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Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating 
the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic 
has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has 
become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing 
existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train 
predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and 
clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific 
target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus 
disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques 
implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language 
processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification 
of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The 
lessons learned can be applied to future outbreaks and drug discovery initiatives.

Extended author information available on the last page of the article

Key Points 

Machine learning (ML) and artificial intelligence (AI) 
methodologies have risen in prominence since the begin-
ning of the coronavirus pandemic.

Machine learning techniques have been utilized within 
the pharmaceutical sciences for both drug repurposing 
and for novel drug discovery against the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) virus.

Additional resources for the validation of these repur-
posed and newly discovered compounds are required, as 
many lack sufficient data concerning their in vitro and 
in vivo potency against their purported target.

1  Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [a.k.a. coronavirus disease 2019 (COVID-
19)] pandemic has over 600 million confirmed cases, with 
over 6.5 million deaths caused by this disease [1, 2]. The 
SARS-CoV-2 virus is the descendent of the SARS-CoV-1 
(colloquially known as SARS), which caused a global 
outbreak of respiratory illness from 2002 to 2004 [3, 4]. 
These viruses are members of the Coronaviridae family 
and are viruses that releases a single-stranded RNA into 
the infected cells. The released strand encodes the four 
structural proteins: spike (S), envelope (E), membrane 
(M), and nucleocapsid (N), along with sixteen nonstruc-
tural proteins, and nine accessory proteins, which come 
together to form a complete copy of the virion [5–7]. The 
spike protein is responsible for recognizing receptors on 
a host cell’s surface, primarily the angiotensin converting 
enzyme 2 (ACE2) located on the surface of human cells 
[8, 9]. Once the virus has recognized this protein, it begins 
a process of attachment and fusion with the host mem-
brane. The virus’s single-stranded RNA is then released 
into the host cell, where the viral genome is translated 
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into their protein products by the host’s ribosomes [6]. 
These genes encode large polyproteins, which are later 
cleaved by the translated papain like protease (PLpro) to 
release both non-structural (i.e., RNA-dependent RNA 
polymerase (RdRp) and helicase) and structural proteins 
(e.g., spike, membrane, etc.) The RdRp protein synthesizes 
new copies of the viral RNA, and final assembly of the 
new SARS-CoV-2 virion occurs at the endoplasmic reticu-
lum and Golgi apparatus interface. The overproduction of 
these new virions eventually leads the lysis and subsequent 
death of the host cell [10].

In comparison with the original SARS outbreak, the 
SARS-CoV-2 pandemic has been exacerbated by several 
factors. The first factor is the virus’s communicability, 
with an estimated reproductive number (R0) of 2.2– 3.58 
[11–13]. This means that, on average, every infected per-
son will infect two to three people. Second, the virus has 
a long incubation period of up to 2 weeks, during which 
an infected person can spread the disease to others without 
showing any symptoms. The third factor is the virus lethal-
ity, with a case fatality rate of 2.3%. While the introduc-
tion of SARS-CoV-2 vaccines in late 2020 introduced an 
additional protection from SARS-CoV-2 infection [provid-
ing an 86% vaccine effectiveness (VE) against infection, 
hospitalization, intensive care unit (ICU) admission, and 
death] [14], breakthrough infections are still possible, and 
thus antiviral treatments are still being developed.

In contrast to the pressing nature of the coronavirus pan-
demic, the development of new drugs (i.e., de novo drug 
discovery) is a complex and challenging process that is often 
hindered by prohibitive costs and long timelines. However, 
researchers have recently begun implementing artificial intel-
ligence (AI) and machine learning (ML) into the drug discov-
ery process [15–23]. By analyzing large volumes of data, AI 
can identify potential drug candidates that might have been 
missed using conventional screening methods, in a fraction of 
the time [24–26]. In this review, we provide a brief overview 
of machine learning and its applications to drug discovery 
and how these methodologies have accelerated drug discov-
ery for therapeutics targeted towards SARS-CoV-2, either 
through identifying drugs that could be repurposed, or by 
designing new therapeutics de novo tailored for the SARS-
CoV-2 virus. We also examine the challenges and limitations 
of these techniques and their potential impact on the future 
of drug development.

2 � An Introduction to Artificial Intelligence 
and Machine Learning

Since the start of the COVID-19 pandemic, the use of arti-
ficial intelligence (AI) and machine learning (ML) method-
ologies within healthcare has increased rapidly. Since 2020, 

over 30,000 articles per year mentioning machine learning 
have been listed on PubMed, a 400% increase over the per 
year average of 2010–2019. Drug discovery has not been 
unaffected by this trend, with over 3500 articles submitted 
utilizing machine learning to advance the discovery rates of 
new chemical entities since 2019 [27, 28].

Machine learning has the potential to improve our ability 
to both discover new compounds, repurpose existing drugs, 
and accelerate the drug discovery pipeline. The ability for 
these algorithms to analyze vast sets of existing chemical 
structures, analyze biological and preclinical data, and detect 
patterns and relationships that may not be immediately 
apparent to humans has the potential to significantly speed 
up the drug discovery process. Machine learning can also 
help identify new targets for drug development, predict the 
toxicity and pharmacokinetics of potential drug candidates, 
and optimize lead compounds for potency and selectivity 
[15, 16, 19, 29–31].

2.1 � Machine Learning Overview

Machine learning is a quickly growing field, focused on cre-
ating algorithms that can learn from the data they are pro-
vided (i.e., training data), identify patterns within that data, 
and then proceed to use what it has “learned” to make deci-
sions and predictions when presented with novel data. These 
types of algorithms, which require significant amounts of 
computational time due to their iterative training nature, 
have become more accessible to numerous fields in con-
junction with the arrival of large datasets and the widespread 
availability of cheap computational power. Machine learn-
ing has been implemented in many areas of healthcare and 
drug development, from identifying cancer to predicting the 
toxicity of drug candidates [18, 26, 32–35].

Unlike typical algorithms, whose actions are determined 
at the time of their writing, machine learning algorithms 
must first train on their input data to make those decisions. 
This learning can either be supervised or unsupervised, 
which refers to whether the algorithm has access to the cor-
rect output to the input training data. For example, for a 
machine learning algorithm created for the identification of 
antiviral drugs, the training data would likely be composed 
of a set of thousands of drugs, each compound containing 
its molecular descriptors (e.g., LogP, molecular weight, etc.) 
along with its endpoint label (i.e., active versus inactive). A 
supervised training algorithm may have access to the correct 
endpoint of a drug (e.g., the drugs’ antiviral classification 
or potency against an antiviral target), while the unsuper-
vised algorithm would only have the compounds’ descrip-
tors, clustering the compounds into discrete clusters. Unlike 
supervised learning, unsupervised learning cannot be used 
in regression problems (i.e., drug activity) due to its lack of 
access to these endpoint values.
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The power of these machine learning algorithms lies in 
their capacity to enhance their predictions over time. The 
more data and the longer they are trained, the better they 
become. With additional data, the model can learn new pat-
terns and generalize better to new, unseen data. Similarly, 
longer training times allow the model to better understand 
the relationships within the data, leading to more accurate 
predictions. This capability of continuous improvement is a 
key advantage of machine learning algorithms, and it allows 
them to adapt to changing environments and to provide more 
precise results.

2.2 � Commonly Used Learning Models

When building a machine learning model, the output 
desired can usually be classified into two broad catego-
ries: regression or categorization. For example, when 
working on drug discovery, a regression model could be 
used to predict the binding affinity of a compound to 
a particular protein target, using previously tested com-
pounds as the training data. On the other hand, a clas-
sification model might be useful to determine whether 
a compound can permeate through the blood–brain bar-
rier. Both methodologies have their strengths and limi-
tations that need to be considered before selecting the 
appropriate method. While regression models can offer a 
continuous output, making them suitable for predicting a 
wide range of numerical values, they may struggle with 
extreme outliers or non-linear relationships. Conversely, 
classification models can provide a binary or categorical 
output, making them ideal for tasks such as determining 
whether a compound is active or inactive. However, they 
may be less precise in predicting values that fall between 
discrete categories.

