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Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately 
result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation 
of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been 
significant advances in basic research findings as well as translational studies, culminating in an increasing number of 
clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of  Luxturna® 
(voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials 
for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present 
article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and 
the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies 
aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing 
in the same therapeutic space.
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1  Adeno‑Associated Virus (AAV)‑Based 
Retinal Gene Therapy: Long Time Coming

The eye has several advantages as a target for the use of 
molecular therapies such as viral vector-based gene therapy: 
(1) the retina is relatively immune-privileged (due to tight 
junctions of the blood–retina barrier [1]), thus minimising 
any systemic inflammatory response from the introduction of 
a foreign antigen [2]; (2) small amounts of treatment vector 

are needed to achieve ‘therapeutic response’ and vectors are 
essentially quarantined from systemic circulation [3]; (3) the 
retina is readily accessible by surgery and vectors can be 
delivered close to target cells [4] and (4) there is the ability 
to non-invasively monitor disease progression in terms of 
both retinal structure and physiology [5]. Furthermore, all 
retinal neurons are post-mitotic [6], reducing the likelihood 
of dilution or progressive loss of the expression of targeted 
therapeutic agent [7]. However, the success of a retinal gene 
therapy approach is primarily dependent on how efficiently, 
and specifically, the selected technology to deliver the thera-
peutic construct can target the retinal cell of interest.

The use of viral vectors to transfer functional genes into 
host cells to correct endogenous dysfunctional genes has 
significantly progressed over the last 30 years. Initial use 
of recombinant viral vectors, such as those derived from 
retroviruses, lentiviruses and adenoviruses, showed efficient 
gene delivery; however, safety concerns have resulted in the 
predominance of adeno-associated virus (AAV) as the cur-
rent therapeutic vector of choice [8]. The inherent properties 
of AAV, and its malleability for genetic modification and 
engineering, positions it as a useful platform for gene ther-
apy. AAV has many attributes suited to ocular gene therapy; 
it is non-pathogenic, confers a relatively low immunogenic 
response [9] in privileged areas such as the eye and brain, 
different tissue and cell tropism can be modified by careful 
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Key Points 

The safety of adeno-associated virus (AAV)-based gene 
therapies for inherited ocular conditions has now been 
substantially validated by several clinical trials.

Recent improvements in clinical trial design and AAV 
technologies are providing further encouragement 
towards the efficacy of these therapies.

There is increasing support for ‘non-traditional’ AAV 
therapies and new technologies such as antisense oligo-
nucleotides as alternative treatment strategies.

efficiencies, either by adjusting the delivery method to suit 
specific disorders, such as using multiple AAVs for large 
gene delivery [30, 31], or by simply improving cell targeting 
and transduction levels by developing novel capsids [17].

The growing evidence from pre-clinical studies using 
AAV-based approaches to treat retinal disorders suggests 
that combining the wide spectrum of disease targets with 
the suitability of AAV for developing retinal therapeutics 
is effective. Since the recent market approval from the US 
Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) for an AAV2/2-based therapy 
for the inherited retinal condition Leber congenital amauro-
sis type 2 (LCA2, caused by mutations in the RPE65 gene; 
voretigene neparvovec-rzyl, trade name:  Luxturna®), there 
has been a steep increase in the development, testing and 
launching of new trials specifically for retinal disorders [32]. 
There are 43 ongoing or completed clinical trials that are 
using or have used AAV delivery systems as a means of 
correcting genetic faults in inherited retinal degeneration 
(IRDs; ClinicalTrials.gov; Table 1, Supplementary Table 1, 
see Electronic Supplementary Material [ESM]). Another 
five clinical trials (three ongoing and two completed) are 
also using or have used AAV to deliver therapeutics for 
age-related macular degeneration (reviewed in [32]) and 
future trials for glaucoma are likely [33]. This highlights 
how far retinal AAV gene therapy research has come. This 
review will provide an overview of the available results for 
the AAV-based clinical trials for IRDs with a focus on their 
selected AAV serotype. It will also discuss some of the lat-
est developments using AAV for what classically have not 
been thought of as IRDs, yet can have heritable risk factors 
amenable to gene therapy, such as Leber Hereditary Optic 
Neuropathy (LHON) and paediatric glaucoma, and the emer-
gence of antisense oligonucleotide technology as a potential 
alternative to AAV-based therapies.

2  AAV‑Based Gene Therapy for Inherited 
Retinal Diseases (IRDs): Clinical Trials 
Update

IRDs comprise a clinically and genetically heterogeneous 
group of disorders that result in the degeneration of the outer 
retina and progressive visual impairment. Over the past three 
decades, investigation into the underlying molecular causes 
have identified over 270 genes associated with inherited 
vision loss and blindness in one or more clinical subtypes 
of IRD [184]. The heterogeneous presentation of these con-
ditions, both clinically and genetically, has until now made 
it difficult to link their pathophysiology with the underly-
ing genetic lesion. It is only advances in genetic screening, 
along with better clinical measurements, that have allowed 
stratification and subtype classification [34]. This knowledge 

selection of serotype [10, 11] and the vector is able to sustain 
long-term transgene expression [8]. Its ability to replicate 
is dependent upon co-infection with a helper virus, such 
as adenovirus, otherwise it remains as a non-integrating, 
nuclear episome in non-dividing cells or integrates into the 
host genome at the specific AAVS1 site on chromosome 
19 [12–14]. Since its initial identification in 1965 [15], an 
increasing number of AAV serotypes and variants have been 
identified, varying in their tissue tropism and transduction 
efficiencies [16–19]. The AAV’s simple cellular and molecu-
lar structure belies its significant functional versatility and 
potential to transform the gene therapy field.

