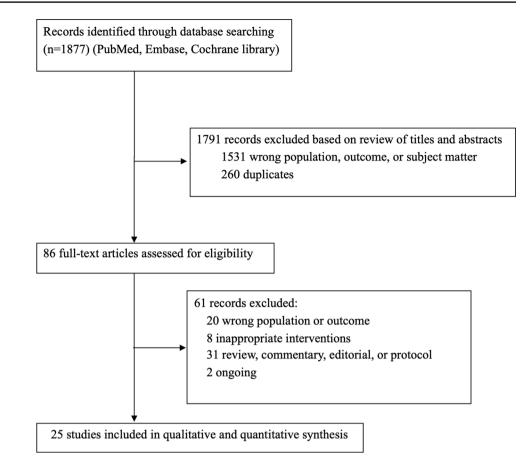
2.4 Data Extraction

Two reviewers (HYC and YCS) independently assessed the studies for eligibility and extracted the data using a standardized data extraction form. Disagreements were resolved through discussion with a third author (CCW). The following parameters were extracted from each study: general characteristics (first author, year of publication, study terms, study design, and country), patient characteristics (number of patients in each treatment arm; patient age; CHADS2, CHA2DS2-VASc score, or HAS-BLED score/bleeding index score [mean \pm standard deviation or median (interquartile range)]; renal function/CKD stage; and international normalized ratio), characteristics of treatment regimen (dabigatran, edoxaban, apixaban, rivaroxaban, and warfarin and their dosage), efficacy, and safety (stroke, SE, or VTE and major bleeding). Any unpublished data indicated in the included studies were clarified by contacting the authors.

2.5 Quality Assessment

Quality assessment of these studies was performed using The Cochrane Collaboration's "Risk of Bias" tool 2.0 for all RCTs [24]. For each included trial, a judgment of bias was provided for each of the following domains: allocation, performance, follow-up, measurement, reported bias, and overall. The observational studies included in the meta-analysis were assessed for methodological quality using the Newcastle–Ottawa scale [25]. This scale assesses study selection (four items), comparability (two items), and ascertainment of exposure/outcome (three items). "High"-quality items were scored with a "star." A study was awarded a maximum of one star for each item within the selection and exposure/outcome categories, while a maximum of two stars was given for the comparability category. The maximum score was nine. A final score of \geq 7 indicated high quality. These quality assessments were judged independently by two reviewers (WCC and HYC) and any conflict was discussed with the third reviewer (YCS).

2.6 Statistical Analysis


In the RCTs or observational studies, hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were extracted for stroke, SE, VTE, or major bleeding. If a multivariate analysis or propensity score matching was reported, an adjusted HR was used. For articles reporting only the total number of patients and event numbers in each group (DOACs vs warfarin), the HR was calculated from the risk ratio based on the methodology published by Parmar et al. [26] The inverse variance method was used to calculate overall HR and 95% CI [27]. Quantitative meta-analyses of pooled-effect estimates were calculated and were presented using forest plots. The outcomes were analyzed using the DerSimonian-Laird random-effects model to address potential high heterogeneity among the studies. Subgroup analyses were carried out according to the study characteristics to investigate the source of heterogeneity, which included study design (RCT and non-RCT), different DOACs, and CKD stage. Inter-study heterogeneity was measured using Cochran's Q test. Substantial statistical heterogeneity between studies was defined as a statistically significant χ^2 value (p < 0.10). I² values of 0–24.9%, 25–49.9%, 50–74%, and 75-100% denoted no, low, moderate, and high heterogeneity, respectively. Funnel plot analysis [28] and Egger's test [29] were performed to assess small study bias and/or publication bias. Statistical analysis was performed using Review Manager 5.3. [30] The results were considered statistically significant when the *p* value (two-sided) was < 0.05.

3 Results

3.1 Characteristic Information of Search Results

Through the search strategy for electronic databases, 1877 studies were identified. After reviewing the titles and abstracts, 1791 publications were either duplicates or irrelevant and were thus excluded. Out of 86 articles retrieved for full-text evaluation, we excluded 20 owing to an incorrect population or outcome, eight with inappropriate interventions, and 31 that were reviews, commentaries, editorials, or protocols. Therefore, six RCTs and 19 observational studies were included in the metaanalysis (Fig. 1), and all of these reported outcomes with stroke, SE, or VTE and major bleeding [31–55]. One of the RCTs was a pooled analysis from the RE-COVER and RECOVER II trials [37]. All eligible trials enrolled DOACs with dabigatran (seven), edoxaban (three), apixaban (13), or rivaroxaban (14) compared with warfarin in patients with CKD. Four studies were conducted in Asia. The remaining 21 studies were conducted in America and Europe. Three of these trials compared dabigatran and rivaroxaban with warfarin in the same trial [32, 38, 42]. Eight studies compared apixaban with warfarin [39, 44-46, 49, 50, 54, 55]. Six studies compared rivaroxaban with warfarin [34-36, 41, 52, 53]. Two studies compared dabigatran with warfarin [37, 40]. One study compared edoxaban with warfarin [31]. Three studies compared dabigatran, rivaroxaban, and apixaban with warfarin [43, 47, 48]. Meanwhile, two studies compared all DOACs with warfarin [33, 51]. The characteristics and measured effects of the 25 studies are summarized in Table S1 of the ESM. Five observational studies performed propensity score matching. Most studies involved AF. The mean or median CHADS2 or CHA2DS2-VASc score of enrolled participants was above 2 in 16 publications. Nine studies included HAS-BLED scores above 2. The enrolled studies included nine at CKD stage 3 and seven at CKD stages 4-5 for stroke/SE/VTE and major bleeding. Chronic kidney disease stage 5 with hemodialysis was noted in seven and nine studies for stroke/SE/VTE and major bleeding, respectively. Thirteen studies provided HR for stroke/ SE/VTE, and six studies provided numbers for stroke/ SE/VTE evaluation. For 14 out of 25 studies for major bleeding, HR data were shown. The quality of eligible RCTs and observational studies were assessed using the Cochrane Risk of Bias 2.0 tool and the Newcastle-Ottawa Scale, respectively (Table S3, Fig. S1A and S1B of the ESM). Allocation concealment was inadequate in one RCT [39] and there were some concerns in the remaining studies [31, 36, 37, 40, 41]. Reporting bias was found in two RCTs [37, 39]. All of the observational studies scored

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flowchart summarizing study identification and selection

from 2 to 8 on the Newcastle–Ottawa Scale criteria and were included in the quantitative analysis. Seven cohort studies were considered to be of high quality (Newcastle–Ottawa score \geq 7) [32–34, 44, 47, 49, 52].