2.2.1 � Models For Categorization

Categorization can be roughly split into two different types 
of problems: classification and clustering. Classification is 
a supervised learning process, in which the goal is to predict 
the class of unseen data on the basis of a labeled dataset, 
on which a model has been previously trained. Conversely, 
clustering is an unsupervised learning process in which a 
model has been trained to group data points based on their 
features, without a priori knowledge of what the endpoints 
of the training data are. These models have been previously 
applied to numerous fields, including machine vision (e.g., 
object identification), medical diagnoses and financial trans-
action categorization.

2.2.1.1  Logistic Regression  Logistic regression is one of 
the simplest methods of classification, as its very nature 

is binary and can only take in two endpoint classes, usu-
ally represented as either a 0 or a 1. These models use a 
sigmoidal function to separate these two classes and each 
input variable is given its own weight, these values are then 
summed to determine the log likelihood of the current data-
point using the following equations (Eqs. 1, 2):

or…

In this scenario, p represents the likelihood of the cur-
rent datapoint being the endpoint class of 1 (e.g., if using 
this model were to be used as a central nervous system 
(CNS) drug classifier, our endpoint of 1 may be that a drug 
is CNS active). While these models can give outputs of 
anywhere from 0 to 1, these outputs are commonly rounded 
to the nearest integer to give a binary classifier. After the 
initial round of weights is used, the accuracy of the model 
is tested, and through an optimization algorithm (e.g., 
gradient descent, steepest descent, etc.), these weights 
are incrementally changed to optimize the accuracy of the 
model (Fig. 1).

Logistic regression is a commonly used classification 
algorithm due to its simplicity and robustness; however, 
its assumption that the input and output variable share 
a linear relationship limits it in applications where the 
relation may have a logarithmic, quadratic, or exponential 
relationship.

2.2.1.2  K‑Means Clustering  K-Means clustering is an unsu-
pervised learning method that aims to categorize data into an 
integer number of clusters. This method starts by randomly 
choosing a K number of centroids to represent the center of 
each cluster within the dataset, where K is provided by the 
user (Fig. 2) [37–41]. Using these centroid positions, each 
point from the dataset has its distance to each centroid cal-
culated and is given a cluster designation based on what the 
nearest centroid is. Iteratively, the centroid of each cluster is 
moved closer to the mean location of the datapoints within 
each cluster, reassigning the datapoints’ cluster designation 
each time the centroids are recalculated. This process con-
tinues until the centroid positions converge, or when a maxi-
mum number of iterations are reached.

This methodology is commonly used across numerous 
fields, ranging from computer vision, where it is used to 
separate the feature space of images based on colors and 
texture, to biology, where K-means clustering can help 
to cluster genes based on their expression patterns within 
tissues. While K-means is a versatile methodology, it can 

(1)log

(

p

1 − p

)

= b
0
+ b

1
X
1
+ b

2
X
2
+⋯ + bnXn

(2)p =
1

1 + e−(b0+b1X1
+b

2
X
2
+⋯+bnXn)

.



652	 A. H. Williams, C.-G. Zhan 

struggle in situations where the clusters may not be spheri-
cal in shape, have outliers, or when the clusters are unevenly 
sized. Due to the random starting points of the centroids, 

they may encounter scenarios where they converge in a local 
minimum instead of the global minimum (i.e., the true clus-
ter center).

Fig. 1   Scatter plot of a two-
cluster dataset (blue and brown 
points), each cluster centered 
around [− 2, − 2] and [2, 2], 
respectively. The decision 
boundary was obtained using 
a logistic regression classifier, 
represented as the dark brown 
line bifurcating the two sets. 
The dataset consists of two 
clusters of points, where each 
cluster corresponds to a speci-
fied different class. A logistic 
regression classifier forms the 
scikit-learn python library [36] 
was trained on the dataset to 
classify new datapoints into one 
of the two classes based on their 
features. The plot shows that the 
decision boundary (defined by 
the equation in red) separates 
the two clusters reasonably well, 
capturing the underlying rela-
tionship between the variables

Fig. 2   Scatter plot of a two-
cluster dataset (blue and brown 
points); cluster centers shown 
as red stars and the decision 
boundary of the K-means classi-
fier model using the scikit-learn 
library is shown. The model 
was trained on the dataset to 
classify new datapoints into one 
of the two classes based on their 
features
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2.2.2 � Models For Regression

Regression modeling is simply attempting to predict a 
continuous numerical value based on the input features 
for a certain datapoint. These models are widely used in 
finance, economics and the natural sciences.

Linear regression is one of the simplest possible models 
for regression; using the equation of a linear line to fit the 
data (i.e., Y = mX + B ), multiple variables can be used to 
establish an equation such as:

These b values can be tuned over an iterative process 
known as least squares, which will minimize the sum of 
the squared errors between the predicted and actual values. 
Linear regression (Fig. 3) is one of the most interpretable 
models, due to the coefficients being clearly represented 
for each of the variables used to establish the relation-
ship; however, much like logistic regression, there is a 
base assumption that the relationship between the input 
and output is indeed linear and can perform poorly with 
variables that have a non-linear relationship to the output 
response.

Polynomial regression allows for these types of rela-
tions by changing the equation to an nth degree polyno-
mial, as shown below.
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While this model does allow for non-linear relation-
ships to be represented, it can also add the danger of over-
fitting the data, as the use of unlimited polynomial features 
allows for the complexity of the fitting line to increase, 
perfectly fitting the data.

2.2.3 � Models for Both Regression and Classification

2.2.3.1  Support Vector Machines  Support vector machines 
(SVM) are a machine learning algorithm that employs a 
hyperplane (i.e., a line in two-dimensional space, or a plane 
in three-dimensional space) to separate data into distinct 
classes. This methodology is known for its ability to man-
age both high dimensionality and non-linear datasets. The 
algorithm achieves this group separation by finding the 
hyperplane that has the highest margin (i.e., is the farthest 
away) from the group members on either side of the plane 
(Fig. 4). For regression problems, instead of separating the 
points, the algorithm looks to find a hyperplane that best 
fits the data, while maintaining the maximum margin on 
either side of the plane. SVM models have been used in a 
variety of chemical applications, including the prediction of 
drug blood/brain partitioning behavior to predicting protein/
ligand binding affinities [42–47].
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Fig. 3   Scatter plot of a random 
dataset (blue points) and the 
linear regression line (red line) 
obtained using a linear regres-
sion model from the scikit-learn 
library. The dataset consists of 
100 samples generated from a 
normal distribution with a linear 
relationship between the feature 
and target variables. The linear 
regression model was trained on 
the dataset to predict the target 
variable based on the feature 
variable. The regression equa-
tion is represented in red text
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2.2.3.2  Decision Trees and  Random Forest  Decision trees 
are a machine learning model that utilizes cascading parti-
tions in the dataset to make a final prediction, which can 
either be a numerical value for regression problems, or a 
class label for classification problems [48–50]. The root 
node of the tree represents the entire dataset, with each 
branch being partitioned on a specific input feature. For 
each attempted split along a particular feature, the algo-
rithm measures whether the newly created nodes contain 
an abundance of one class over another (Fig. 6). If the two 
nodes have a preponderance of one class over another, then 
that split provides additional information and is kept. Con-
versely, if the dataset split resulted in two nodes with an even 
distribution of the two groups, then the split did not provide 
any additional information. Like with other machine learn-
ing methodologies, a balance must be struck between how 
well the model does on the training set and its overall gen-
eralizability. Creating too many nodes will increase the per-
formance on the training set but will overall destroy the gen-
eralizability of new, unseen data due to being overtrained.

Random forest models proceed to take many decision 
trees, each trained on a random subset of the training data 
and features (Fig. 5). Once these individual trees are trained, 
their independent evaluations are aggregated, and a final pre-
diction is made based on the preponderance of the votes. 
These models have been used to assess many chemical prop-
erties, from overall function to the bitterness of their taste 
[43, 51].