The first attempts of in vivo transduction of mouse and 
primate retinas [12, 20] and gene replacement therapy in 
mouse models of inherited retinal diseases (IRDs) [21, 22] 
were achieved almost three decades ago using the AAV2/2 
serotype. The subsequent studies using AAV2/2 formed the 
basis for the first ocular gene therapy clinical trials [23–25]. 
However, the shortcomings of AAV2/2 were soon evident, 
such as its limited cellular tropism and the widespread pres-
ence of neutralising antibodies to AAV2/2 in the wider pop-
ulation [26]. As new AAV serotypes were being reported, 
they were used to generate recombinant vectors using the 
AAV2 genome and capsids from these different serotypes; 
for example, AAV2/1 (AAV2 genome with AAV1 capsid) 
[27, 28]. There are now more than 100 AAV serotypes 
identified from human and non-human primates [29]. Also, 
in addition to natural AAV variants, a significant amount 
of research has concentrated on altering AAV’s transduc-
tion efficiency by targeted mutagenesis of the capsid cod-
ing genes, or by library approaches, allowing for selective 
screening of novel capsids [17]. Thus, significant advances 
can still be made through basic research concentrating on 
atomic scale details of AAV capsid’s structure and function. 
The continual development and testing of new genetically 
engineered AAVs will enable optimisation of gene delivery 
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has enabled clinicians and researchers to identify genetic 
targets and start the development and implementation of 
gene replacement treatment platforms. Whilst many forms 
exhibit complex aetiology, IRDs are largely monogenic and 
typically progressive, exhibiting a wide range of present-
ing age and variability in visual disturbance. Their inherit-
ance patterns follow Mendelian inheritance of autosomal 
dominant (AD), autosomal recessive (AR), X-linked (XL) 
or mitochondrial patterns [35]. Furthermore, even when the 
same mutation is identified, the age of onset and the severity 
of disease manifestation can vary amongst family members, 
strongly suggesting involvement of other complex factors 
[36]. With the provision of a wide scope of potential treat-
ments for different types of IRDs, the eventual choice of 
therapy will depend on many factors, including the genetic 
target, the type of inheritance, the time-course of disease, 
the severity of retinal degeneration and the availability of 
relevant technologies. AAV-based gene therapy has taken 
the lead in the last decade, with an ever-growing number 
of pre-clinical studies in animal models and clinical trials 
providing encouraging results [37].

2.1  AAV2/2‑Based Clinical Trials

AAV2/2 was the first and most widely tested serotype in 
the retina as it was shown to be capable of targeting both 
retinal pigment epithelium (RPE) and some photoreceptor 
cells after subretinal delivery in mice [12, 38], rats [39] and 
primates [20]. Subsequently, it was the vector of choice in 
the first studies investigating gene replacement therapy in 
animal models of IRD [22, 23, 40], and paved the way for 
future clinical application of AAV-based gene therapy—the 
vast majority of completed or active AAV-based clinical tri-
als for IRDs have used AAV2/2 (Table 1). These include 
most of the trials for LCA2 (human retinal pigment epithe-
lium-specific 65 kDa protein [RPE65] deficiency) and Leber 
Hereditary Optic Neuropathy (LHON), all of the choroider-
emia trials, and one trial for retinitis pigmentosa (RP) caused 
by mutations in the MERTK (mer proto-oncogene, tyrosine 
kinase) gene. Because each of these conditions affect dif-
ferent cell types in the retina, the design of each trial had to 
take into consideration not only AAV2/2’s retinal tropism, 
but also the promoter selection and route of vector delivery. 
The choroideremia and some of the LCA2 trials opted for 
ubiquitous promoters such as the hybrid cytomegalovirus 
early enhancer/chicken b-actin (CAG) promoter (choroi-
deremia) or the human cytomegalovirus (CMV) promoter 
(LCA2). Cell-specific promoters were also used and include 
the human RPE65 promoter (LCA2) and the RPE-specific 
human VMD2 (vitelliform macular dystrophy-2) promoter 
(MERTK-related RP). The choice of delivery route for all 
trials was selected primarily according to the target cell: 
RPE and photoreceptors for LCA2, choroideremia and In
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MERTK-related RP, and retinal ganglion cells (RGCs) for 
LHON. Subretinal delivery is still the most efficient route for 
AAVs to target RPE and photoreceptors, as in the adult eye 
most serotypes cannot reach the outer nuclear layer from the 
vitreous due to the physical barrier created by the inner lim-
iting membrane [41, 42]. However, in adult eyes, especially 
in rodents, intravitreal AAV2/2 injections are an efficient 
way of targeting RGCs [10, 33, 43, 44]. The results of the 
different AAV2/2-based trials are discussed below.

2.1.1  Targeting the Retinal Pigment Epithelium (RPE)—the 
LCA2 and MERTK Trials

Both LCA2 and MERTK-related RP are conditions that 
directly affect the RPE cells given the cell-specific expres-
sion of RPE65 and MERTK. The first and most successful (to 
date) AAV-based clinical trials for a retinal condition were 
for LCA2, an autosomal recessive disorder caused by muta-
tions in the RPE65 gene [45–62]. At a cellular level, RPE65 
produces retinoid isomerohydrolase, an enzyme involved in 
RPE-mediated metabolism of chromophore recycling after 
phototransduction [63, 64]. The MERTK gene encodes a 
transmembrane receptor of tyrosine kinases and is found 
in phagocytic cells such as RPE and macrophages. In RPE 
cells, MERTK plays an essential role in the renewal of outer 
segments (OS) of the photoreceptor. Given AAV2/2’s tro-
pism for RPE cells, it was the selected vector in several pre-
clinical studies showing that AAV-based subretinal gene 
therapy in mouse, rat and dog models of RPE65 and MERTK 
deficiency was capable of restoring visual function [23, 24, 
65–68], paving the way for the first set of gene therapy clini-
cal trials for IRDs.