3.2 Effect on stroke, SE, or VTE and major bleeding

The DOAC group was significantly associated with a 22% lower risk of stroke, SE, or VTE than the warfarin group (HR 0.78, 95% CI 0.64–0.95) (Fig. 2a). The pooled estimated HR of the RCTs was 0.75 (95% CI 0.62-0.91), showing a significant difference in stroke, SE, or VTE between DOACs and warfarin. A similar reduction was seen in the observational studies but failed to achieve significance in the observational studies (HR = 0.78, 95% CI 0.59-1.03). The DOAC group was associated with a 17% reduction in major bleeding risk compared with the warfarin group (HR = 0.83, 95% CI 0.71–0.97). The HR for the subgroup analysis was 0.83 (95% CI 0.67-1.02) in the RCTs and 0.81 (95% CI 0.66–0.99) in the observational studies (Fig. 2b). There were nine studies analyzing the risk of intracranial hemorrhage between DOACs and VKA [31, 35, 36, 40, 41, 48, 52-54]. The DOAC group was significantly associated with a 50% reduction in intracranial hemorrhage risk compared with the warfarin group (HR = 0.50, 95% CI 0.33-0.77) (Fig. S2 of the ESM).

3.3 Subgroup Analysis

3.3.1 By DOAC Type

The subgroup analysis of DOAC type included non-dabigatran DOACs of edoxaban, rivaroxaban, apixaban, and dabigatran [31, 32, 34-37, 39-41, 44, 46, 49, 50, 52-55]. Compared with warfarin, non-dabigatran DOACs were significantly associated with a 24% reduced risk of stroke, SE, or VTE compared with warfarin, and a similar reduction was seen in the dabigatran vs warfarin group but failed to achieve significance (dabigatran: HR = 0.75, 95% CI $0.26-2.18, I^2 = 83\%$; non-dabigatran DOACs: HR = 0.78, 95% CI 0.62–0.98, $I^2 = 44\%$; subgroup differences: p =0.95) (Table 1, Fig. S3 of the ESM). In the subgroup analysis of major bleeding, non-dabigatran DOACs was shown to significantly reduce major bleeding (non-dabigatran DOACs: HR = 0.76, 95% CI 0.64–0.91, $I^2 = 62\%$). The comparison to dabigatran showed no significant difference in the pooled analysis of the studies [31, 32, 34, 36-41, 44–46, 49–55] (dabigatran: HR = 1.21, 95% CI 0.99–1.49, $I^2 = 49\%$) (Table 1, Fig. S4 of the ESM). However, in the pooled analysis, a significant difference across subgroups of patients by DOAC type was noted for major bleeding (test for subgroup differences: p < 0.001, $I^2 = 91.6\%$ between non-dabigatran DOACs and dabigatran) (Fig. S4 of the ESM). On comparing four DOACs with warfarin separately on efficacy and safety outcomes, apixaban was significantly associated with a 25% reduced risk of stroke/SE/VTE compared with warfarin (HR = 0.75, 95% CI 0.57–0.98) (Fig. S5 of the ESM), as well as a significantly reduced 35% risk of major bleeding compared with warfarin (HR = 0.65, 95% CI 0.46–0.91) (Fig. S6 of the ESM).

3.3.2 By CKD Stage

Subgroup analyses were also conducted according to CKD stage, particularly on CKD stage 3 [31, 34, 36, 37, 39, 40, 42, 47], which showed a significant association with a reduced risk of stroke, SE, or VTE. Chronic kidney disease stages 4-5 [32, 33, 43, 44, 46, 49, 50, 52] with hemodialysis rendered this association not significant (CKD stage 3: HR = 0.81, 95% CI 0.68–0.97, $I^2 = 22\%$; CKD stages 4–5: HR = 0.77, 95% CI 0.45–1.32, $I^2 = 37\%$; and CKD stage 5 with hemodialysis: HR = 0.92, 95% CI 0.54–1.58, I^2 = 74%; subgroup differences: p = 0.88) (Table 2, Fig. S7 of the ESM). In CKD stages 4-5, DOACs significantly reduced the risk of major bleeding. In CKD stage 3, there was a marginally significant effect (CKD stage 3: HR = 0.85, 95% CI $0.69-1.05, I^2 = 67\%$; CKD stages 4-5: HR = 0.69, 95% CI 0.56–0.85, $I^2 = 0\%$; and CKD stage 5 with hemodialysis: HR = 0.82, 95% CI 0.56–1.22, I^2 = 86%; subgroup differences: p = 0.34) (Table 2, Fig. S8 of the ESM).

3.3.3 By Population Type

Subgroup analyses were also conducted according to the population. Direct oral anticoagulants were shown to significantly reduce the risk of VTE compared with warfarin in the VTE population (VTE population: HR = 0.14, 95% CI 0.04–0.54, $I^2 = 0\%$), and had a trend to reduce stroke or SE risk in the AF population more than warfarin (HR = 0.83, 95% CI 0.68–1.01, $I^2 = 54\%$; subgroup differences: p = 0.01) (Table 1). Furthermore, DOACs were significantly associated with a 20% reduction in major bleeding risk compared with warfarin in the AF population (HR = 0.80, 95% CI 0.67–0.97), and the risks of major bleeding were similar between DOACs and warfarin in the VTE population (HR = 0.56, 95% CI 0.11–2.88) (Table 1).

3.4 Publication Bias

According to Egger's test, there was no significant evidence of publication bias for stroke, SE, or VTE and for major bleeding (p = 0.412 and p = 0.146, respectively).

4 Discussion

Our systematic review and meta-analysis utilized six RCTs and 19 observational studies to provide a comprehensive comparison of the efficacy and safety between DOACs and warfarin in patients with CKD. Compared with warfarin, DOACs significantly reduced the stroke/SE/VTE risk by 22% and major bleeding risk by 17% in all patients with CKD. Factor Xa inhibitors (apixaban, edoxaban, and rivaroxaban) were associated with a significantly better prevention of stroke/SE/VTE (22% risk reduction) and major bleeding (24% risk reduction) than warfarin. Comparing each DOAC with warfarin separately, apixaban was associated with a significantly better risk reduction in stroke/ SE/VTE (25% risk reduction) and major bleeding (35% risk reduction) than warfarin. Considering the prevention of stroke or thromboembolism in different CKD stages, DOACs exhibited significantly better efficacy than warfarin in patients with CKD stage 3, as well as similar efficacy in patients with CKD stages 4-5 or dialysis patients. As for major bleeding, DOACs showed significantly better safety profiles than warfarin in patients with CKD stages 4-5, as well as similar safety in patients with CKD stage 3 or dialysis patients. The results of patients with CKD stages 4-5 and dialysis patients were mainly retrieved from observational studies, and further well-designed large-scale RCTs will be needed.