2.2.3.3  Neural Networks  Artificial neural networks 
(ANNs), also known as neural networks, are a type of 
machine learning model inspired by the structure and func-
tion of the human brain [52, 53]. A neural network is made 
up of several layers of interconnected nodes, or “neurons,” 
that process and transmit data. Each neuron receives input 
from other neurons, applies a non-linear function to the 
weighted sum of those inputs, and then sends the result 
of this function as its output to neurons in the next layer. 
These applied functions, known as activation functions, can 
be changed on the basis of the problem the model is con-
structed for [54–56]. For example, the sigmoid function, 
much like when used in logistic regression, can be used 
in binary classification problems, where the output of the 
model is being used to classify two separate endpoints. The 
non-linearity of these activation functions’ output leads to 
the model being able to identify patterns between the input 
variables and final output that are similarly non-linear.

In contrast to most activation functions, which are non-
linear in nature (e.g., sigmoid, rectified linear unit (ReLU), 
etc.) the “identify function” or linear activation function, 
can be used to simply output the weighted sum of the inputs 
without transformation, leaving the final output of the neu-
ron directly proportional to the weighted inputs. This func-
tion is useful in applications such as linear regression, but 
falters in applications where the relationship between the 
data and output is non-linear.

Fig. 4   Scatter plot of a 
two-cluster dataset (brown/
blue points) and the decision 
boundary obtained using a 
support vector machine (SVM) 
classifier (black line) with a 
margin (dashed lines) using 
the scikit-learn library. The 
dataset consists of two clusters 
of points, where each cluster 
corresponds to a different class. 
The SVM classifier was trained 
on the dataset to classify new 
datapoints into one of the two 
classes based on their features. 
The plot shows that the SVM 
decision boundary is a linear 
boundary that maximizes the 
margin between the two classes. 
The dashed lines represent the 
margin, which is the perpen-
dicular distance between the 
decision boundary and the 
closest points from each class. 
The dividing line equation for 
the SVM model is represented 
in red
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The ability of these models to be used in both regression 
and classification tasks, as well as their ability to interpret 
complicated, non-linear relationships between the input var-
iables and output endpoints, have made them popular for 
tasks that require many variables, including disease diagno-
sis and financial modeling (Fig. 7). However, the inherent 
complexity of these models leaves them in a “black box” 
space [57–59], where even those who constructed the model 
have limited understanding of why the model outputs a cer-
tain response. Additionally, neural networks require a large 
amount of data and computational resources to be effective, 
which may be cost prohibitive when working with experi-
mental data. Neural networks have seen extensive use in 
recent years in the field of drug discovery, these models can 
be applied to a wide variety of endpoints, including activity 
towards targets, potential toxicity, and potential drug/drug 
interactions [57, 60–66].

2.3 � Representing Molecular Structures for Machine 
Learning

Applying machine learning to tasks involving molecular 
structures has been a growing field, even before the coro-
navirus pandemic. Quantitative structure–activity relation-
ship (QSAR) modeling is a methodology that has sought to 
predict the properties of chemical compounds based upon 
their physiochemical features.

Molecular descriptors are numerical or categorical fac-
tors that characterize a molecule’s physical qualities, such as 
its size, shape, and electrical properties. These descriptors 
may be estimated using computational approaches, such as 
quantum mechanics or molecular mechanics, or from experi-
mental measurements (e.g., melting point, logP, logD, etc.) 
Simple one-dimensional molecular descriptors include 
molecular weight and lipophilicity, whereas more compli-
cated three-dimensional descriptors include molecule shape 
and electrostatic potential [67–69]. Using experimental data 
and the generated molecular descriptors for each compound, 
a QSAR model can be generated using the above-described 
learning models to predict the endpoint of interest. QSAR 
models have been used extensively to predict endpoints such 
as liver toxicity, cardiotoxicity, and carcinogenicity [70–76].

In addition to physiochemical properties, molecular fin-
gerprints are a method to represent molecular structures 
for machine learning. Molecular fingerprints are a way to 
encode the structure of a molecule as a binary vector or 
bitstring (Fig. 8), where each bit represents the presence or 
absence of a particular structural feature or substructure. 
There are many different types of molecular fingerprints, 
each with its own set of rules for encoding structural infor-
mation. Some of the most popular types of fingerprints 
include ECFP (extended-connectivity fingerprints) [77], 
MACCS (Molecular ACCess System) [78], and Morgan [77, 
79] fingerprints. The most used of these sets is the Morgan 
fingerprints (MFP), also known as extended-connectivity 

Fig. 5   Visualization of the 
decisions made by a random 
forest classifier on a two-cluster 
dataset. The plot shows the 
binary predictions made by 
each decision tree in the random 
forest for each datapoint in the 
dataset. The dataset consists of 
two clusters of points, where 
each cluster corresponds to a 
different class. The random 
forest classifier was trained 
on the dataset to classify new 
data points into one of the two 
classes based on their features. 
The blue/brown overlay on the 
graph represents the prediction 
made by the model at the given 
(X, Y) coordinates. The bound-
ary line between the brown and 
blue positions shows the ability 
for random forest classifiers to 
give boundaries to the clusters 
that are not linear in nature, 
unlike the logistic regression 
model shown above
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fingerprints, and encode the local molecular environment 
around each atom in a molecule as a series of circular sub-
structures or “rings.” The substructures within each ring 
are hashed to produce a unique identifier for each ring, and 
the resulting set of ring identifiers is concatenated into a 
binary bitstring, which represents the Morgan fingerprint 
for the molecule. Multiple sets of Morgan fingerprints are 
commonly used, with MF1024 (i.e., the resulting bitstring 
being 1024 bits long) being the most popular [80].

3 � Machine Learning Methods for Drug 
Repurposing

Due to the severity of COVID-19, some of the earliest uses 
of machine learning focused on the adept power of these 
models to function as classifiers to identify already approved 
chemical entities to be repurposed against the virus. Before 
the beginning of the COVID-19 pandemic, multiple studies 

had already been performed to train and deploy machine 
learning models that could accurately repurpose compounds 
for use in other disease states [81–86].

To identify relevant papers using similar methodologies 
for the COVID-19 pandemic, we used the following search 
query:

(“machine learning” OR “artificial intelligence” 
OR “deep learning” OR “neural networks”) AND 
(“drug repurposing” OR “drug repositioning”) AND 
(“COVID-19” OR “SARS-CoV-2”)

The most relevant papers based on these keywords can be 
separated into two categories, those models relying on large 
sets of experimental data and known associations between 
drugs, proteins, and disease states, and those models that 
relied on the structural features of compounds. We will 
refer to these two types of models as knowledge-based and 
QSAR-based methodologies (Table 1).

Fig. 6   Example decision tree 
using the same dataset as in 
Fig. 5 with the dtreeviz python 
library. The first decision within 
the tree represents the value 
on the X-axis, which splits the 
clusters (class 1 representing the 
brown points within Fig. 5) into 
two sets, with set 1 contain-
ing 98% of the points within 
cluster 1. The other set contains 
102 points, which are further 
separated based upon the X-axis 
value again, which further 
split the points into two class 1 
points and 100 points for class 
0, represented by the blue points 
in Fig. 5. This model, along 
with other decision trees, would 
be used within the random for-
est model to make a consensus 
position for the final prediction 
of a given point
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Fig. 7   Visualization of the deci-
sions made by a neural network 
classifier on a two-cluster 
dataset using the scikit-learn 
MLPClassifer. The plot shows 
the binary predictions made 
by the neural network for each 
data point in the dataset. The 
dataset consists of two clusters 
of points, where each cluster 
corresponds to a different class. 
The neural network classifier 
was trained on the dataset to 
classify new data points into 
one of the two classes based on 
their features. The blue/brown 
overlay on the graph represents 
the prediction made by the neu-
ral network model at the given 
(X, Y) coordinates