The initial results from the LCA2 trials were first pub-
lished in 2008 [45–47] and several follow-up studies have 
now attested to the safety and long-term follow up of this 
treatment [69–71]. However, the reported treatment efficacy 
between the LCA2 trials has been variable, a discrepancy 
that can be attributed to differences in construct design, dose 
volumes and concentration, and outcome measures of visual 
improvement [72]. The most widely used measure of visual 
function used in these trials was the best-corrected visual 
acuity (BCVA) measure, although some trials also reported 
on retinal thickness, full-field light sensitivity threshold 
(FST) testing, mobility testing, kinetic visual field, and/or 
pupillary light reflex. Wang and colleagues [72] recently 
conducted a systematic review and meta-analysis of the 
compiled BCVA results from the long-term follow-up 
(up to 3 years) of the different LCA2-RPE65 clinical tri-
als. Pooling of treated eyes compared with untreated eyes 
shows that improvement in BCVA is only significant at the 
1-year follow-up. At the 2- or 3-years follow-up, the BVCA 
improvement in the treated versus untreated eyes was no 
longer significant. This finding is in agreement with some 

reports showing that the rate of degeneration remains una-
bated even after treatment delivery [55]. However, a pooled 
analysis of treated eyes across the different LCA-RPE6 trials 
can be challenging as considerable design differences exist 
between the trials. Patient selection (age, mutation, variable 
baseline visual function), vector design (serotype, promoter, 
regulatory elements), doses, number of injections, retinal 
area covered and technical/surgical procedural differences 
can all influence the visual outcome measures.

When analysed in isolation, the LCA-RPE65 trials con-
ducted at the Children’s Hospital of Philadelphia/Spark 
Therapeutics provided further validation of their treatment, 
including follow-up trials such as treating the contralateral 
untreated eye [54, 59], and measurements of visual cortex 
activity in treated patients [74]. It is also the only group 
that progressed to a randomised, controlled, open-label 
phase III trial [62] and FDA/EMA approval for this treat-
ment, now commercialised under the trademark  Luxturna®. 
Indeed, a recent study by Maguire et al. (2019), reporting on 
the results from their phase I and III trials, showed that the 
improvements seen early on in the multi-luminance mobil-
ity test and FST were maintained up to 4 years. They also 
report that treated patients were able to maintain a stable 
BVCA up to the 4-years follow-up, suggesting a halt in dis-
ease progression over time [75]. There are currently five 
LCA-RPE65 trials that are still active or recruiting, includ-
ing long-term follow-ups. Therefore, we will continue to 
learn what this ground-breaking approach can deliver to 
LCA2 patients in the future.

Similarly, the MERTK phase I trial also showed that 
delivery of their AAV2/2-VMD2-hMERTK agent was well 
tolerated and caused no adverse events up to the 2-year fol-
low-up [73]. Visual acuity improvement was, however, very 
mild and only persisted in two out of the six treated eyes, but 
with one of the two eyes showing a decline from the 1-year 
follow-up onwards [73].

2.1.2  The Choroideremia Trials—Targeting RPE 
and Photoreceptors

The second IRD condition to undergo a series of clinical 
trials using AAV2/2 was choroideremia, a rare type of inher-
ited X-linked retinal disorder that largely affects men due to 
random X chromosome inactivation [76]. Affected individu-
als present with progressive vision loss symptoms starting 
with loss of night vision in early childhood, followed by 
increasing loss of peripheral vision [77, 78]. It is caused 
by mutations in the CHM gene [79], which encodes for the 
Rab escort protein-1 (REP-1) protein found throughout the 
body [80]. REP-1 is an essential component of the com-
plex system of intracellular trafficking [80] and its absence 
usually leads to degeneration of the choroid, RPE and pho-
toreceptors. However, the pathophysiological mechanisms 
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behind this degeneration are still under debate [80–83]. The 
success of the LCA2 trials, combined with the relative ease 
of genetic diagnosis of choroideremia patients, slow pro-
gression of the clinical phenotype [78] and small size of the 
CHM gene [84] provided encouragement for researchers and 
clinicians to pursue a gene therapy treatment approach. The 
confirmed safety of AAV2/2 for human use in the retina, 
combined with its capacity for targeting both RPE and pho-
toreceptors, made this serotype the obvious choice for the 
choroideremia studies.

The first-in-human clinical trial for choroideremia 
(NCT01461213) was based in Oxford and used a therapeu-
tic construct containing the human CHM gene driven by the 
chicken β-actin (CBA) promoter and a Woodchuck hepatitis 
virus post-translational regulatory element (WPRE) down-
stream of CHM. The results have been reported at 6 months 
[85], 3.5 years [86] and 5 years [87] after treatment. Out 
of the six treated patients, two patients reported significant 
improvement in their baseline BCVA based on the Early 
Treatment Diabetic Retinopathy Study (ETDRS) letters that 
was sustained long term (5 years after treatment) [87]. From 
the remaining four patients, three were able to maintain their 
BCVA up to 5 years post-treatment [87]. What is interest-
ing in the data reported for this initial group of patients is 
that the level of visual improvement directly correlated to 
the vector dose received. In contrast to previous trials, this 
trial used post-injection fundus imaging to calculate the 
treated area and therefore adjust the actual dose received 
per patient based on the size of the treated area [84]. This 
is a potentially more accurate approach since other trials 
tend to report only the injected dose independent of the sub-
retinal area treated. Corroborating this approach, the results 
showed that the best reported visual improvement was seen 
in the two patients who received the highest dose of vector 
per  mm2 of treated retina. These patients received 13.2 and 
8.1E9 genome particles (gp)/mm2 of retina, respectively, 
while the three patients that maintained their baseline acu-
ity ranged from 1.2 to 5.6E9, and the sixth patient, who 
had the worst reported outcome, only received a dose of 
0.7E9 gp/mm2 due to surgical complications that caused a 
permanent retinal thinning [85, 86]. The second group of 
eight patients received a higher dose of vector at 1E11 gp 
and significant visual acuity improvement from baseline was 
reported in seven out of the eight patients at the 2-years trial 
endpoint follow-up [87]. The one patient from the high-dose 
group that reported no improvement experienced significant 
intraocular inflammation 2 weeks after treatment, which was 
attributed to the vector. Analysed as a group, the results from 
the Oxford trial show that the median visual improvement 
by ETDRS in the treated eyes was 5.5 letters above baseline 
at the 2-years follow-up [87].