The 2014 American Heart Association/American College of Cardiology/Heart Rhythm Society guideline suggests that warfarin use is reasonable in patients with CrCl <15 mL/ min or those receiving dialysis with nonvalvular AF and CHA_2DS_2 -VASc scores ≥ 2 [56]. However, warfarin use in patients with CKD raises the concern of increasing the risk of ectopic/vascular calcification, aortic valve calcification, impaired regulation of bone mineralization, and lower bone density [57–59]. Therefore, many patients with CKD who meet the anticoagulation criteria do not receive anticoagulation therapy [60]. Our systematic review and meta-analysis of RCTs and observational studies of real-world clinical practice demonstrates the efficacy and safety of DOACs in every category of CKD, when compared with warfarin. Furthermore, DOAC use can avoid the unwanted adverse effects induced by warfarin. It is reasonable that DOAC use in patients with CKD is substantial and increasing [61].

Patients with advanced CKD and dialysis patients are prone to uremic bleeding due to platelet dysfunction. The involvement of renal clearance in DOAC metabolism varies (dabigatran, 80%; edoxaban, 50%; rivaroxaban, 33%; apixaban, 27%) [61]. The DOAC elimination half-lives are also different from each other (dabigatran, 12–17 h; edoxaban, 9–11 h; rivaroxaban, 11–13 h; apixaban, 12 hours) [62]. Fifty to