Fig. 8   Simplified representation of two compounds and how they 
may be represented as a string of bits. For each compound (penicil-
lin and remdesivir in this example) the compounds are described in a 
bit string by the presence or absence of a set of fingerprints (thiazoli-
dine, acyl, carboxyl, and amino groups, shown as red circles if they 

are present in this case). These two compounds differ by the presence 
of a thiazolidine group, which sets the first bit of remdesivir at 0. This 
process can be expanded to an unlimited number of potential sub-
structures to differentiate the compounds within a given dataset.
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3.1 � Using Knowledge‑Based Models for Drug 
Repurposing

As the body of research involving the pharmaceutical sci-
ences continues to grow, the internet has allowed for the 
near-instant access to millions of studies concerning the 
interactions between drugs, proteins, genes, and disease 
states. This deluge of large, high-dimensional datasets, 
brought on by the ever-lowering cost of genetic sequenc-
ing, was once seen as a threat to interpretability due to the 
sheer volume that was being created, the so called “curse of 
dimensionality” [96–98]. However, deep learning neural net-
works (DNNs), a subset of machine learning & ANNs that 
utilize large, multilayer architectures to extract features from 
knowledge bases (i.e., knowledge-based/deep learning neu-
ral networks) that would otherwise be impractical or impos-
sible for humans to identify, have been seen as a method of 
sifting through this ever-expanding set of data. DNNs have 
been recently used in several fields concerning the biologi-
cal sciences, including cancer diagnosis [99–102], radiology 
[64, 103, 104], and protein three-dimensional (3D) structure 
prediction [105–112]. One of the seminal studies concerning 
the use of deep learning architecture for drug property pre-
diction and repurposing came from Aliper et al. [81], which 
used a set of transcriptomic profiles from the LINCS Project 
[113, 114] that were obtained from a set of drug perturba-
tions within several cell lines. Combining this transcriptome 
perturbation data with the MeSH database to classify the 
therapeutic use of these drugs, the authors sought to develop 
a model that could predict the therapeutic use of novel com-
pounds using similar transcriptome profiles. Using a neural 
network consisting of three hidden layers, with 200 nodes 
within each layer, the DNN model was able to learn the 

associations between therapeutic uses and the transcriptional 
profiles that had been provided within the training set.

The availability of SARS-CoV-2-related datasets for use 
in these machine learning applications has been bolstered 
by both the decisions of major journals to make research 
relating to the pandemic open to the wider public and the 
increasing popularity of prepublished paper archives such 
as BioRxiv, where datasets related to the pandemic can be 
released before the editing process for their related man-
uscripts is complete. Numerous attempts were made to 
ingest these datasets into DNNs to predict potential drugs 
that could be repositioned for COVID-19 [21, 22, 65, 87, 
93, 115–139]. Zeng et al. [87] utilized this deep learning 
approach by combining a known set of drug–gene, drug–dis-
ease, gene–gene, and gene–disease interactions from the 
Global Network of Biomedical Relationships (GNBR) [140], 
drugs from the DrugBank database [141], and finally a set of 
genes and proteins associated with SARS-CoV-2. This data 
mining involved 24 million research articles to compose this 
relational database [140] and created an overall network of 
over 15 million edges. Using a deep learning model, which 
was previously developed by the Amazon Web Services 
(AWS) AI laboratory for use with large knowledge based 
graphs [142], the authors trained a model that was validated 
using a known set of COVID-19 active compounds. From 
this model, the model predicted over 40 compounds that 
could be effective against COVID-19 including tetrandrine, 
nadide, estradiol, and rifampicin, none of which have been 
subsequently approved for COVID-19 treatment. Notably 
absent from the predictions are drugs such as remdesivir 
and tocilizumab, drugs that obtained emergency use authori-
zation for use in patients with COVID-19. Additionally, 
drugs that were known to not be effective clinically (e.g., 

Table 1   List of curated studies using the above search query

Author Paper Model Type Citation

Zeng et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning Knowledge-based [87]
Gysi et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19 Knowledge-based [88]
Santos et al. Machine learning and network medicine approaches for drug repositioning for COVID-19 Knowledge-based [89]
Ge et al. An integrative drug repositioning framework discovered a potential therapeutic agent targeting 

COVID-19
Knowledge-based [90]

Pham et al. A deep learning framework for high-throughput mechanism-driven phenotype compound screen-
ing and its application to COVID-19 drug repurposing

Knowledge-based [21]

Smith et al. Expert-augmented computational drug repurposing identified baricitinib as a treatment for 
COVID-19

Knowledge-based [91]

Kumar et al. Exploiting cheminformatic and machine learning to navigate the available chemical space of 
potential small molecule inhibitors of SARS-CoV-2

QSAR-based [92]

Beck et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-
CoV-2) through a drug-target interaction deep learning model

QSAR-based [93]

Gawriljuk et al. Machine learning models identify inhibitors of SARS-CoV-2 QSAR-based [94]
Kadioglu et al. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined 

virtual screening and supervised machine learning
QSAR-based [95]
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hydroxychloroquine, chloroquine, ivermectin) were rec-
ommended as potential antiviral agents against COVID-19 
[143–145]. The authors point out this flaw, recommending 
that further development of the model attempt to filter out 
drugs that may perform well in vitro but do not validate 
within the clinic.

Gysi et al. [88] took a similar approach by using a large 
dataset containing human protein–protein interactions along 
with SARS-CoV-2/human proteins interactions, as well as 
drug–target interactions from the DrugBank database [141]. 
Using this model, the authors predicted the efficacy of over 
6000 compounds within DrugBank; concurrently the authors 
also assessed the efficacy of 918 compounds within VeroE6 
cells from the African green monkey. Of these tested com-
pounds, only 37 compounds had what the authors classi-
fied as a “strong effect” (i.e., viral reduction > 80% within 
VeroE6 cells) on the overall infection rate. Of the authors’ 
models, model P1, which included both direct drug–protein 
interactions, as well as metabolic drug–protein interactions 
within the knowledge graph, showed the greatest predic-
tive ability in selecting compounds from DrugBank valida-
tion set, which showed the so-called strong effect against 
COVID-19 infection. Notably, two drugs that have obtained 
emergency use authorizations, namely ritonavir and dexa-
methasone, both appear in the model’s top ten predictions, 
with another commonly used anti-COVID-19 agent flucona-
zole being within the top 50. Similar interactome methodol-
ogies, such as those taken on by Santos et al. [89], identified 
favipiravir as a top candidate against SARS-CoV-2, a drug 
which has had approval for use against COVID-19 in Italy, 
Russia, and India [146].

Pham et al. [21] expanded on these methodologies, using 
the L1000 database of gene expression [114], the STRING 
database of protein–protein interactions, the DrugBank data-
base for drug–target interactions, and the gene expression pro-
file of 8 SARS-CoV-2 infected patients in comparison with 12 
healthy patients. Using the molecular fingerprints of the com-
pounds within DrugBank that target proteins that are within 
both the STRING and L1000 databases, the authors sought 
to train a model that could identify how certain compounds 
would impact the expression of certain genes based upon the 
proteins that those drugs interact with (i.e., the phenotypic 
response to the drug dose). By including the gene expression 
data of both healthy and COVID-19 presenting patients, com-
pounds could be screened for their effectiveness by comparing 
the impact to gene expression each compound induces to the 
genes that are most associated with infection. Using multiple 
different machine learning methodologies (e.g., KNN, neural 
networks, linear regression, etc.) and different sets of infor-
mation (i.e., chemical descriptors, drug–target interactions, 
drug–gene interactions, etc.), the authors finally found that 
their graph-based neural network performed the best when 
predicting the gene expression values for the training set of 

compounds tested. Using this model on the DrugBank data-
base of compounds, the authors identified several macrocyclic, 
antifungal, and antiviral drugs (e.g., faldaprevir, alisporivir, 
and anidulafungin) predicted to have positive effects against 
COVID-19. Of these compounds predicted, alisporivir has 
received the most attention, and has been the subject of clini-
cal trials [147–149].