Unlike the LCA2 trials, where direct comparisons 
between trials is challenging due to vector, construct and 

dose differences, all but one of the choroideremia trials used 
the exact same therapeutic agent developed by the Oxford 
team and at the same dose (Table 1). These trials recruited 
six patients each and the 12-months or 2-years follow-up 
results show that two to three of the treated eyes in each trial 
showed improved BCVA [88–90]. Interestingly, in the trial 
conducted in Germany (THOR, ClinicalTrials.gov identifier 
NCT02671539) [88], a significant improvement of visual 
acuity in the treated eye was observed at the 3-months fol-
low-up in four out of six patients. This, however, declined 
at the 12-months follow-up to two out of six, but the minor 
changes in the other two patients indicate the maintenance 
of their baseline visual acuity. Furthermore, there was a shift 
in some patients of their preferred retinal locus used for fixa-
tion towards the treated area [88]. Overall in these trials, 
visual acuity in the untreated eyes showed a fairly stable 
progression but areas of preserved RPE cells appeared to 
decline at a similar rate between treated and untreated eyes 
[90]. Despite a lack of significant differences in retinal sen-
sitivity, there was a trend towards improvement in the treated 
eyes [88–90]. The remaining trial, conducted by Spark Ther-
apeutics (NCT02341807), is the only one that uses a differ-
ent therapeutic construct. In this trial, the AAV2/2 construct 
incorporates the same CAG promoter, but not the WPRE 
used to increase gene expression present in the other trials 
[91].

2.1.3  The LHON Trials—Targeting Retinal Ganglion Cells

The third group of AAV2/2-based gene therapy clinical trials 
were for a retinal condition called Leber Hereditary Optic 
Neuropathy (LHON), an inherited mitochondrial disorder 
that is characterised by subacute central vision loss in one 
eye shortly followed by visual loss in the second eye, usu-
ally in the second to third decades of life [92]. The major-
ity of mutations that cause LHON are present in mitochon-
drial genes involved in the mitochondrial respiratory chain 
and energy production [93]. In particular, mutations in the 
NADH dehydrogenase subunit 4 complex I (ND4) gene 
account for 60% of LHON cases worldwide [93]. Despite 
disease-causing mutations being present in genes expressed 
in all mitochondria, in LHON patients the disease pheno-
type is restricted to the loss of RGCs and degeneration of 
the optic nerve [92]. Different from LCA2 and choroider-
emia, which affect the photoreceptors and/or the RPE cells, a 
gene therapy approach for LHON must target the RGCs and, 
more specifically, deliver the therapeutic construct into the 
mitochondria. For this to occur successfully, gene therapy 
for LHON had some significant and unique challenges to 
overcome. First, as the target cells are the RGCs, the ideal 
delivery route is intravitreal because subretinal delivery of 
AAV has shown little to no RGC targeting in macaque eyes 
[94]. RGC targeting in macaques was slightly improved 
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when AAV2/2 was delivered intravitreally [43]. Several 
studies have attempted, with some success, to improve intra-
vitreal RGC transduction in non-human primates by sur-
gically removing the inner limiting membrane [95, 96] or 
the vitreous [97], or by applying an electrical current [98]. 
Despite the poor RGC transduction rate in non-human pri-
mate retinas, AAV2/2 has become the vector of choice for 
RGC targeting based on successful transduction in the rodent 
retina [10]. The second challenge to overcome was that once 
in the RGCs, the AAV-delivered gene needs to reach the 
mitochondria. An elegant solution was provided by Guy and 
colleagues [99] by creating a synthetic ND4 subunit that 
allowed for allotropic expression plus the addition of a mito-
chondrial targeting sequence that provided effective traffick-
ing to the mitochondria. This novel approach was validated 
in an LHON animal model [100] and was quickly moved 
towards clinical trials. Two groups have led the effort for the 
AAV2/2 LHON trials: the Huazhong University of Science 
and Technology team and the GenSight Biologics team. A 
third team based in the USA is behind the only trial currently 
recruiting, but as this trial uses a modified AAV2tYF capsid, 
it will be discussed in a separate section.

The results from both the GenSight and Huazhong Uni-
versity trials [101–103] were conducted in patients carry-
ing the ND4-G11778A mutation and used a CMV promoter 
to drive gene expression. The Huazhong University trial 
injected a total of nine patients, where seven received a 
1E10 gp dose and two, who were under 12 years of age at 
treatment, received a lower dose of 5E9 gp due to safety 
concerns. The GenSight trial used four different doses: 9E9, 
3E10, 9E10 and 1.8E11 gp. No ocular adverse events were 
reported in the Huazhong University trial up to 36 months 
post-treatment [101], but quite a few treatment-emergent 
adverse events (TEAEs) were reported for the GenSight trial 
at 96 weeks post-treatment, especially in the higher dose 
cohorts [102]. They reported 96 TEAEs (40 systemic and 56 
ocular), but 96% of these were considered mild. Of the ocu-
lar TEAEs, 61% were considered treatment-related and the 
most frequent type of event was intraocular inflammation. 
All ocular events resolved spontaneously or after appropri-
ate treatment. The discrepancy in the reporting of ocular 
adverse events between these two trials is not unexpected as 
the higher dose used in the Huazhong University trial is very 
close to the lower dose administered in the GenSight trial. 
However, further analysis on the GenSight trial assessed 
if there was an association between an immune response 
and the intraocular inflammation reported after treatment 
[104]. They calculated a composite ocular inflammation 
score (OIS) to quantify the systemic immune response and 
showed that neither were associated with the administered 
dose, thus suggesting that intravitreal administration of 
AAV2/2-ND4 in LHON patients was safe [104]. In relation 
to treatment efficacy, both trials reported around half of 

the treated eyes showed significant improvement in BCVA 
compared with baseline. The Huazhong University trial also 
showed improvement in the visual field index in five out 
of nine treated eyes but no changes at 36 months on visual 
evoked potentials (VEPs; measure of optic nerve function) 
and thickness of the retinal nerve fibre layer. The results of 
the remaining ongoing trials by both groups, especially the 
two more recent trials that have recruited at least 90 patients 
each, will be eagerly awaited and hopefully provide more 
informative data regarding a treatment for LHON.