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, 95% CI	Hazard Ratio IV, Random, 95% Cl
RCT					
Bohula 2016	-0.1326	0.1521	8.8%	0.88 [0.65, 1.18]	
Fox 2011	-0.1776	0.1962	7.8%	0.84 [0.57, 1.23]	-
Goldhaber 2017	-2.3208	1.4705	0.5%	0.10 [0.01, 1.75]	
Hijazi 2014	-0.5784	0.2122	7.4%	0.56 [0.37, 0.85]	
Hijazi 2016	-0.3522	0.1948	7.8%	0.70 [0.48, 1.03]	
Hori 2013	-0.1984		2.2%	0.82 [0.25, 2.69]	
Subtotal (95% CI)	-0.1304	0.0001	34.6%	0.75 [0.62, 0.91]	•
Heterogeneity: Tau² = Test for overall effect:		= 5 (P = 1			
	2 - 0.00 (i - 0.000)				
non-RCT Chan 2015	0.5877	0.3593	4.6%	1.80 [0.89, 3.64]	+
Chan 2015	0.5324	0.2872	5.8%	1.70 [0.97, 2.99]	
Chang 2019	-1.4067	0.4571	3.4%	0.24 [0.10, 0.60]	
Coleman 2017	-0.5447		2.5%	0.58 [0.19, 1.77]	
Coleman 2019		0.3583	4.6%	0.54 [0.27, 1.10]	
Di Lullo 2018					←
	-4.8002		0.5%	0.01 [0.00, 0.14]	
Hanni 2020	-0.6827		4.0%	0.51 [0.23, 1.11]	
Hernodon 2020	-0.6349		0.7%	0.53 [0.05, 5.62]	
Lee 2015		0.6784	1.8%	0.79 [0.21, 3.00]	
Nissen Bond 2018	-0.1046		7.7%	0.90 [0.61, 1.33]	-+
Reed 2018	-1.8611	0.7727	1.5%	0.16 [0.03, 0.71]	
Schafer 2018		0.6659	1.9%	1.25 [0.34, 4.61]	
Shin 2018	0.0618	0.1328	9.3%	1.06 [0.82, 1.38]	+
Biontis 2018	-0.1113		9.3%	0.89 [0.69, 1.16]	-
Stanton 2017		0.5531	2.6%	1.00 [0.34, 2.96]	
Neir 2020	-0.0726		2.0% 4.6%		
				0.93 [0.46, 1.88]	
Yanagisawa 2018	-1.4448	1.2588	0.6%	0.24 [0.02, 2.78]	
Subtotal (95% CI)			65.4%	0.78 [0.59, 1.03]	•
Heterogeneity: Tau² = Fest for overall effect:		3f=16 (P	= 0.0006)	; l² = 61%	
Total (95% CI)			100.0%	0.78 [0.64, 0.95]	•
	0.00.01.7.40.40				
	0.09; Chi ² = 48.42, 0	ят = 22 (P	= 0.0010)	; i* = 55%	0.001 0.1 1 10
Fest for overall effect: Test for suboroun diff	Z = 2.46 (P = 0.01)	df = 1 (F	9 = 0 83) 1ª		Favours [DOAC] Favours [warfarin]
Fest for overall effect: Fest for subaroun diff	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05			Hazard Ratio	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for subaroun diff Study or Subgroup	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05				Favours [DOAC] Favours [warfarin]
Fest for overall effect: Fest for subaroun diff <u>Study or Subaroup</u> RCT	Z = 2,46 (P = 0.01) erences: Chi ² = 0.05 log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Random, 95% CI	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff <u>Study or Subgroup</u> RCT Bohula 2016	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 <u>log[Hazard Ratio]</u> -0.2825	<u>SE</u> 0.1338	Weight 6.3%	Hazard Ratio <u>IV, Random, 95% CI</u> 0.75 (0.58, 0.98)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff <u>Study or Subgroup</u> RCT Bohula 2016 Fox 2011	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487	SE 0.1338 0.1428	<u>Weight</u> 6.3% 6.1%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26]	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for subgroup diff <u>Study or Subgroup</u> RCT Bohula 2016 Fox 2011 Goldhaber 2017	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 log[Hazard Ratio] -0.2825 -0.0487 0.2597	SE 0.1338 0.1428 0.5874	<u>Weight</u> 6.3% 6.1% 1.5%	Hazard Ratio IV. Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroup diff <u>Study or Subgroup</u> RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133	SE 0.1338 0.1428 0.5874 0.1271	Weight 6.3% 6.1% 1.5% 6.4%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276	SE 0.1338 0.1428 0.5874 0.1271 0.1382	Weight 6.3% 6.1% 1.5% 6.4% 6.2%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77]	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Suboroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276	SE 0.1338 0.1428 0.5874 0.1271	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 2.2%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for subgroup diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI)	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 2.2% 28.6%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Suboroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 : 0.03; Chi ² = 10.58,	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 2.2% 28.6%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02)	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Suboroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 : 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08)	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P =	Weight 6.3% 6.1% 1.5% 6.2% 2.2% 28.6% = 0.06); I [≠] =	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53%	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 :0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% ■ 0.06); I ^a = 6.1%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.05276 -0.1212 :0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 2.8.6% = 0.06); ² = 6.1% 6.8%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 :0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438	Weight 6.3% 6.1% 6.4% 6.2% 2.2% 28.6% e 0.06); I ^a = 6.1% 6.8% 4.5%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Suboroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2017	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 28.6% = 0.06); I ² = 6.1% 6.8% 4.5% 4.3%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53% 1.37 (1.03, 1.83) 1.48 (1.21, 1.81) 0.81 (0.50, 1.30) 0.61 (0.37, 1.01)	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 :0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438	Weight 6.3% 6.1% 6.4% 6.2% 2.2% 28.6% e 0.06); I ^a = 6.1% 6.8% 4.5%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff Study or Suboroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2017	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2576 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4822 -0.3825	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 28.6% = 0.06); I ² = 6.1% 6.8% 4.5% 4.3%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53% 1.37 (1.03, 1.83) 1.48 (1.21, 1.81) 0.81 (0.50, 1.30) 0.61 (0.37, 1.01)	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2017 Coleman 2017 Coleman 2019	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.25276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3255 -0.755	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 6.8% 4.5% 4.3% 5.3%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.37, 1.01] 0.68 [0.47, 0.99]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2019 Coleman 2019 Hanni 2020 Harel 2016	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 :0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386	SE 0.1338 0.1428 0.5874 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 28.6% 28.6% 6.1% 6.8% 4.5% 4.5% 4.3% 5.3% 6.5%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2019 Coleman 2019 Hanni 2020 Hanni 2020 Harel 2016 Harel 2016	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 : 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.8) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 5.2%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 (1.21, 1.81) 0.81 (0.50, 1.30) 0.61 (0.37, 1.01) 0.68 (0.47, 0.99) 0.47 (0.06, 3.68) 1.15 (0.91, 1.45) 1.22 (0.83, 1.79)	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2015 Coleman 2017 Coleman 2017 Coleman 2019 Hanni 2020 Harel 2016 Harel 2016 Hernodon 2020	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2825 -0.0487 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4822 -0.3825 -0.755 0.1386 0.1979 -0.6349	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.198 1.0502 0.1980	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 6.8% 4.5% 4.3% 5.3% 0.5% 6.5% 6.5% 5.2% 1.5%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.36, 2.18] 0.83 [0.36, 1.102] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.30, 1.30] 0.81 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2017 Hanni 2020 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.3825 -0.755 0.1386 0.1979 -0.6349 -0.6349 -0.5152	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961 0.5802 0.5837	Weight 6.3% 6.1% 1.5% 6.4% 2.86% 20.06); I² = 6.1% 6.8% 4.5% 5.3% 0.5% 5.2% 1.5%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2019 Hanni 2020 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 <u>log[Hazard Ratio]</u> -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961 0.5802 0.5837 0.1382	Weight 6.3% 6.1% 1.5% 6.4% 6.2% 28.6% 28.6% 6.1% 6.8% 4.5% 4.5% 4.3% 5.3% 6.5% 5.2% 1.5% 6.2%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2019 Coleman 2019 Coleman 2019 Hanni 2020 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Reed 2018	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.8) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2915 -0.2925 -0.1925	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961 0.5802 0.5837 0.1382 0.564	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 5.2% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.6%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 (1.21, 1.81) 0.81 (0.50, 1.30) 0.61 (0.37, 1.01) 0.68 (0.47, 0.99) 0.47 (0.06, 3.68) 1.15 (0.91, 1.45) 1.22 (0.83, 1.79) 0.53 (0.17, 1.65) 0.25 (0.57, 0.69) 0.75 (0.57, 0.69) 0.75 (0.57, 0.69) 0.24 (0.08, 0.73)	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2017 Coleman 2017 Coleman 2017 Coleman 2019 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Sarratt 2017	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2927 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.6349 -1.5152 -0.2912 -1.4202 -1.4697	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.2562 0.1188 0.2562 0.1188 0.2562 0.1382 0.5837 0.1382 0.5837 0.1382	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 6.5% 1.5% 1.5% 1.5% 1.6% 0.3%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.36, 2.18] 0.83 [0.36, 2.18] 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.30, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.68] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.23 [0.01, 3.93]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2019 Coleman 2019 Coleman 2019 Hanni 2020 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Reed 2018	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.8) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2915 -0.2925 -0.1925	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.2562 0.1188 0.2562 0.1188 0.2562 0.1382 0.5837 0.1382 0.5837 0.1382	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 5.2% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.6%	Hazard Ratio IV, Random, 95% CI 0.75 (0.58, 0.98) 0.95 (0.72, 1.26) 1.30 (0.41, 4.10) 1.01 (0.79, 1.30) 0.59 (0.45, 0.77) 0.89 (0.36, 2.18) 0.83 (0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 (1.21, 1.81) 0.81 (0.50, 1.30) 0.61 (0.37, 1.01) 0.68 (0.47, 0.99) 0.47 (0.06, 3.68) 1.15 (0.91, 1.45) 1.22 (0.83, 1.79) 0.53 (0.17, 1.65) 0.25 (0.57, 0.69) 0.75 (0.57, 0.69) 0.75 (0.57, 0.69) 0.24 (0.08, 0.73)	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2017 Coleman 2017 Coleman 2017 Coleman 2019 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Sarratt 2017	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.3825 -0.755 0.1386 0.3189 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912 -1.4697 -0.6556	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.2562 0.1188 0.2562 0.1188 0.2562 0.1382 0.5837 0.1382 0.5837 0.1382	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 6.5% 1.5% 1.5% 1.5% 1.6% 0.3%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.36, 2.18] 0.83 [0.36, 2.18] 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.30, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.68] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.23 [0.01, 3.93]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2014 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2018 Harel 2016 Harel 2016 Harel 2016 Nissen Bond 2018 Reed 2018 Sarratt 2017 Schafer 2018	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912 -1.4202 -1.4202 -0.8556 -0.2179	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961 0.5802 0.5847 0.1382 0.564 1.4481 0.2011 0.2011 0.2018	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); = = 6.1% 4.5% 4.3% 5.3% 6.5% 5.2% 1.5% 6.2% 1.6% 0.3% 5.1% 6.1%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.24 [0.08, 0.73] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2014 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chang 2019 Coleman 2019 Coleman 2019 Hanni 2020 Harel 2016 Harel 2016 Harel 2016 Harel 2016 Nissen Bond 2018 Reed 2018 Saratt 2017 Schafer 2018 Stontis 2018 Stanton 2017	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.7555 0.1386 0.1979 -0.6349 -1.4202 -1.4697 -0.2912 -1.4697 -0.6153	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.2438 0.2562 0.19 1.0502 0.5802 0.1382 0.5847 1.4481 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2359 0.2562 0.2564 1.4481 0.2010 0.2013 0.2011 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% 2.000); I ^a = 6.1% 4.5% 4.3% 5.3% 0.5% 5.2% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.6% 0.3% 5.1% 5.3%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 0.22 [0.07, 0.69] 0.75 [0.57, 0.69] 0.75 [0.57, 0.69] 0.23 [0.01, 3.93] 0.23 [0.01, 3.93] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.23, 1.27]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2017 Coleman 2017 Coleman 2019 Harel 2016 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Sarratt 2017 Schafer 2018 Siontis 2018 Sianton 2017 Weir 2020	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2825 -0.0487 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4822 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.6349 -1.5152 -0.6556 -0.6556 -0.6556 -0.2179 -0.6556 -0.2179 -0.6153 -0.0943	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.2562 0.1188 0.26837 0.1382 0.5844 1.4481 0.2011 0.2011 0.4359 0.4359 0.4359 0.4359	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); I ^a = 6.1% 6.8% 4.5% 4.3% 5.3% 0.5% 6.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.6% 0.3% 5.1% 5.8%	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.23 [0.01, 3.93] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.23, 1.27] 0.91 [0.65, 1.27]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2017 Harni 2020 Harel 2016 Harel 2016 Harel 2016 Harel 2018 Nissen Bond 2018 Reed 2018 Stanton 2017 Schafer 2018 Stanton 2017 Weir 2020 Yanagisawa 2018	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2825 -0.0487 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4822 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.6349 -1.5152 -0.6556 -0.6556 -0.6556 -0.2179 -0.6556 -0.2179 -0.6153 -0.0943	SE 0.1338 0.1428 0.5874 0.1271 0.1382 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.2438 0.2562 0.19 1.0502 0.5802 0.1382 0.5847 1.4481 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2011 0.2359 0.2562 0.2564 1.4481 0.2010 0.2013 0.2011 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0.2564 0.2012 0	Weight 6.3% 6.1% 1.5% 6.4% 8.2% 28.6% 20.06); ² = 6.1% 5.3% 0.5% 5.3% 0.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 5.1% 6.8% 2.3% 5.6% 1.2%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.61 [0.57, 1.01] 0.61 [0.57, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.23 [0.01, 3.93] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.22, 3.01]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroup diff RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2018 Harni 2020 Harel 2016 Hernodon 2020 Lee 2015 Nissen Bond 2018 Reed 2018 Sarratt 2017 Schafer 2018 Siontis 2018 Stanton 2017 Weir 2020 Yanagisawa 2018 Subtotal (95% CI)	Z = 2.46 (P = 0.01) erences: Chi ^z = 0.05 -0.2825 -0.0487 0.2503 -0.2825 -0.0487 0.2507 -0.1212 0.03; Chi ^z = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912 -1.4202 -1.4202 -1.4202 -0.6556 -0.2179 -0.6556 -0.2179 -0.6153 -0.0943 -0.1985	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.5802 0.5802 0.5802 0.5804 1.4481 0.2011 0.2014 1.4481 0.2011 0.1008 0.4359 0.1717 0.6635	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); ² = 6.1% 6.8% 4.5% 4.3% 5.3% 6.5% 5.2% 1.5% 6.2% 1.6% 0.3% 5.1% 6.8% 2.3% 5.6% 5.3% 5.1% 6.2% 1.6% 0.3% 5.1% 6.8% 2.3% 5.6% 5.2% 71.4%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.23, 1.27] 0.81 [0.66, 0.99]	Favours [DOAC] Favours [warfarin] Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2017 Harni 2020 Harel 2016 Harel 2016 Harel 2016 Harel 2018 Nissen Bond 2018 Reed 2018 Stanton 2017 Schafer 2018 Stanton 2017 Weir 2020 Yanagisawa 2018	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912 -1.4202 -1.4207 -0.6556 -0.2179 -0.6153 -0.943 -0.1985 : 0.11; Chi ² = 66.73,	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.5802 0.5802 0.5802 0.5804 1.4481 0.2011 0.2014 1.4481 0.2011 0.1008 0.4359 0.1717 0.6635	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); ² = 6.1% 6.8% 4.5% 4.3% 5.3% 6.5% 5.2% 1.5% 6.2% 1.6% 0.3% 5.1% 6.8% 2.3% 5.6% 5.3% 5.1% 6.2% 1.6% 0.3% 5.1% 6.8% 2.3% 5.6% 5.2% 71.4%	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.23, 1.27] 0.81 [0.66, 0.99]	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chang 2019 Coleman 2017 Coleman 2017 Coleman 2017 Coleman 2017 Kissen Bond 2018 Reed 2018 Saratt 2017 Schafer 2018 Stanton 2017 Schafer 2018 Stanton 2017 Weir 2020 Yanagisawa 2018 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2597 0.0133 -0.5276 -0.1212 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6349 -1.5152 -0.2912 -1.4202 -1.4207 -0.6556 -0.2179 -0.6153 -0.943 -0.1985 : 0.11; Chi ² = 66.73,	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.5802 0.5802 0.5802 0.5804 1.4481 0.2011 0.2014 1.4481 0.2011 0.1008 0.4359 0.1717 0.6635	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 2.8.6% 2.006); ² = 6.1% 6.8% 4.5% 5.3% 0.5% 5.2% 1.5% 6.2% 1.5% 6.2% 1.5% 6.2% 1.5% 6.2% 1.5% 6.8% 2.3% 7.1.4% < 0.00001	Hazard Ratio IV. Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.23 [0.11, 3.93] 0.52 [0.35, 0.77] 0.80 [0.66, 1.27] 0.82 [0.22, 3.01] 0.81 [0.66, 0.99] 1); I ⁺ = 75%	Favours [DOAC] Favours (warfarin) Hazard Ratio
Test for overall effect: Test for suboroun diff Study or Subgroup RCT Bohula 2016 Fox 2011 Goldhaber 2017 Hijazi 2014 Hijazi 2016 Hori 2013 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: non-RCT Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2015 Chan 2017 Coleman 2017 Coleman 2017 Coleman 2018 Harel 2016 Harel 2016 Harel 2016 Harel 2016 Harel 2018 Sarratt 2017 Schafer 2018 Stanton 2017 Weir 2020 Yanagisawa 2018 Subtotal (95% CI) Heterogeneity: Tau ² =	Z = 2.46 (P = 0.01) erences: Chi ² = 0.05 -0.2825 -0.0487 0.2503 -0.2121 0.03; Chi ² = 10.58, Z = 1.77 (P = 0.08) 0.3169 0.392 -0.2154 -0.4922 -0.3825 -0.755 0.1386 0.1979 -0.6556 0.1386 0.1979 -0.6546 -0.2179 -0.6556 -0.2179 -0.6556 -0.2179 -0.6556 -0.2179 -0.6153 -0.0943 -0.1985 0.11; Chi ² = 66.73, Z = 2.03 (P = 0.04)	SE 0.1338 0.1428 0.5874 0.1271 0.4594 df = 5 (P = 0.1466 0.1027 0.2438 0.2562 0.19 1.0502 0.1188 0.1961 0.5802 0.5804 1.4481 0.2011 1.0582 0.564 1.4481 0.2011 0.1008 0.4359 0.1717 0.6635 df = 17 (P	Weight 6.3% 6.1% 1.5% 6.4% 2.2% 28.6% = 0.06); * = 6.1% 6.8% 4.5% 4.3% 5.3% 0.5% 5.2% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.2% 71.4% < 0.0000*	Hazard Ratio IV, Random, 95% CI 0.75 [0.58, 0.98] 0.95 [0.72, 1.26] 1.30 [0.41, 4.10] 1.01 [0.79, 1.30] 0.59 [0.45, 0.77] 0.89 [0.36, 2.18] 0.83 [0.67, 1.02] = 53% 1.37 [1.03, 1.83] 1.48 [1.21, 1.81] 0.81 [0.50, 1.30] 0.61 [0.37, 1.01] 0.68 [0.47, 0.99] 0.47 [0.06, 3.68] 1.15 [0.91, 1.45] 1.22 [0.83, 1.79] 0.53 [0.17, 1.65] 0.22 [0.07, 0.69] 0.75 [0.57, 0.98] 0.24 [0.08, 0.73] 0.52 [0.35, 0.77] 0.80 [0.66, 0.98] 0.54 [0.23, 1.27] 0.81 [0.66, 0.99] 1); I ² = 75%	Favours [DOAC] Favours (warfarin) Hazard Ratio