Finally, efforts by BenevolentAI, a London-based biotech 
company, utilized a similar knowledge-based approach, uti-
lizing a knowledge graph containing nearly 30 million Pub-
Med papers and numerous structured databases containing 
the relationships between drugs, drug–targets, genes, dis-
ease states, and the biological mechanisms underlying those 
disease states. Smith et al. focused on identifying potential 
compounds that could counteract the cytokine storm induced 
by the SARS-CoV-2 infection, as well as the replication of 
the virus via the clathrin mediated endocytosis (CME) path-
way, with specific focus placed on the protein AAK1 due to 
its association with both endocytosis and membrane traffick-
ing. By focusing on these SARS-CoV-2-related pathways, 
Smith et al.’s knowledge graph identified several US Food 
and Drug Administration (FDA) approved compounds that 
were predicted to inhibit the endocytosis pathway, including 
sunitinib, baricitinib, and fedratinib, all of which possessed 
pKd > 7 binding affinity for the AAK1 protein. After publi-
cation of this finding, trials for baricitinib were conducted to 
determine the effectiveness of this compound on COVID-19 
infections, and it was found that baricitinib in combination 
with remdesivir improved inpatient outcomes and lowered 
overall mortality [150]. Barcitinib would later obtain an 
emergency use authorization from the FDA for use against 
COVID-19 [151].

3.2 � QSAR‑Based Methodologies for Drug 
Repurposing

Using chemical features to predict the properties of com-
pounds has been an established methodology for over 30 
years [152–159]. With the introduction of different fin-
gerprint classification systems as described above (e.g., 
MACCS, daylight, SMILES, Morgan, etc.) [160–162], 
molecules can be represented in such a way as to be under-
standable and enterable into machine learning models. Using 
these fingerprints, machine learning models can identify pat-
terns in the active and inactive compound sets and learn to 
discriminate between the sets. These trained models can then 
be used with new unseen compound fingerprints to generate 
a prediction on whether they are active or inactive.

Kumar et al. [92], developed a machine learning model 
that was able to discriminate between antiviral compounds 
and those that would be inactive against COVID-19. Using 
a dataset of known compounds (DrugRepV) that were active 
in inhibiting coronaviruses, over 1100 in total, the authors 
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generated over 17,000 chemical and structural descriptors, 
ranging from 1D to 3D descriptors, using the open-source 
PaDel descriptor software [163]. These molecular features, 
along with the known pIC50 values against each of their 
respective viral targets, were used to train several models, 
making sure to remove redundant features from the models 
to prevent overtraining. Several machine learning models, 
including SVM and random forest models, were trained on 
this experimental and descriptor dataset, using ten-fold cross 
validation to prevent overtraining on any one chemotype. 
The authors were able to achieve models that had good pre-
dictive pIC50 correlation with the experimental results with 
their SVM model performing the best with R2 values ranging 
from 0.53 in all coronaviruses to 0.81 when filtered down 
to the drugs that showed inhibition against SARS-CoV-2. 
Applying this model to a database of approved drugs, the 
authors identified verteporfin, alatrofloxacin, metergoline, 
rescinnamine, leuprolide, and telotristat ethyl as potential 
candidates for inhibitors of the SARS-CoV-2, going fur-
ther to incorporate in silico docking methodologies to show 
their potential as spike inhibitors; however, they were unable 

to perform any in vitro or in vivo to test their repurposing 
hypothesis (Fig. 9).

Gawriljuk et  al. [94] took a similar approach, utiliz-
ing the extended connectivity fingerprint (ECFP6), a set 
of molecular descriptors developed by ChemAxon, which 
represents a compound as a fixed length binary represen-
tation, which can then be subsequently used as the input 
features for numerous machine learning models [164, 165]. 
The authors then collected available in vitro inhibition data 
from several drug repurposing studies for use in COVID-
19, collecting over 60 compounds in total. These activities 
values, along with the set of molecular descriptors, were fed 
into numerous machine learning regression models, includ-
ing random forest, support vector machines, decision trees, 
and a deep learning neural network. Out of these models, 
the Bayesian method created by the external Assay Cen-
tral [166, 167] software performed the best at predicting 
the inhibition within the training set of compounds. Using 
this trained model, the authors then proceeded to predict 
the inhibition of a subset of FDA-approved compounds that 
were available to them; these top scoring compounds were 

Fig. 9   A generalized machine learning neural network for the clas-
sification of molecules as active or inactive, in this case as antiviral 
compounds. To create such a classifier, known active and inactive 
compounds for the desired class are needed as a training/validation 
set for the model to assess its predictions selected. Chemical finger-
prints (e.g., MACCS, Morgan Fingerprints etc.) for these compounds 

are generated and used as the features the neural network trains upon 
to learn the patterns that identify a compound as active or inactive. 
Once the model is trained, new compounds may have these same fea-
tures generated and passed into the neural network to have their activ-
ity predicted. This allows for quick filtering of compounds and prior-
itization in testing their activities
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then used within HeLa–ACE2 cells, where the compounds 
showed high inhibitory potential, with IC50 values in the sub 
millimolar range (540 nM–8.4 μM). Strangely, the authors 
of this study have chosen to obfuscate the names of these 
top performing compounds, and to date no follow-up stud-
ies using the chosen monikers (CPI1062 and CPI1155) have 
been performed. Using the ECFP6 fingerprints of the active 
and inactive compounds, the authors also provided the most 
populous fragments from each set. While the authors were 
able to develop a model that could accurately predict the 
binding affinity based on the curated database of in vitro 
data, the dataset used is rather limited with only 60 com-
pounds, which contains compounds such as hydroxychloro-
quine and chloroquine, which are now known to not provide 
any benefit within clinical trials [145, 168]. The authors also 
show that the most populous fragment from the ECFP6 fin-
gerprint set is a tertiary amine, which appears in both chlo-
roquine and hydroxychloroquine, showing that the presence 
of these compounds is indeed biasing the dataset. With large 
datasets of known COVID-19 inhibitors now published [24, 
169], this method should be reapplied to see if the observed 
accuracies still hold; additionally, increasing the overall 
chemical space within the training dataset would make this 
methodology more generalizable.

Kadioglu et al. [95] utilized a combination of clinical 
data, molecular docking, and machine learning to identify 
potential drugs for COVID-19 from the FDA-approved 
drugs and a set of zinc natural compounds. Using Auto-
Dock Vina, the authors used these two libraries to dock 
each compound against the SARS-CoV-2 spike protein 
and nucleocapsid protein, and a methyltransferase to rank 
order compounds for the next step in their in silico pipeline. 
Using clinical data, the authors additionally trained a super-
vised learning-based classifier model on the basis of a set 
of known active and inactive SARS-CoV-2 compounds to 
further validate the screened compounds that showed high 
affinity against targets during the docking study against the 
COVID-19 targets. Rather than using molecular descriptors 
such as ECFP6 or MACCS, the authors decided to use sim-
pler property values of the compounds (i.e., hydrogen bond 
donors, rotatable bonds, PSA, total surface area, etc.) After 
the neural network model was trained, and was externally 
validated, showing a 1.0 precision, the docked compounds 
were then screened using this same model. The top scoring 
compound simeprevir has been externally validated by other 
labs to inhibit COVID-19 in vitro [170, 171]; however, the 
authors’ chosen target of the spike protein for this compound 
does not match with the rest of the literature, which focuses 
on simeprevir inhibiting the main protease of SARS-CoV-2 
[170, 172–174].

Beck et al. took a natural language processing approach 
to determining molecular features, rather than using the 
more established fingerprinting methods. Previously 

published methodology [175] was used that can represent 
linear SMILES strings of molecular compounds [176] and 
the FASTA [177] sequence of protein targets as matrices 
capable of being used as the input for a neural network, 
along with a curated database of drug/protein interactions 
and binding affinity data from BindingDB [178, 179]. The 
authors trained a model that could accurately predict the 
binding affinity of compounds, with a Pearson correlation 
score of 0.9. Using this trained model, they then proceeded 
to predict the binding affinity of each FDA-approved drug 
against a set of target viral proteins, focusing on those com-
pounds that were predicted to have a binding affinity lower 
than 1000 nM. These compounds were subsequently docked 
into their respective protein targets using AutoDock Vina 
[180] to determine their validity. For both the antiviral sub-
set and whole subset of the library of FDA-approved drugs, 
the predicted binding affinity of the compounds were corre-
lated with the binding affinity predicted by AutoDock Vina, 
potentially making this methodology a suitable replacement 
for molecular docking when working with large datasets of 
compounds. Notable top predictions from this study include 
ritonavir, which was initially seen as a potential therapeutic 
until further clinical trials showed that the compound had 
negligible effect on hospitalization [181]. Remdesivir was 
ranked in the top 5% of compounds when tested, however, 
suggesting that this prediction model should be used not as 
an absolute source of binding affinity, but as a method of 
prioritization for large sets of predictive compounds.

3.3 � Potential Improvements in Drug Repurposing 
Methodologies

While many of these networks were able to make predic-
tions of compounds that would later be validated, many 
predicted compounds would later go on to be removed from 
emergency use authorization once further clinical trials were 
conducted (e.g., hydroxychloroquine, ivermectin, chloro-
quine) (Table 2). The appearance of these known inactive 
compounds suggests that these machine learning methodolo-
gies for drug repurposing, while novel, suffer from the same 
issues that other in silico and in vitro methodologies have 
when attempting to translate into in vivo and clinical results 
within patients.

Notably, when using patient endpoint data, such as within 
Pham et al.’s study utilizing the gene expression data of 
infected and healthy patients, these failed compounds did 
not appear within the top results reported by the authors. 
Using such clinical endpoint data may increase the predic-
tive power over these other models and should be included 
in combination with the in vitro data that many of these 
models utilize. Many of these studies were performed 
within the first two years of the pandemic and can benefit 
from the updates in knowledge that have been subsequently 
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generated. Utilization of these results may elucidate new 
chemical space for antiviral compounds for COVID-19, 
which may have been previously overlooked.

4 � Machine Learning Methodologies for De 
Novo Drug Design

While drug repurposing for COVID-19 has been exten-
sively pursued due to the potentially lower hurdles for the 
discovered candidates to progress through clinical trials, 
de novo drug discovery still has a role to play in helping 
to manage future pandemics. As seen over the past three 
years, the SARS-CoV-2 virus is not merely one strain but 
has consistently mutated over the course of the pandemic. 
By the time the first wave of SARS-CoV-2 infections hit 
the USA, the D614G variant of the initial Wuhan strain 
had already become dominant and subsequent strains (e.g., 
B.1.617.2 or Delta, and B.1.1.529 or Omicron) have caused 
additional waves [182–188]. While initial efforts towards 
developing vaccines and monoclonal antibody treatments 
(mAbs) were successful, the mutations contained within 
these variants have been effective in providing resistance to 
both types of treatments [189–201]. In addition to the threats 
caused by the ongoing mutation of this virus, these repur-
posed drugs are not optimized to inhibit the proteins used 
by these viruses. Remdesivir, one of the standout antivirals 
that was given emergency use authorization against SARS-
CoV-2, was originally targeted against the Hepacivirus C 
RNA-dependent RNA polymerase (RdRp), and exhibits 
an average EC50 700 nM versus SARS-CoV-2 infection; in 
contrast, remdesivir has an EC50 of 3 to 90 nM against the 
Ebola virus, and 70 nM within the original SARS-CoV-1 
[202, 203]. This loss in activity can potentially be attrib-
uted to the differences in the structure of RdRp between 
SARS-CoV-1 and SARS-CoV-2, which have 80% similarity 
[202, 203]; however, additional in silico and in vitro studies 
need to be performed to identify the exact residue change 
that confers this selectivity to the SARS-CoV-1 RdRp. De 
novo drug discovery offers the opportunity to develop novel 
treatments that specifically target the SARS-CoV-2 virus’s 
protein structures, thereby providing a more effective and 

tailored approach to treating COVID-19 versus utilizing 
the limited chemical space explored by the currently exist-
ing set of FDA approved compounds. For this section, we 
will focus on the efforts made in de novo drug design for 
both small molecules (e.g., remdesivir) and biological (e.g., 
tixagevimab) entities against SARS-CoV-2, which utilize 
machine learning to accelerate their efforts.

To identify studies that fit this description, the following 
search query was utilized:

[(“machine learning” OR “deep learning” OR “artifi-
cial intelligence” OR “neural network” OR “random 
forest” OR “support vector machine” OR “convolu-
tional neural network” OR “generative adversarial 
network” OR “autoencoder”) AND (“COVID-19” OR 
“SARS-CoV-2” OR “coronavirus”) AND (“de novo 
compound” OR “novel compound” OR “drug discov-
ery” OR “virtual screening”)]

Through this search, the following studies were identified 
(Table 3).

4.1 � Small‑Molecule Drug Design

4.1.1 � Utilization of Machine Learning to Accelerate Virtual 
Screening (VS)

Traditional virtual screening methods are time consuming 
and computationally demanding, limiting their efficiency 
in screening vast chemical databases, such as the ZINC or 
Enamine libraries, which can potentially contain billions of 
compounds. By utilizing known active and inactive com-
pounds against a given target, a machine learning model can 
be trained and subsequently used to filter out compounds 
within these large sets of compounds, saving on both com-
putational time and eventual in vitro testing resources.

Kumari and Subbarao [204] took a similar approach 
to the described drug repurposing studies. Using a set of 
known compounds that have assay response data against the 
3-chymotrypsin like protease (3CLPro, also known as the 
main protease [211]) of SARS-CoV-2, the authors proceeded 
to train a machine learning model that could classify com-
pounds as being active or inactive against 3CLPro based on 
a set of over 100 calculated two-dimensional descriptors. 
The author’s best model, a convolutional neural network, 
showed an accuracy of over 85% based on the designated 
set of test compounds. This model was then applied to sev-
eral compound sets, including natural compounds from the 
ZINC database, the NCI IV divest, which contains primarily 
natural products, along with the FDA-approved compound 
set. After applying a Lipinski’s rule of five filter, the authors 
identified nine flavonoid compounds from the phytochemi-
cal dataset, but did not go further and test these compounds 
in vitro.

Table 2   Papers implementing knowledge-based graphs to predict 
active compounds against COVID-19 and which predicted known 
inactive compounds

COVID-19 ineffective drug Papers predicting

Ivermectin Zeng et al. [87], Gysi et al. [88]
Chloroquine Zeng et al. [87], Gysi et al. [88], 

Santos et al. [89], Ge et al. 
[90]

Hydroxychloroquine Zeng et al. [87], Gysi et al. [88]
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Flavonoid compounds were also identified by Xu et al. 
[210] as potential inhibitors through a combination of 
machine learning and molecular docking. Using a set of 66 
active and 66 inactive compounds against the SARS-Cov-1 
3CLPro protein, the authors trained a classifier model using 
several machine learning methodologies, with their logistic 
regression model performing the best. After training this 
model, 2030 known natural compounds were passed through 
the model to determine if they were active or inactive against 
3CLPro. These results were used in combination with the 
publicly available crystal structure of 3CLPro from SARS-
CoV-1, which shares nearly perfect identity with the SARS-
CoV-2 3CLPro. Using a combination of molecular docking 
and molecular mechanics Poisson–Boltzmann surface area 
via the Schrödinger Maestro suite, the authors identified six 
flavonoid compounds with rutin scoring the highest among 
the other potential inhibitors.

While flavonoid-based compounds have been tested for 
their efficacy against COVID-19 [212], with some show-
ing nanomolar efficacy in terms of inhibition, most of the 
in vitro evidence for these compounds inhibitory activity 
comes from kinase targets, rather than this protease target. 
With no in vitro testing performed on the compounds from 
Kumasi et al., it is impossible to validate the efficacy of these 
compounds as SARS-CoV-2 inhibitors. However, rutin, the 
compound identified as the top scorer in the study by Xu 
et al. [210], has had its in vitro activity determined, and was 
found to be inactive against SARS-CoV-2’s PLpro protein 
[213].

Srinivasan et al. implemented a Monte Carlo tree search 
machine learning model to reduce the amount of docking 
required to screen compounds against COVID-19 [205]. This 
model was created by using molecular features (i.e., build-
ing blocks) to identify moieties that confer strong binding 

energy as predicted by AutoDock Vina [180]. The authors 
were successful in creating a model that could predict the 
AutoDock Vina [180] binding scores of compounds bind-
ing against the spike protein/ACE2 complex. This model 
can drastically reduce the computational cost for each tested 
compound, as each compound can have its binding affinity 
estimated through its structure alone, rather than having to 
use computationally expensive methodologies such as dock-
ing. The authors then used this model to score over 97,000 
molecules against the spike/ACE2 complex.

4.1.2 � Using Machine Learning to Generate New 
Compounds for COVID‑19

Generative models are a type of machine learning algorithm 
that can be used to create new molecules within a particular 
chemical space. These models are trained on existing data-
sets of molecules, such as those from the PubChem data-
base, to learn the underlying patterns and rules governing 
the molecular structure of the compounds. Once trained, 
the generative model can be used to design new molecular 
entities that have not yet been explored. These molecules 
can be generated with specific properties, such as a high 
binding affinity to a target protein or a low toxicity profile. 
This is done by using the learned patterns and rules to itera-
tively generate new molecules and assess their properties 
using computational models or in vitro and in vivo assays 
[214–221].

Bung et al. [206] utilized machine learning to generate 
new sets of compounds using a generative model trained on 
drug-like SMILES strings. Generative models are a type of 
machine learning model that learns to generate new data that 
is similar to a given set of training data [222–224]. They are 
used to model the underlying distribution of the training 

Table 3   List of curated studies using the above search query

Author Paper Method Citation

Kumari et al. Deep learning model for virtual screening of novel 3C-like protease 
enzyme inhibitors against SARS coronavirus diseases

Machine learning assisted virtual screening [204]

Srinivasan et al. Artificial intelligence-guided de novo molecular design targeting 
COVID-19

Machine learning assisted virtual screening [205]

Bung et al. De novo design of new chemical entities for SARS-CoV-2 using 
artificial intelligence

Generational network/virtual screening [206]

Arshia et al. De novo design of novel protease inhibitor candidates in the treat-
ment of SARS-CoV-2 using deep learning, docking, and molecular 
dynamic simulations

Generational network/virtual screening [207]

Magar et al. Potential neutralizing antibodies discovered for novel coronavirus 
using machine learning

Machine learning assisted antibody screening [208]

Williams et al. Fast prediction of binding affinities of SARS-CoV-2 spike protein 
and its mutants with antibodies through intermolecular interaction 
modeling-based machine learning

Machine learning assisted antibody screening [209]

Xu et al. Discovery of potential flavonoid inhibitors against COVID-19 3CL 
proteinase based on virtual screening strategy

Machine learning assisted virtual screening [210]
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data and can be used to generate new samples that follow 
the same distribution. Using a set of 1.6 million drug-like 
small molecules, the authors trained a new generative model 
to generate new SMILES strings based upon the given set. 
The model was trained in combination with RDKit, which 
was used to determine whether the SMILES strings gen-
erated were chemically feasible (e.g., correct number of 
bonds, valid atom types, SMILES grammar, etc.). After 
training, 97% of SMILES strings generated by the genera-
tive model were valid molecules. After learning the struc-
ture of valid chemical entities along with the grammar of 
SMILES, this model was subsequently trained on the subset 
of compounds that could inhibit 3CLPro, along with a set 
of known antiviral compounds (7665 compounds in total). 
By identifying the underlying features within this set of 
antiviral compounds, the model then proceeded to generate 
over 40,000 compounds that contained similar features to 
the initial dataset; these compounds were then docked into 
the structure of 3CLPro to determine their viability against 
the protein structure. Over 1200 of these compounds were 
found to have a VINA docking score of less than − 7.0 kcal/
mol. Interestingly, the highest scored compounds from this 
generative model had high Tanimoto similarity to known 
human immunodeficiency virus (HIV) protease inhibitors, 
such as darunavir, indinavir, and saqunavir, showing that 
the model was able to learn the features of the provided 
antiviral compounds. Other studies of anti-HIV antivirals 
have shown limited efficacy against COVID-19 with IC50 
values in the micromolar range. Indinavir specifically was 
shown to have an IC50 > 200 µM to inhibit the main pro-
tease of SARS-CoV-2. Additional in vitro validation will 
be required for these compounds to determine their efficacy 
against SARS-CoV-2.

Similarly, Arshia et al. [207] utilized a generative net-
work based on the ChEMBL[225] and ZINC [226, 227] 
SMILES strings to generate new potential inhibitors of the 
main protease of SARS-CoV-2. The long short-term mem-
ory [228] (LSTM) chem network is a generative recurrent 
neural network, which has learned to generate de novo 
designs of compounds based on these training sets [25, 
225–227]. After compound generation, these compounds 
are then prepared and subsequently docked into the crys-
tal structure of the main protease using AutoDock Vina 
[180]. The docking scores of these compounds are then 
used to fine tune the neural network for future generations, 
each subsequent generation being more finely tuned for the 
docking receptor. The top generated compounds were then 
simulated in complex with Mpro utilizing GROMACS. 
Compared with the crystal structures of remdesivir and N3 
with the Mpro protein, the docking score of the generated 
compounds showed a notable improvement over the known 
inhibitors. However, the authors provide no additional 
studies concerning in vitro efficacy of these compounds, 

leaving their actual potency unknown. Additionally, the 
generative network appears to have no weighting con-
cerning typical ADMET properties (i.e., LogP, molecular 
weight, etc.) as the produced compounds are extremely 
large, lipophilic, and contain numerous aromatic rings. 
These molecules easily break Lipinski’s rule of five for 
drug-like compounds, raising concerns about their overall 
applicability in vitro and in vivo (Fig. 10).

4.2 � Antibody Design

Efforts to implement machine learning to accelerate de 
novo drug discovery are not limited to small molecules, but 
also extend to the design of biological compounds, such as 
antibodies. Much like with their small molecule counter-
parts, antibodies can be described through a set of descrip-
tors (e.g., their primary sequence) that can be used as an 
input to many machine learning methods. Even before the 
pandemic began, several groups were studying the use of 
machine learning to modify existing antibody designs to 
improve their affinity with their antigens. Using a set of 
training data consisting of Fab fragment binding affinities 
with a chosen antigen, Liu et al. [231] showed that even 
with only the one dimensional primary sequence data of the 
antibody, a trained neural network would be able to suggest 
new sequences that encode antibodies, with increased EC50 

Fig. 10   Ligand A from Arshia et  al.’s [207] generative model sub-
mitted to the SWISSADME [229] service. Ligand A, while showing 
enhanced binding affinity to the main protease, exhibits undesirable 
qualities, such as a large number of rotatable bonds (12), high lipo-
philicity (6.97 logP), and large size [866 molecular weight (MW)]. 
This compound breaks two of Lipinski’s rule of five [230], [MW > 
500 and Moriguchi octanol-water partition coefficient (MLOGP) > 
4.15]
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values compared with the original training set. This method 
of training neural networks to design new antibodies based 
on the one-dimensional primary sequences and experimental 
binding affinity data was further expanded on by Akbar et al. 
[232], who designed a similar deep learning neural network 
trained on 11,000 HER2-binder and non-binder CDR-H3 
sequences. However, this methodology did not go into the 
in vitro stage to evaluate these antibodies, thus relying on 
in silico methodologies to determine the binding affinity 
between antibody and antigen.

Magar et al. [208] utilized a similar approach to design-
ing, utilizing the known IC50 values of numerous antibodies 
with their respective viruses, including human immunodefi-
ciency virus (HIV), influenza, Dengue, etc. as training data 
for their machine learning model [208]. For each of these 
pairs of antibody/antigen structures, the known interac-
tions for each were extracted and used to train a classifying 
machine learning model to determine whether the antibody 
will be able to recognize and neutralize the antigen. Unlike 
the previous examples of designing antibodies with machine 
learning, which used the primary sequence of the antibody 
as the input layer for the ML model, the authors used a graph 
model that treated each atom within the antibody and antigen 
as its own input node; each node including specific features 
concerning the atom (e.g., aromaticity, atom type, residue 
type, etc.). With these two sets of input nodes concatenated 
into one total input layer, several machine learning algo-
rithms were implemented to determine which could most 
accurately predict whether the binding ability of the test set 
of antibodies could be found. The authors’ XG-Boost algo-
rithm, an implementation of gradient boosting that combines 
several decision trees to create an overall strong predictive 
model, showed the best accuracy concerning the training 
data, with exceptional performance displayed in predicting 
the binding efficacy of antigens concerning SARS-CoV-1. 
Looking at feature importance, the authors noted that the 
inclusion of a methionine residue upon the antibody surface 
was a crucial feature to increase antibody/antigen recogni-
tion, noting the importance of surface sulfur atoms in pro-
tein–protein interactions [233]. Using this trained model, 
Magar et al. proceeded to screen thousands of hypotheti-
cal antibody candidates for the SARS-CoV-2 virus using 
molecular dynamics simulations of the designed antibodies 
to determine their overall stability [208].

Free energy calculations can be a powerful tool to deter-
mine the relative binding affinities of both ligands and anti-
bodies to their protein targets [234–238]. Using free energy 
calculations, such as molecular mechanics with generalized 
Born and surface area solvation (MM-GBSA), a reliable 
methodology was developed early in the pandemic that 
allowed for the quick estimation of the experimental binding 
affinity (Kd) of the spike protein to the ACE2 receptor [236, 
239]. This methodology was able to successfully predict 

the binding affinity of both the Alpha and Omicron vari-
ants of the SARS-CoV-2 spike protein before experimentally 
validated assays were published [236, 239]. However, these 
methods are not without their drawbacks; methods such as 
MM-GBSA are liable to vastly overestimate the binding 
energy between two entities [240–246], requiring methods 
such as a linear regression model to return the predicted 
values to a reasonable value in line with experimentally 
determined results [236–239, 247]. This overestimation is 
especially evident when comparing entities that have differ-
ing charge states (e.g., different protonation states of a ligand 
causing a large change in the predicted ΔG value, while the 
experimentally determined ΔG value would remain constant 
between the two states). With these limitations in mind, 
implementing a free energy-based methodology to predict 
the binding affinity of a wide range of known SARS-CoV-2 
targeting antibodies, each with their own unique charge 
states, would be a significant challenge. However, groups 
such as Dong et al., have shown that the introduction of addi-
tional energy and interaction features (e.g., hydrogen bond-
ing interactions, rotatable bonds, ligand charges, element 
count, etc.) via a random forest machine learning model can 
vastly improve the experimental/predicted binding affinity 
correlation than with just free energy methods alone [248].

Williams et al., utilized this combination of machine 
learning and free energy methods to predict the experimen-
tally determined binding affinity of numerous antibodies 
with both the wild type spike protein and its known Kappa 
(B.1.617.1) and Delta (B.1.617.2) variants [235]. Along with 
the decomposed energy terms of MM-GBSA (i.e., Van der 
Waals (vdW), electrostatic (EEL), solvation), several addi-
tional intermolecular interaction terms were added to char-
acterize the complex between each antibody and the SARS-
CoV-2 spike protein (e.g., hydrogen bonds, charges of the 
spike and antibody within the crystal structure, surface area 
of the spike, and antibody proteins, etc.,) Using this set of 
features, the available spike/antibody binding affinity data 
was split into three separate K-folds to allow for each data 
point to be used at least once within the validation set to 
avoid overtraining on any of the few data points that were 
available at that time. Williams et al., proceeded to train a 
two hidden layer perceptron neural network model, which 
accepted 11 different features of the antibody/spike complex 
as its input, these input nodes then forward fed into the two 
hidden layers, which would finally feed into a single output 
node, providing the binding free energy (ΔG) prediction of 
the antibody/spike complex in question. The model’s three 
K-folds were able to successfully predict the binding affin-
ity with high accuracy to the known experimental values, 
with an RMSE of 0.4 kcal/mol averaged across the three 
folds, improving on the overestimation of binding affin-
ity that would have resulted with MM-GBSA alone. With 
this trained model, Williams et al. proceeded to predict the 
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binding affinity of over 20 antibodies with 11 variants of the 
SARS-CoV-2 virus. This model successfully predicted that 
several antibodies would have diminished binding affinity 
with the B.1.617.2 (Delta) variant spike protein, including 
Ly-CoV555, without any previous training data concerning 
the Omicron variant [193]. The authors propose that this 
methodology could be used to scan hundreds of potential 
SARS-CoV-2 variants, to determine which mutation or com-
bination of mutations could potentially threaten antibody 
efficacy as the pandemic continues.

5 � Discussion

5.1 � Successes and Limitations

Machine learning methods have rapidly matured since the 
SARS-CoV-2 virus first appeared. Multiple studies for drug 
repurposing and de novo design of new compounds for 
COVID-19 have been able to identify both new and exist-
ing compounds for use in inhibiting infection by the virus.

While these models do show great promise, it is essential 
to note the limitations inherent to these machine learning 
models. Unlike simpler methods, such as multiparameter 
optimization (MPO) and linear regression, machine learn-
ing models are intrinsically opaquer in terms of their under-
standability, due to their more complex structures in com-
parison (e.g., each parameter within a linear regression will 
have a coefficient roughly equivalent to their overall impor-
tance if the input values are standardized). This is especially 
true within neural networks that have many input nodes and 
hidden layers; though the weights between these layers may 
be known, changing a certain input value while keeping the 
other variables constant will not necessarily produce a linear 
correlative output as seen within models such as a linear 
regression.

Despite the considerable amount of effort and resources 
invested in training machine learning models, many stud-
ies that employ these models fail to validate the generated 
designs in vitro or in vivo. This is a significant limitation 
that restricts the overall impact that these models may have 
within the scientific community. Without proper in vitro 
validation of these predictions, it is impossible to determine 
whether the designs generated by the machine learning 
models are accurate or whether they merely reflect chance 
correlations. This lack of validation makes it challenging 
to determine the usefulness of these models in practice and 
may result in wasted resources and false leads.

This lack of in vitro or clinical validation is especially 
concerning within drug repurposing, as the recommended 
compounds are currently on the market and are potentially 
obtainable by those without medical training. Off label and 

unauthorized use of ivermectin contained within livestock 
products and hydroxychloroquine within aquarium supplies 
led to the poisoning of numerous people who thought that 
these compounds were viable treatments for COVID-19, 
despite the lack of clinical trials showing efficacy [249–252]. 
The validation of these predictions with experimental 
in vitro and clinical results will not only provide appropri-
ate recommendations to the healthcare community, but will 
simultaneously generate additional data to use within the 
next generation of trained models.

5.2 � Lessons for the Future

In terms of utilizing these machine learning methods 
in preparation for the next pandemic, emphasis must be 
placed on the methodologies that provide information that 
can be quickly implemented for healthcare decisions. While 
machine learning methods for de novo drug design are 
essential for exploring chemical space that would otherwise 
go ignored, developing new antiviral medications is a long 
and expensive process that does not fit within the short time-
frame that an emerging pandemic provides. Methodologies 
seeking to identify existing approved pharmaceuticals can 
provide chemical entities with known safety characteristics 
and can be prescribed for off-label use until a decision can 
be made later for use against the emerging pandemic.

In conclusion, the emergence of the COVID-19 pandemic 
has highlighted the crucial role that machine learning (ML) 
techniques can play in accelerating the rate of drug discov-
ery. With the ability to analyze large datasets, including 
experimental and clinical data, ML techniques have proven 
to be effective in identifying drug candidates, repurposing 
existing drugs, and designing new compounds for COVID-
19. Overall, the utilization of ML techniques in drug dis-
covery has the potential to transform the drug development 
process and improve public health outcomes.
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