The group of LHON trials has included some of the most 
recent trials that have opted for a ubiquitous promoter such 
as CMV, where other trials have started to significantly shift 
towards the use of cell-specific promoters (Table 1). For 
example, from all trials started from 2017 (10 years from 
the start of the first LCA2 trials) onwards, 72% are using 
cell-specific promoters while only 4 out of the 14 trials are 
using ubiquitous ones. Within the LHON trials, the non-
cell-specific nature of the CMV promoter is likely less of 
an issue due to the combination of an intravitreal delivery 
method that targets the RGCs and the presence of a mito-
chondrial targeting sequence providing effective trafficking 
to the mitochondria. However, high expression levels gen-
erated by a CMV promoter could potentially become toxic. 
Furthermore, it has been reported in other systems, including 
liver [105], muscle [106] and parts of the central nervous 
system [107, 108], that the CMV promoter can be silenced 
over time. This seems to be more the case in rapidly prolif-
erating cells and stem cells, whereas in non-proliferating 
cells CMV-driven expression is much more stable. In the 
post-mitotic non-proliferative retina, CMV silencing has not 
yet been reported and long-term stable expression for up to 
3 years has been shown in the canine retina [25]. Interest-
ingly, however, some form of gene silencing may sometimes 
be useful because, dependent on the nature of the introduced 
transgene, chronic expression of a molecule—especially one 
that is secreted—can result in altered cell morphology [109] 
or altered expression of endogenous genes [110], with poten-
tial functional consequences.

2.1.4  Mutating AAV2/2—the AAV2tYF‑Based Clinical Trials

In parallel to the discovery and development of novel AAV 
serotypes, further research into the biology of AAV vectors 
has allowed for targeted modifications of existing serotypes 
to improve tropism or efficiency. In 2008, Zhong and col-
leagues reported that mutating surface-exposed tyrosine 
residues on the AAV2 capsid reduced capsid ubiquitination 
and therefore allowed for increased transduction in vitro 
and in vivo [111]. This was further refined in a 2011 study 
by Petrs-Silva and colleagues, who tested the efficiency of 
combining multiple tyrosine mutant AAV2 vectors in trans-
ducing retinal cells [112]. They reported that a triple mutant 
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vector (Y444,500,730F–AAV2tYF) was the most efficient at 
targeting RPE and photoreceptors after subretinal delivery 
[112]. The triple vector was also better than AAV2/2 and 
the other mutants at targeting RGCs and inner nuclear layer 
neurons after intravitreal delivery [112]. Furthermore, the 
addition of modified promoters may provide greater selectiv-
ity for RGCs after intravitreal delivery [113].

Based on the safety profile data for AAV2/2 and the 
improved tropism of AAV2tYF shown in pre-clinical stud-
ies, the use of the modified AAV2tYF vector in new clinical 
trials was not unexpected. There are currently five active 
trials for IRD conditions with AAV2tYF-based therapeu-
tic delivery (Table  1). These include trials for LHON, 
X-linked RP, X-linked retinoschisis (RS) and achromatopsia 
(ACHM). However, results have only been reported so far 
for the US-based LHON trial [114, 115]. Similar to the other 
LHON trials, the delivery was intravitreal to target RGCs 
but they used a CAG promoter instead of CMV. Visual acu-
ity improvement (at or above baseline) in the treated eye 
was reported mostly in patients (4/6) with acute bilateral 
visual loss (< 12 months’ onset) while bilateral chronic 
vision loss patients (≥ 12 months in one eye and at least 
6 months in the other eye) only saw improvements in one of 
six treated eyes [115]. Furthermore, in treated eyes the base-
line thickness of the retinal nerve fibre layer (RNFL) was 
maintained at 12 months while the untreated eyes showed a 
reduction in thickness over time [115]. This is a potentially 
significant result as none of the AAV2/2-based trials had 
shown improvement in RNFL thickness. The visual acu-
ity results seen in this trial are similar to the ones reported 
in the other AAV2/2-based trials, where half of the treated 
patients saw improvements in their visual acuity after treat-
ment. However, the difference in outcomes in the AAVtYF 
trial between the acute and chronic patients does raise the 
question concerning an optimal window for treatment in 
LHON. The remaining AAV2tYF trials are all sponsored 
by Applied Genetic Technologies Corp. and have not yet 
reported results. As clinical trials for these same conditions 
are also ongoing using AAV2/8 and AAV2/5, it will be inter-
esting to compare results once they become available.

2.2  AAV2/4 and AAV2/5‑Based Clinical Trials

Both AAV4 and AAV5 were described soon after AAV2 
[116]. Subsequent testing in the mouse, canine and primate 
retinas following subretinal injections showed that AAV2/5 
was capable of transducing RPE and photoreceptor cells 
with higher tropism and efficiency compared with AAV2/2 
[117, 118], while AAV2/4 showed improved RPE cell trans-
duction [118]. The RPE specificity of AAV2/4 and long-
term expression in primate retinas [118, 119] led to studies 
investigating the use of this vector for the delivery of RPE65 
to a LCA2 canine model [66, 67], providing the pre-clinical 

validation of an AAV2/4-based clinical trial for LCA2. The 
published results for this trial show that after treatment, 
visual acuity improvement was seen in a third of the treated 
eyes (all within the higher dose cohort) and the overall mean 
visual acuity in the treated eyes remained stable, while the 
untreated eye saw a decline in function [61].

The remaining trials are all AAV2/5-based and include 
an optimised vector for LCA2-RPE65 [120] led by the UK 
group behind one of the first LCA2 trials, for RP caused by 
mutations in the PDE6B gene and for X-linked RP caused 
by mutations in the RPGR gene. No data has been reported 
for these trials yet but will in the future provide an interest-
ing comparison of vector efficiencies, especially for LCA2 
and RP-RPGR.

2.2.1  The Gene Editing AAV2/5 Trial

Genome editing is at the forefront of precision medicine 
today, and when married with advances in AAV efficiency, 
specificity and deliverance, holds great promise for many 
inherited retinal disorders. This is especially relevant in 
conditions where the traditional gene replacement therapy 
will not work, such as autosomal inherited and mutations in 
genes too large to fit into an AAV vector. Genome editing 
is possible due to the action of targeted nucleases, which 
create site-specific double-strand breaks in the genome, and 
their advantage lies in the fact that they offer a permanent 
and precise in situ correction of genetic mutations causa-
tive of a disease. Several methods of genome editing have 
been developed and used in pre-clinical proof-of-principle 
studies, including meganucleases, zinc finger nucleases 
(ZFNs), transcription activator-like effector-based nucle-
ases (TALEN) and the clustered regularly interspaced short 
palindromic repeats (CRISPR/Cas9) system [121]. Recently, 
CRISPR/Cas9 has emerged as the preferred system due to 
its flexibility and user-friendly design platform. While in the 
other systems the site recognition is mediated by the nucle-
ase protein itself, in the CRISPR/Cas9 system this is done 
by a guide RNA (gRNA), significantly reducing the costs, 
complexity and time needed to design it [121]. CRISPR/
Cas genome editing in the retina has been a growing area 
recently, with great potential for new treatment options 
[reviewed in 122].

The genome editing company Editas has taken advan-
tage of this technology and launched in early 2019 the 
first genome editing clinical trial (NCT03872479, EDIT-
101, also known as AGN-151587) combining CRISPR/
Cas9 and AAV technologies to correct the IVS26 mutation 
(c.2991+1655A>G in intron 26) in the CEP290 gene that 
causes Leber Congenital Amaurosis type 10 (LCA10). The 
EDIT-101 therapeutic uses an AAV2/5 vector carrying two 
gRNA to recognise the mutation site and the Cas9 enzyme 
under the rhodopsin kinase promoter, limiting its expression 
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to the targeted photoreceptor cells [123]. The results from 
this trial will be eagerly anticipated by the gene therapy 
field. A CRISPR/Cas9-based approach has the potential to 
treat inherited retinal conditions where the limitations of 
the AAV platform have hindered the development of treat-
ment options. However, the mutation-specific design of a 
CRISPR/Cas9-based treatment does mean that, unlike tra-
ditional gene therapy treatments that work for all patients 
within a specific gene-affected condition, individual prod-
ucts will have to be developed for each different mutation 
within the same gene.

2.3  AAV2/8‑Based Clinical Trials

AAV8 was isolated from non-human primates in 2002 and 
AAV2/8 vectors were shown to have up to 100-fold higher 
transduction capacity compared with other known capsids 
[124], especially for liver [125] and muscle cells [126]. In 
the retina, AAV2/8 also proved to be a more efficient vector 
compared with AAV2/2 and AAV2/5; it provided both faster 
onset and stronger transgene expression, especially in photo-
receptors [127, 128]. From this point onwards, several pre-
clinical gene therapy studies for IRDs started to use AAV2/8 
in lieu of other serotypes and from 2015 onwards several 
clinical trials for IRDs using AAV2/8 vectors commenced 
(Table 1). There are currently six trials using AAV2/8: four 
for achromatopsia (CNGA3 and CNGB3 mutations), one for 
X-linked RPGR-RP and one for X-linked retinoschisis. All 
three conditions are recessive conditions due to mutations in 
genes affecting photoreceptors specifically. Thus, in contrast 
to the initial AAV2/2 trials, the selection of the AAV2/8 
vector with stronger photoreceptor tropism was, therefore, 
more appropriate. These conditions do, however, have some 
crucial differences between them that was reflected in the 
design of each trial.

The AAV2/8 RPGR trial is led by the Oxford/NightStar 
team behind the choroideremia trials, and is the trial that 
has tested the highest number of doses, ranging from 5E9 
to 4E11 gp. Similar to what they reported in the choroider-
emia trial, the dose received by each patient varied slightly 
as it was adjusted by the injection volume [129]. In the 
6 months follow-up, Cehajic-Kapetanovic and colleagues 
[129] reported that visual acuity remained stable and similar 
to baseline in the treated eyes. This is not unexpected, as 
this study is only 6 months after treatment and visual acuity 
in the untreated eye has remained stable. Visual function 
gains compared with baseline by microperimetry measure-
ment was variable and seen in around a third of treated eyes. 
Although the delivery route used in this study was subretinal, 
they reported mild inflammatory responses in eyes treated 
with higher vector doses (> 1E11 gp), all of which were 
resolved after oral treatment. It remains to be seen if a con-
nection between visual gain and post-treatment inflammation 

will be present in the later follow-up studies and whether 
or not long-term improvement might be affected, especially 
because visual function improvement above baseline was 
not observed after gene therapy in a RPGR-deficient animal 
model [130].

Achromatopsia became a potential candidate for gene 
therapy clinical trials following the very successful rescue 
of cone-mediated vision after AAV-based gene therapy in 
several animal models of achromatopsia [131–137]. Dif-
ferent from the other outer retinal IRDs targeted so far, 
achromatopsia affects only the cone photoreceptors, with 
patients suffering from birth from absent colour vision, poor 
visual acuity and photophobia [138]. There are six genes 
that have been associated with achromatopsia and there 
are six clinical trials ongoing for two of the most common 
genes affected (CNGA3 and CNGB3; Table 1). However, 
data for only one of the trials (AAV2/8-based for CNGA3, 
NCT02610582) has been reported. All trials have opted to 
use cone-specific promoters such as the human cone arrestin 
promoter (hCARp) or promoters based on the red or green 
opsin promoter regions (PR1.7 and hG1.7p). The 12-months 
follow-up results from the AAV2/8-CNGA3 trial showed 
that treatment was well tolerated and that both visual acuity 
and contrast sensitivity was improved [139]. Interestingly, 
the eyes that received the lower dose showed better visual 
improvement compared with the eyes that received the 
higher doses. Further studies and data from the other trials 
might clarify whether this effect was due to the lower dose 
eyes having worse acuity and contrast sensitivity at baseline 
and, therefore, more room for improvement, or if the higher 
doses could have a detrimental effect on cone function. The 
reporting of significant improvements in half of the treated 
eyes in colour vision-specific tests provides encouragement 
for an AAV-based gene therapy treatment for achromatopsia 
[139]. However, achromatopsia is usually considered a fairly 
stable condition where patients do not experience a progres-
sive loss of vision as the symptoms are present from birth. 
Under these circumstances, it is questionable whether a gene 
therapy treatment, and the associated risks, is necessary for 
these patients. Furthermore, since they have not possessed 
colour and high acuity vision since birth, experts are also in 
doubt whether the necessary, mature connections within the 
visual cortex for colour and high acuity vision have devel-
oped and if such connections can be established at a later 
stage of life.

The AAV2/8-based clinical trial for X-linked retinoschi-
sis (XLRS) differs significantly from the achromatopsia 
and RPGR trials as XLRS patients have an extremely frag-
ile retina due to the presence of schisis cavities (structural 
retinal lamellar separations) that are characteristic of this 
condition. Despite being a condition that affects photorecep-
tors directly, the fragile nature of the retina does not safely 
support subretinal delivery of a therapeutic. Successful 
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restoration of the retinal architecture and closure of schi-
sis cavities in a mouse model of XLRS was achieved after 
intravitreal delivery of an AAV2/8-RS1 vector [140] and 
provided encouragement that this approach could ben-
efit patients. Unlike the results reported in the intravitreal 
AAV2/2 LHON trial by GenSight (discussed in the AAV2/2 
section), an increase in ocular inflammation and antibodies 
against AAV2/8 after intravitreal AAV2/8-RS1 delivery was 
dose-dependent, but both were resolved by oral and topical 
corticosteroid treatment within 4–6 weeks. Visual acuity 
improvements at the 18-months follow-up was not consid-
ered significant due to the high testing variability for XLRS 
patients, and neither were any improvements seen in retinal 
sensitivity, electroretinogram or optical coherence tomogra-
phy [141]. It is clear that intravitreal delivery of AAV-based 
therapeutics is possible albeit post-operative care needs to 
be in place to manage inflammation. However, the correla-
tion between ocular inflammation events and treatment effi-
cacy is still unclear and could potentially compromise the 
clinical application of intravitreally delivered AAV-based 
therapeutics.

3  Delivering Inserts for All Occasions—the 
Multipurpose Use of AAVs

Hundreds of genes have been implicated in IRDs, thus mak-
ing specific gene therapy for each individual gene mutation 
an enormous task, from the labour-intensive lab research, 
to clinical testing, to regulatory approval for each one. Fur-
thermore, the majority of gene therapy studies and clinical 
trials for IRDs have targeted genes involved in autosomal 
recessive disorders (i.e. those that create null genotypes); 
thus, replacing the gene to produce a functional protein can 
potentially be a straightforward approach. In contrast, other 
types of inheritance, such as autosomal dominant or gain of 
function, can create other challenges that limit the develop-
ment of therapies using the AAV platform. Importantly, the 
use of AAV is not limited to direct replacement or correc-
tion of a disease-causing gene [142]. It can also be used to 
augment downstream processes and pathways, which may 
be beneficial for more eye diseases, including glaucoma, 
autosomal dominant optic atrophy, macular degeneration, 
retinal ischaemia and optic neuritis, providing an even 
broader range of potential therapeutic uses in ophthalmol-
ogy. Thus, gene therapies that target a larger population of 
causative agents are very appealing, such as inducing and 
over-expressing neuroprotective factors [3, 143–148] and 
in experimental strategies that focus on novel, potentially 
therapeutic, optogenetic technologies [149, 150].

Glaucoma is a heterogeneous group of conditions charac-
terised by progressive death of RGCs and associated visual 
field loss, sometimes leading to blindness in the most severe 

cases. While increased intraocular pressure is an important 
risk factor [151], and most current pharmacological or sur-
gical strategies are aimed at pressure reduction, hereditable 
factors are also important in a proportion of the population. 
In paediatric glaucoma, for example, a number of candidate 
genes have been identified [152, 153]. For these individuals, 
additional neuroprotective strategies should be explored to 
further reduce the rate of RGC death and visual field loss 
[154]. Gene therapy is an effective tool to transduce RGCs, 
and AAV2/2-mediated delivery of neurotrophic factors 
such as brain-derived neurotrophic factor (BDNF) [155, 
156] or ciliary neurotrophic factor (CNTF) [157] promote 
RGC viability in experimental models of glaucoma. A gene 
therapy protocol that increases expression of both BDNF 
and its receptor (TrkB) in RGCs is currently in pre-clinical 
development [146, 158]. Secretion of, for example, BDNF 
by transduced RGCs can have a beneficial bystander effect 
on neighbouring non-transduced neurons [159] and also may 
act indirectly via effects on resident Muller glia, releasing 
other supporting factors [160]. However, a possible down-
side to sustained neurotrophin expression in RGCs is the 
impact that the factors can have in altering the phenotype 
of, and gene expression in, other retinal neurons [110]. Note 
here that gene therapy to upregulate appropriate transcrip-
tion factors such as Brn3b, and hence various downstream 
signalling pathways, has also been tested [161], as have viral 
vector approaches that prevent activation of death-related 
pathways [162].

In a model of retinal ischaemia/reperfusion injury, use of 
self-complementary AAV2/2 vectors to deliver the enzyme 
C3 transferase, which inactivates Rho GTPases to reduce 
apoptosis and enhance cytoskeletal stability, resulted in 
RGC protection [163]. In another study, using the experi-
mental autoimmune encephalomyelitis (EAE) model of 
multiple sclerosis (MS), AAV2/2 was used to deliver either 
nuclear factor (erythroid derived)-like 2 (NRF2) or Sir-
tuin 1 (SRT1) to RGCs—both factors known to have ben-
eficial anti-inflammatory effects and to be associated with 
anti-apoptotic and anti-oxidant effects [164]. Reduced RGC 
loss was seen but neither vector was able to reduce optic 
nerve inflammation or demyelination. On the other hand, 
using a similar EAE model in mice, intraocular delivery of 
AAV2/2 encoding a mutant phosphorylation-resistant ver-
sion of collapsing response mediator protein 2 (CRMP2) 
not only protected RGCs and axon integrity, but also main-
tained axonal transport and preserved myelin in the optic 
nerve during active neuroinflammation [165, 166]. CRMP2 
regulates tubulin dynamics, interacts with motor proteins 
kinesin and dynamin, and is important in the growth, main-
tenance and repair of neuronal processes. CRMP2 activity is 
inhibited when phosphorylated, resulting in destabilisation 
of cytoskeletal proteins, reduced growth, degeneration of 
axons and disruption of axonal transport systems. It is of 
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interest that the same AAV2/2 vector protects RGCs and 
myelin after partial optic nerve trauma [147], and could be 
useful in glaucoma, given that there is evidence of disrupted 
axonal transport and breakdown of microtubules in RGC 
axons that precedes RGC loss [167, 168].

4  Antisense Oligonucleotides (ASO), 
the Anti‑AAV?

In recent years, one technology has been gaining ground and 
started to offer an alternative approach to AAV-based thera-
pies for IRDs. ASOs are short synthetic and single-stranded 
nucleic acid sequences that bind to selected sequences of 
mRNA and manipulate gene expression by targeting a patho-
genic mutation or splicing defects [169]. In contrast to AAV-
based constructs, the size of the gene is not a limitation when 
designing ASO-based therapies [169]. The first generation 
of ASOs inhibited gene expression by degrading the target 
mRNA through RNase-H-mediated cleavage. This genera-
tion appeared after chemical modifications that improved 
their binding affinity and increased the resistance of ASOs 
to nucleases, and include the phosphorothioate backbone 
(PS) class, which has the ability to interfere with splicing but 
is highly toxic [170–172]. The second generation of ASOs 
was a result of further modification that reduced toxicity 
and improved target specificity [173, 174]. Several ASOs 
have been approved by the FDA and include eteplirsen and 
golodirsen for Duchenne muscular dystrophy, fomivirsen 
for cytomegalovirus retinitis, milasen for Batten disease, 
mipomersen for homozygous familial hypercholesterolaemia 
and nusinersen for spinal muscular atrophy.

Similar to Luxturna, which was the first-ever FDA-
approved gene therapy, the first antisense oligonucleotide 
therapy was approved for an ocular condition. The drug was 
called fomivirsen and used for the treatment of cytomeg-
alovirus retinitis in immuno-compromised patients [175]. 
More recent studies have successfully applied ASO technol-
ogy to treat IRDs, including conditions where traditional 
AAV-based gene therapy approaches would be limited. 
These include large genes such as ABCA4, CEP290 and 
some Usher genes, and dominant RP (reviewed in [176]). 
In contrast to AAV gene replacement, ASO can be used to 
treat vision loss in Stargardt disease due to deep intronic 
mutations in the ABCA4 gene [177] and effectively provide 
in vitro allele-specific knock-down of the mutant allele caus-
ing a dominant negative effect in NR2E3-associated auto-
somal dominant RP [178]. Furthermore, a study evaluating 
ASOs targeting the ATAXIN-7 gene as a treatment strategy 
for spinocerebellar ataxia type 7 (SCA7; an autosomal domi-
nant neurodegenerative disorder characterised by cerebellar 
and retinal degeneration) showed improved visual function, 
retinal histopathology and retinal gene expression in a mouse 

model of SCA7, suggesting that ASOs targeting ATAXIN-7 
might represent a viable treatment for SCA7 retinal degen-
eration [179]. Pre-clinical studies testing ASOs for LCA10 
caused by mutations in CEP290 [180] and Usher 2A-asso-
ciated RP [181] have shown the most promising results 
to date, allowing for the advancement of these treatments 
towards clinical trials (NCT03780257, NCT03140969). The 
ASO-based therapeutic approach remains an exciting alter-
native to viral-based gene therapies and future developments 
in this field are expected to continue to grow.

5  Concluding Remarks

Despite the promising success of the recent LCA2 trials, 
which ultimately led to the approval of the first ocular gene 
therapy drug  Luxturna®, the translation of retinal gene ther-
apy from lab bench to bedside is still an ongoing process 
where both sides need to evolve in an interdependent man-
ner. It is essential that to advance the next generation of 
breakthrough retinal trials, improvements from both basic 
and clinical research should come together; a thorough 
understanding of the molecular mechanisms of degeneration 
needs to marry with a thorough clinical characterisation of 
the disease process. The increase in clinical trials evaluating 
the natural history of different ocular conditions, the grow-
ing availability and technological advancements in the study 
of animal models of disease and development of innovative 
human disease models such as retinal organoids that can 
bridge some of the limitations of animal model study, are all 
encouraging developments in the ocular translational field.

Huge strides are also being made in generating better 
AAV vectors with a focus on human clinical translation. 
The development of novel capsids and an increased assess-
ment in non-human primates (NHP) of these novel serotypes 
can help underscore the differences in AAV transduction 
between mice and primates, helping consolidate the impor-
tance of careful evaluation of therapeutic vectors in NHPs 
prior to clinical trials. Furthermore, NHP studies are crucial 
in advancing our understanding of potential adverse immune 
responses to AAV-based therapeutics. One of the prized 
properties of AAV vectors is the minimal stimulation of the 
host immune system, and whilst minimal, it is not negligi-
ble as inflammation/toxicity responses have recently been 
attributed to AAV-cis regulatory sequences [182]. Studies 
looking into different genetic modification of wild-type AAV 
antigenic epitopes that can produce synthetic variants capa-
ble of evading neutralising antibodies without sacrificing 
production, transduction efficiency or tissue tropism will be 
extremely valuable towards improving future AAV-based 
therapeutics [183].

The versatility of AAVs has allowed the gene therapy, 
and in particular, the ocular gene therapy field to grow 
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exponentially in the last decade and provide hope for the 
development of a cure for a myriad of conditions that until 
recently were thought to be incurable. Further developments 
in capsid and vector engineering, in-depth understanding of 
vector and host interactions, and growing clinical knowledge 
of vision loss conditions will continue to come together to 
provide clinicians and researchers with the tools necessary 
to advance these innovative treatments forward.
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