◄Fig. 2 Forest plot of (a) stroke, systemic embolism, or venous thromboembolism results among users of direct oral anticoagulants (DOACs) vs warfarin. In the non-randomized controlled trial (RCT) subgroup analysis, "Chan 2015" presented the results of two comparisons (rivaroxaban vs warfarin, rate ratio 1.8; dabigatran vs warfarin, rate ratio 1.7). Forest plot of (b) major bleeding results among users of DOACs vs warfarin. In the non-RCT subgroup analysis, "Chan 2015" presented the results of two comparisons (rivaroxaban vs warfarin, hazard ratio 1.37; dabigatran vs warfarin, hazard ratio 1.48), and "Harel 2016" also presented the results of two comparisons (dabigatran vs warfarin, odd ratio 1.15; rivaroxaban vs warfarin, odd ratio 1.22). CI confidence interval, SE systemic error

sixty percent of dabigatran can be removed by 4 h of hemodialysis, while < 10% of other DOACs can be removed (apixaban, 7%; rivaroxaban, <1%; edoxaban, 9%). Well-planned multi-dose pharmacokinetic studies and further RCTs to validate pharmacokinetic results in patients with advanced CKD and dialysis patients are lacking. A major bleeding risk is the most concerning issue when using DOACs in patients with CKD. Real-world practices found in the Fresenius database (consisting of 102,504 patients with AF with advanced CKD and 140,918 patients with AF receiving dialysis) have demonstrated an increased use of apixaban (10.4%) and rivaroxaban (9.5%), and a decreased use of dabigatran (3.5%) in patients with advanced CKD as of October 2015 [61]. In dialysis patients, apixaban is used far more frequently (10.5%) than the other three DOACs. Our subgroup analysis demonstrated a significantly better non-dabigatran DOAC efficacy and safety profile, especially with apixaban when comparing with warfarin. Therefore, our results support real-world practices.

Our study has five major limitations. First, there was no standard dose-adjusted protocol in every included study, and the dose of DOACs in the same category of patients with CKD was not exactly the same. However, well-designed multi-dose pharmacokinetic studies and RCTs for the CKD population are lacking. Consequently, a standard dose-adjusted protocol is difficult to establish. Second, the included study population was not purely patients with nonvalvular AF, and we analyzed stroke, SE, and VTE together as the same efficacy outcome, and may have introduced bias because of the different pathophysiology of SE and VTE. However, according to a 20-year population-based Danish cohort (25,199 patients), patients with deep vein thrombosis had a relative risk of 2.19 for stroke, whereas patients with pulmonary embolism had a relative risk of 2.93 for stroke [62]. It is reasonable to include these studies because patients with VTE have an increased risk of stroke and fulfill the DOAC indication. To clarify the limitation, we analyzed the VTE and AF populations on SE and VTE outcome separately. There were two studies reporting the VTE population and 19 studies reporting the AF population. In the pooled 2 analysis with the reporting VTE population (237 patients with VTE in Goldhaber et al. [37] and 66 patients with VTE in Reed et al. [44]), DOACs were significantly associated with reducing the risk of VTE compared with warfarin. In the pooled 17 analysis with a reporting AF population, DOACs tended to reduce the stroke or SE risk in the AF population more than warfarin. Third, we included post hoc analyses of RCTs and observational studies, and these could have led to bias. To overcome the inherent bias, we utilized the corresponding HR value to present our outcomes. Fourth, not all the studies used the Cockcroft-Gault equation for CrCl to define renal function; some studies used the CKD-EPI equation. As a result, we grouped the patients according to the nearest CrCl threshold into patients with CKD stages 3 and 4-5 without dialysis and dialysis patients. This might have introduced sampling bias. Fifth, we used HR to present our outcomes. Because HR may change over time, and with a built-in selection bias, the use of HR for a causal relationship interpretation is not straightforward, even without unmeasured confounding factors, measurement error, and model misspecification. Sixth, the results of patients with CKD stages 4-5 and dialysis patients were mainly retrieved from observational studies, and further well-designed RCTs are needed to better clarify the efficacy and safety of DOAC use in patients with CKD.

5 Conclusions

Our systematic review and meta-analysis showed that compared to warfarin, DOACs had significantly better efficacy in patients with early-stage CKD. The efficacy and safety profiles were however similar in patients with CKD stages 4–5 or dialysis patients. Factor Xa inhibitors exhibited significantly better efficacy and safety profiles, especially apixaban when compared with warfarin.

Group variable	Subgroups	Number of studies	Adjust HR (95% CI)	Test for subgroup differences (p value; I^2)
Stroke or SE or VTE				
All studies		25	0.78 (0.64-0.95)	$I^2 = 55\%$
Study type				
	RCT	6	0.75 (0.62-0.91)	$I^2 = 5\%$
	Non-RCT	17	0.78 (0.59-1.03)	$I^2 = 61\%$
DOAC type			0.78 (0.62-0.98)	p = 0.95
	Non-dabigatran DOACs (edoxa- ban, rivaroxaban, apixaban)	15	0.78 (0.62–0.98)	$I^2 = 44\%$
	Dabigatran	3	0.75 (0.26-2.18)	$I^2 = 83\%$
Population type				p = 0.01
	VTE	2	0.14 (0.04–0.54)	$I^2 = 0\%$
	AF	18	0.83 (0.68-1.01)	$I^2 = 54\%$
Major bleeding				
All studies		25	0.83 (0.71-0.97)	$I^2 = 71\%$
Study type				
	RCT	6	0.83 (0.67-1.02)	$I^2 = 53\%$
	Non-RCT	18	0.81 (0.66-0.99)	$I^2 = 75\%$
DOAC type			0.84 (0.71-1.00)	<i>p</i> < 0.001
	Non-dabigatran DOACs (edoxa- ban, rivaroxaban, apixaban)	16	0.76 (0.64–0.91)	$I^2 = 62\%$
	Dabigatran	4	1.21 (0.99–1.49)	$I^2 = 49\%$
Population type	-			p = 0.66
- ••	VTE	2	0.56 (0.11-2.88)	$I^2 = 77\%$
	AF	16	0.80 (0.67–0.97)	$I^2 = 77\%$

Table 1 Risk of stroke/SE/VTE and major bleeding between DOACs and warfarin by different stratification

CI confidence interval, CKD chronic kidney disease, DOACs direct oral anticoagulants, HR hazard ratio, RCT randomized controlled trial, SE systemic embolism, VTE venous thromboembolism

Table 2 Risk of stroke/SE/VTE and major bleeding between DOACs and warfarin by CKD stage

Group variable	Subgroups	Number of studies	Adjust HR (95% CI)	Test for subgroup differences (p value; I^2)
Stroke or SE or VTE				
All studies		25	0.83(0.67-1.03)	$I^2 = 60\%$
CKD stage			0.84 (0.70-1.00)	p = 0.88
	Stage 3	9	0.81(0.68-0.97)	$I^2 = 22\%$
	Stages 4–5	4	0.77 (0.45-1.32)	$I^2 = 37\%$
	Stage 5 with HD	5	0.92 (0.54-1.58)	$I^2 = 74\%$
Major bleeding				
All studies		25	0.83 (0.71-0.98)	$I^2 = 72\%$
CKD stage			0.81 (0.68-0.96)	p = 0.34
	Stage 3	10	0.85 (0.69-1.05)	$I^2 = 67\%$
	Stages 4–5	5	0.69 (0.56-0.85)	$I^2 = 0\%$
	Stage 5 with HD	7	0.82 (0.56-1.22)	$I^2 = 86\%$

CI confidence interval, *CKD* chronic kidney disease, *DOACs* direct oral anticoagulants, *HD* hemodialysis, *HR* hazard ratio, *RCT* randomized controlled trial, *SE* systemic embolism, *VTE* venous thromboembolism

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40261-021-01016-7.

Declarations

Funding This work was supported by Kaohsiung Veterans General Hospital (Grant Number: VGHKS108-D08-2).

Conflict of interest Hsin-Yu Chen, Shih-Hsiang Ou, Chien-Wei Huang, Po-Tsang Lee, Kang-Ju Chou, Pei-Chin Lin, and Yi-Chia Su have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate Not applicable.

Consent for publication Not applicable.

Availability of data and material Not applicable.

Code availability Not applicable.

Author contributions H-YC was involved in the design of the study, extraction of the data, statistical analyses, interpretation of the results, and drafting and revising the manuscript. Y-CS was involved in the design of the study, extraction of the data, and revising the manuscript. S-HO and C-WH were involved in the interpretation of the results and revising the manuscript. P-TL was involved in the design of the study, interpretation of the results, and revising the manuscript. K-JC was involved in the interpretation of the results, and revising the manuscript. P-CL was involved in the interpretation of the results and revising the manuscript. P-CL was involved in the design of the study, interpretation of the results, and revising the manuscript. P-CL was involved in the design of the study, interpretation of the results, and drafting and revising the manuscript. P-CL is the guarantor of the manuscript. She accepts full responsibility for the work and/ or the conduct of the study, had access to the data, and controlled the decision to publish. P-CL attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

References

- McManus DD, Rienstra M, Benjamin EJ. An update on the prognosis of patients with atrial fibrillation. Circulation. 2012;126:e143–6.
- Soliman EZ, Prineas RJ, Go AS, *et al.* Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am Heart J. 2010;159:1102–7.
- Baber U, Howard VJ, Halperin JL, *et al.* Association of chronic kidney disease with atrial fibrillation among adults in the United States: REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circ Arrhythm Electrophysiol. 2011;4:26–32.
- Genovesi S, Pogliani D, Faini A, *et al*. Prevalence of atrial fibrillation and associated factors in a population of long-term hemodialysis patients. Am J Kidney Dis. 2005;46:897–902.
- Wetmore JB, Mahnken JD, Rigler SK, et al. The prevalence of and factors associated with chronic atrial fibrillation in Medicare/ Medicaid-eligible dialysis patients. Kidney Int. 2012;81:469–76.
- Ananthapanyasut W, Napan S, Rudolph EH, *et al*. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:173–81.

- 7. Olesen JB, Lip GY, Kamper AL, et al. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N Engl J Med.
- 2012;367:625–35.
 8. Collins AJ, Foley RN, Chavers B, *et al.* United States Renal Data System 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012;59:e1-420.
- Nakayama M, Metoki H, Terawaki H, *et al.* Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population: the Ohasama study. Nephrol Dial Transplant. 2007;22:1910–5.
- Ninomiya T, Kiyohara Y, Kubo M, *et al.* Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama Study. Kidney Int. 2005;68:228–36.
- Tsukamoto Y, Takahashi W, Takizawa S, Kawada S, Takagi S. Chronic kidney disease in patients with ischemic stroke. J Stroke Cerebrovasc Dis. 2012;21:547–50.
- Aguilar MI, Hart R. Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2005;(3):CD001927.
- 13. Saxena R, Koudstaal PJ. Anticoagulants versus antiplatelet therapy for preventing stroke in patients with nonrheumatic atrial fibrillation and a history of stroke or transient ischemic attack. Cochrane Database Syst Rev. 2004;(4):CD000187.
- Charytan D, Kuntz R. The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease. Kidney Int. 2006;70:2021–30.
- Abbott KC, Trespalacios FC, Taylor AJ, Agodoa LY. Atrial fibrillation in chronic dialysis patients in the United States: risk factors for hospitalization and mortality. BMC Nephrol. 2003;4:1.
- Chan KE, Lazarus JM, Thadhani R, Hakim RM. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J Am Soc Nephrol. 2009;20:2223–33.
- 17. Connolly SJ, Eikelboom J, Joyner C, *et al.* Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806–17.
- Connolly SJ, Ezekowitz MD, Yusuf S, *et al.* Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.
- Granger CB, Alexander JH, McMurray JJ, *et al.* Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.
- Patel MR, Mahaffey KW, Garg J, *et al.* Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–91.
- Giugliano RP, Ruff CT, Braunwald E, *et al.* Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369:2093–104.
- 22. Shamseer L, Moher D, Clarke M, *et al.* Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647.
- Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [updated March 2011]. Oxford, UK: The Cochrane Collaboration; 2011.
- Higgins JPT, Page MJ, Sterne J. RoB 2.0: a revised Cochrane risk-of-bias tool for randomized trials. Oxford, UK: The Cochrane Collaboration; 2016.
- Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014. Available from: http://www.ohri.ca/progr ams/clinical_epidemiology/oxford.asp. Accessed 14 Dec 2019.
- Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.

- Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into metaanalysis. Trials. 2007;8:16.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
- 30. The Nordic Cochrane Centre. Review Manager (RevMan) [computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2012.
- 31. Bohula EA, Giugliano RP, Ruff CT, *et al.* Impact of renal function on outcomes with edoxaban in the ENGAGE AF-TIMI 48 trial. Circulation. 2016;134:24–36.
- 32. Chan KE, Edelman ER, Wenger JB, Thadhani RI, Maddux FW. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis. Circulation. 2015;131:972–9.
- 33. Chang SH, Wu CV, Yeh YH, *et al*. Efficacy and safety of oral anticoagulants in patients with atrial fibrillation and stages 4 or 5 chronic kidney disease. Am J Med. 2019;132(1335–43):e6.
- Coleman CI, Martinez BK, Turpie AGG, Sood N, Bunz TJ, Kreutz R. Effectiveness and safety of rivaroxaban vs. warfarin in patients with nonvalvular atrial fibrillation and moderate-to-severe chronic kidney disease. Blood. 2017;130:2393.
- 35. Di Lullo L, Tripepi G, Ronco C, *et al*. Safety and effectiveness of rivaroxaban and warfarin in moderate-to-advanced CKD: real world data. J Nephrol. 2018;31:751–6.
- 36. Fox KA, Piccini JP, Wojdyla D, *et al.* Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J. 2011;32:2387–94.
- 37. Goldhaber SZ, Schulman S, Eriksson H, *et al.* Dabigatran versus warfarin for acute venous thromboembolism in elderly or impaired renal function patients: pooled analysis of RE-COVER and RE-COVER II. Thromb Haemost. 2017;117:2045–52.
- Harel Z, Mamdani M, Juurlink DN, *et al.* Novel oral anticoagulants and the risk of major hemorrhage in elderly patients with chronic kidney disease: a nested case-control study. Can J Cardiol. 2016;32(986):e17-22.
- 39. Hijazi Z, Hohnloser SH, Andersson U, et al. Efficacy and safety of apixaban compared with warfarin in patients with atrial fibrillation in relation to renal function over time: insights from the ARISTO-TLE randomized clinical trial. JAMA Cardiol. 2016;1:451–60.
- 40. Hijazi Z, Hohnloser SH, Oldgren J, *et al.* Efficacy and safety of dabigatran compared with warfarin in relation to baseline renal function in patients with atrial fibrillation: a RE-LY (Randomized Evaluation of Long-term Anticoagulation Therapy) trial analysis. Circulation. 2014;129:961–70.
- 41. Hori M, Matsumoto M, Tanahashi N, *et al*. Safety and efficacy of adjusted dose of rivaroxaban in Japanese patients with non-valvular atrial fibrillation: subanalysis of J-ROCKET AF for patients with moderate renal impairment. Circ J. 2013;77:632–8.
- 42. Lee KH, Park HW, Cho JG, *et al.* Comparison of non-vitamin K antagonist oral anticoagulants and warfarin on clinical outcomes in atrial fibrillation patients with renal dysfunction. Europace. 2015;17(Suppl 2):ii69–75.
- 43. Nissen Bonde A, Lip GYH, Kamper AL, *et al.* Use of oral anticoagulation and association to outcomes in atrial fibrillation patients who develop chronic kidney disease: a nationwide cohort study. Eur Heart J. 2018;39:820.
- 44. Reed D, Palkimas S, Hockman R, Abraham S, Le T, Maitland H. Safety and effectiveness of apixaban compared to warfarin in dialysis patients. Res Pract Thromb Haemost. 2018;2:291–8.

- 45. Sarratt SC, Nesbit R, Moye R. Safety outcomes of apixaban compared with warfarin in patients with end-stage renal disease. Ann Pharmacother. 2017;51:445–50.
- 46. Schafer JH, Casey AL, Dupre KA, Staubes BA. Safety and efficacy of apixaban versus warfarin in patients with advanced chronic kidney disease. Ann Pharmacother. 2018;52:1078–84.
- 47. Shin JI, Secora A, Alexander GC, *et al.* Risks and benefits of direct oral anticoagulants across the spectrum of GFR among incident and prevalent patients with atrial fibrillation. Clin J Am Soc Nephrol. 2018;13:1144–52.
- 48. Siontis K, Eckard A, Bhave N, *et al.* Use of direct oral anticoagulants in dialysis patients with atrial fibrillation in the United States. J Am Coll Cardiol. 2018;71:A512.
- 49. Siontis KC, Zhang X, Eckard A, *et al.* Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation. 2018;138:1519–29.
- 50. Stanton BE, Barasch NS, Tellor KB. Comparison of the safety and effectiveness of apixaban versus warfarin in patients with severe renal impairment. Pharmacotherapy. 2017;37:412–9.
- 51. Yanagisawa S, Inden Y, Fujii A, *et al.* Renal function and risk of stroke and bleeding in patients undergoing catheter ablation for atrial fibrillation: comparison between uninterrupted direct oral anticoagulants and warfarin administration. Heart Rhythm. 2018;15:348–54.
- 52. Coleman CI, Kreutz R, Sood NA, *et al.* Rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and severe kidney disease or undergoing hemodialysis. Am J Med. 2019;132:1078–83.
- 53. Weir MR, Ashton V, Moore KT, Shrivastava S, Peterson ED, Ammann EM. Rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and stage IV–V chronic kidney disease. Am Heart J. 2020;223:3–11.
- 54. Hanni C, Petrovitch E, Ali M, *et al.* Outcomes associated with apixaban vs warfarin in patients with renal dysfunction. Blood Adv. 2020;4:2366–71.
- 55. Herndon K, Guidry TJ, Wassell K, Elliott W. Characterizing the safety profile of apixaban versus warfarin in moderate to severe chronic kidney disease at a veteran affairs hospital. Ann Pharma-cother. 2020;54:554–60.
- 56. January CT, Wann LS, Alpert JS, *et al.* 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64:2246–80.
- 57. Krüger T, Westenfeld R, Schurgers LJ, Brandenburg VM. Coagulation meets calcification: the vitamin K system. Int J Artif Organs. 2009;32:67–74.
- Rezaieyazdi Z, Falsoleiman H, Khajehdaluee M, Saghafi M, Mokhtari-Amirmajdi E. Reduced bone density in patients on long-term warfarin. Int J Rheum Dis. 2009;12:130–5.
- Schurgers LJ, Aebert H, Vermeer C, Bültmann B, Janzen J. Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood. 2004;104:3231–2.
- 60. Piccini JP, Hernandez AF, Zhao X, *et al.* Quality of care for atrial fibrillation among patients hospitalized for heart failure. J Am Coll Cardiol. 2009;54:1280–9.
- 61. Chan KE, Giugliano RP, Patel MR, *et al.* Nonvitamin K anticoagulant agents in patients with advanced chronic kidney disease or on dialysis with AF. J Am Coll Cardiol. 2016;67:2888–99.
- 62. Heidbuchel H, Verhamme P, Alings M, *et al.* European Heart Rhythm Association practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2013;15:625–51.

Authors and Affiliations

Pei-Chin Lin s19101080@gm.ym.edu.tw

- ¹ Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- ² Department of Pharmacy, Kaohsiung Veterans General Hospital, 386 Ta-Chung 1st Road, Kaohsiung 813, Taiwan
- ³ Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta-Chung 1st Road, Kaohsiung 813, Taiwan
- ⁴ School of Medicine, National Yang-Ming University, Taipei, Taiwan
- ⁵ Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- ⁶ Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan