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Abstract

Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately
result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation
of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been
significant advances in basic research findings as well as translational studies, culminating in an increasing number of
clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna®
(voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials
for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present
article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and
the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies
aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing
in the same therapeutic space.

1 Adeno-Associated Virus (AAV)-Based are needed to achieve ‘therapeutic response’ and vectors are
Retinal Gene Thera py: Long Time Coming essentially quarantined from systemic circulation [3]; (3) the
retina is readily accessible by surgery and vectors can be
The eye has several advantages as a target for the use of ~ delivered close to target cells [4] and (4) there is the ability
molecular therapies such as viral vector-based gene therapy: ~ t0 non-invasively monitor disease progression in terms of
(1) the retina is relatively immune-privileged (due to tight ~ both retinal structure and physiology [5]. Furthermore, all
junctions of the blood-retina barrier [1]), thus minimising  retinal neurons are post-mitotic [6], reducing the likelihood
any systemic inflammatory response from the introduction of ~ of dilution or progressive loss of the expression of targeted
a foreign antigen [2]; (2) small amounts of treatment vector therapeutic agent [7]. However, the success of a retinal gene
therapy approach is primarily dependent on how efficiently,
and specifically, the selected technology to deliver the thera-
peutic construct can target the retinal cell of interest.
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The safety of adeno-associated virus (AAV)-based gene
therapies for inherited ocular conditions has now been
substantially validated by several clinical trials.

Recent improvements in clinical trial design and AAV
technologies are providing further encouragement
towards the efficacy of these therapies.

There is increasing support for ‘non-traditional’ AAV
therapies and new technologies such as antisense oligo-
nucleotides as alternative treatment strategies.

selection of serotype [10, 11] and the vector is able to sustain
long-term transgene expression [8]. Its ability to replicate
is dependent upon co-infection with a helper virus, such
as adenovirus, otherwise it remains as a non-integrating,
nuclear episome in non-dividing cells or integrates into the
host genome at the specific AAVSI site on chromosome
19 [12-14]. Since its initial identification in 1965 [15], an
increasing number of AAV serotypes and variants have been
identified, varying in their tissue tropism and transduction
efficiencies [16-19]. The AAV’s simple cellular and molecu-
lar structure belies its significant functional versatility and
potential to transform the gene therapy field.

The first attempts of in vivo transduction of mouse and
primate retinas [12, 20] and gene replacement therapy in
mouse models of inherited retinal diseases (IRDs) [21, 22]
were achieved almost three decades ago using the AAV2/2
serotype. The subsequent studies using AAV2/2 formed the
basis for the first ocular gene therapy clinical trials [23-25].
However, the shortcomings of AAV?2/2 were soon evident,
such as its limited cellular tropism and the widespread pres-
ence of neutralising antibodies to AAV2/2 in the wider pop-
ulation [26]. As new AAV serotypes were being reported,
they were used to generate recombinant vectors using the
AAV?2 genome and capsids from these different serotypes;
for example, AAV2/1 (AAV2 genome with AAV1 capsid)
[27, 28]. There are now more than 100 AAV serotypes
identified from human and non-human primates [29]. Also,
in addition to natural AAV variants, a significant amount
of research has concentrated on altering AAV’s transduc-
tion efficiency by targeted mutagenesis of the capsid cod-
ing genes, or by library approaches, allowing for selective
screening of novel capsids [17]. Thus, significant advances
can still be made through basic research concentrating on
atomic scale details of AAV capsid’s structure and function.
The continual development and testing of new genetically
engineered AAVs will enable optimisation of gene delivery

A\ Adis

efficiencies, either by adjusting the delivery method to suit
specific disorders, such as using multiple AAVs for large
gene delivery [30, 31], or by simply improving cell targeting
and transduction levels by developing novel capsids [17].

The growing evidence from pre-clinical studies using
AAV-based approaches to treat retinal disorders suggests
that combining the wide spectrum of disease targets with
the suitability of AAV for developing retinal therapeutics
is effective. Since the recent market approval from the US
Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) for an AAV2/2-based therapy
for the inherited retinal condition Leber congenital amauro-
sis type 2 (LCA2, caused by mutations in the RPE6S5 gene;
voretigene neparvovec-rzyl, trade name: Luxturna®), there
has been a steep increase in the development, testing and
launching of new trials specifically for retinal disorders [32].
There are 43 ongoing or completed clinical trials that are
using or have used AAV delivery systems as a means of
correcting genetic faults in inherited retinal degeneration
(IRDs; ClinicalTrials.gov; Table 1, Supplementary Table 1,
see Electronic Supplementary Material [ESM]). Another
five clinical trials (three ongoing and two completed) are
also using or have used AAV to deliver therapeutics for
age-related macular degeneration (reviewed in [32]) and
future trials for glaucoma are likely [33]. This highlights
how far retinal AAV gene therapy research has come. This
review will provide an overview of the available results for
the AAV-based clinical trials for IRDs with a focus on their
selected AAV serotype. It will also discuss some of the lat-
est developments using AAV for what classically have not
been thought of as IRDs, yet can have heritable risk factors
amenable to gene therapy, such as Leber Hereditary Optic
Neuropathy (LHON) and paediatric glaucoma, and the emer-
gence of antisense oligonucleotide technology as a potential
alternative to AAV-based therapies.

2 AAV-Based Gene Therapy for Inherited
Retinal Diseases (IRDs): Clinical Trials
Update

IRDs comprise a clinically and genetically heterogeneous
group of disorders that result in the degeneration of the outer
retina and progressive visual impairment. Over the past three
decades, investigation into the underlying molecular causes
have identified over 270 genes associated with inherited
vision loss and blindness in one or more clinical subtypes
of IRD [184]. The heterogeneous presentation of these con-
ditions, both clinically and genetically, has until now made
it difficult to link their pathophysiology with the underly-
ing genetic lesion. It is only advances in genetic screening,
along with better clinical measurements, that have allowed
stratification and subtype classification [34]. This knowledge
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has enabled clinicians and researchers to identify genetic
targets and start the development and implementation of
gene replacement treatment platforms. Whilst many forms
exhibit complex aetiology, IRDs are largely monogenic and
typically progressive, exhibiting a wide range of present-
ing age and variability in visual disturbance. Their inherit-
ance patterns follow Mendelian inheritance of autosomal
dominant (AD), autosomal recessive (AR), X-linked (XL)
or mitochondrial patterns [35]. Furthermore, even when the
same mutation is identified, the age of onset and the severity
of disease manifestation can vary amongst family members,
strongly suggesting involvement of other complex factors
[36]. With the provision of a wide scope of potential treat-
ments for different types of IRDs, the eventual choice of
therapy will depend on many factors, including the genetic
target, the type of inheritance, the time-course of disease,
the severity of retinal degeneration and the availability of
relevant technologies. AAV-based gene therapy has taken
the lead in the last decade, with an ever-growing number
of pre-clinical studies in animal models and clinical trials
providing encouraging results [37].

2.1 AAV2/2-Based Clinical Trials

AAV?2/2 was the first and most widely tested serotype in
the retina as it was shown to be capable of targeting both
retinal pigment epithelium (RPE) and some photoreceptor
cells after subretinal delivery in mice [12, 38], rats [39] and
primates [20]. Subsequently, it was the vector of choice in
the first studies investigating gene replacement therapy in
animal models of IRD [22, 23, 40], and paved the way for
future clinical application of AAV-based gene therapy—the
vast majority of completed or active AAV-based clinical tri-
als for IRDs have used AAV2/2 (Table 1). These include
most of the trials for LCA2 (human retinal pigment epithe-
lium-specific 65 kDa protein [RPE65] deficiency) and Leber
Hereditary Optic Neuropathy (LHON), all of the choroider-
emia trials, and one trial for retinitis pigmentosa (RP) caused
by mutations in the MERTK (mer proto-oncogene, tyrosine
kinase) gene. Because each of these conditions affect dif-
ferent cell types in the retina, the design of each trial had to
take into consideration not only AAV2/2’s retinal tropism,
but also the promoter selection and route of vector delivery.
The choroideremia and some of the LCA?2 trials opted for
ubiquitous promoters such as the hybrid cytomegalovirus
early enhancer/chicken b-actin (CAG) promoter (choroi-
deremia) or the human cytomegalovirus (CMV) promoter
(LCA2). Cell-specific promoters were also used and include
the human RPE65 promoter (LCA2) and the RPE-specific
human VMD?2 (vitelliform macular dystrophy-2) promoter
(MERTK-related RP). The choice of delivery route for all
trials was selected primarily according to the target cell:
RPE and photoreceptors for LCA2, choroideremia and

of the human retinoschisin proximal promoter and the human interphotoreceptor retinoid-binding protein enhancer, SAU Saudi Arabia, SR subretinal injection, SWE Sweden, TWN Taiwan, UK

United Kingdom, USA United States of America, VMD2 bestrophin (VMD?2) gene promoter

exon and the first intron of chicken beta-actin gene and the splice acceptor of the rabbit beta-globin gene, CHN China, CMV human cytomegalovirus promoter, DEU Germany, DNK Denmark,

ESP Spain, FIN Finland, FRA France, GRKI human G protein—coupled receptor kinase 1 promoter, also known as rhodopsin kinase promoter, 2CARp human cone arrestin promoter, hG1.7p
engineered promoter containing a truncated Locus Control Region (LCR) fragment with a fragment of the core human green opsin promoter, ZARPE65p human retinal pigment epithelium-

specific 65 kDa protein (RPE65) gene promoter, /RDs inherited retinal diseases, ISR Israel, ITA Italy, IVT intravitreal injection, LCA2 Leber congenital amaurosis type 2, LHON Leber heredi-
CB regulatory element composed of the cytomegalovirus (CMV) immediate early enhancer, chicken f-actin promoter with first intron/exon junction, hybrid chicken f-actin and rabbit p-globin

human L-opsin promoter, pRLBP1 shortened human retinaldehyde binding protein 1 (RLBPI) promoter, R recruiting, RP retinitis pigmentosa, RS retinoschisis, RS/IRBP promoter composed
intron/exon junction

AAV adeno-associated virus, ACHM achromatopsia, BEL Belgium, C completed, CAN Canada, CAG synthetic promoter composed of the CMV early enhancer element, the promoter, the first
tary optic neuropathy, NA65p optimised promoter based on the original human RPE65 promoter used in trial NCT00643747, NLD The Netherlands, NR-A active, not recruiting, PR1.7 a 1.7-kb

Information from ClinicalTrials.gov, EU Clinical Trials Register and published reports
#*Where only the number of doses is indicated it is because the exact dose has not been reported. Vg vector genomes
TPatients younger than 12 years old received the lower dose while patients > 12 years received the higher dose

“CBSB contains a shorter CMV immediate enhancer sequence than CB

Self-complementary AAV vector

Table 1 (continued)
dCodon optimised gene
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MERTK-related RP, and retinal ganglion cells (RGCs) for
LHON. Subretinal delivery is still the most efficient route for
AAVs to target RPE and photoreceptors, as in the adult eye
most serotypes cannot reach the outer nuclear layer from the
vitreous due to the physical barrier created by the inner lim-
iting membrane [41, 42]. However, in adult eyes, especially
in rodents, intravitreal AAV?2/2 injections are an efficient
way of targeting RGCs [10, 33, 43, 44]. The results of the
different AAV2/2-based trials are discussed below.

2.1.1 Targeting the Retinal Pigment Epithelium (RPE)—the
LCA2 and MERTK Trials

Both LCA2 and MERTK-related RP are conditions that
directly affect the RPE cells given the cell-specific expres-
sion of RPE65 and MERTK. The first and most successful (to
date) AAV-based clinical trials for a retinal condition were
for LCA2, an autosomal recessive disorder caused by muta-
tions in the RPE65 gene [45-62]. At a cellular level, RPE6S
produces retinoid isomerohydrolase, an enzyme involved in
RPE-mediated metabolism of chromophore recycling after
phototransduction [63, 64]. The MERTK gene encodes a
transmembrane receptor of tyrosine kinases and is found
in phagocytic cells such as RPE and macrophages. In RPE
cells, MERTK plays an essential role in the renewal of outer
segments (OS) of the photoreceptor. Given AAV2/2’s tro-
pism for RPE cells, it was the selected vector in several pre-
clinical studies showing that AAV-based subretinal gene
therapy in mouse, rat and dog models of RPE65 and MERTK
deficiency was capable of restoring visual function [23, 24,
65-68], paving the way for the first set of gene therapy clini-
cal trials for IRDs.

The initial results from the LCA?2 trials were first pub-
lished in 2008 [45—47] and several follow-up studies have
now attested to the safety and long-term follow up of this
treatment [69—71]. However, the reported treatment efficacy
between the LCA?2 trials has been variable, a discrepancy
that can be attributed to differences in construct design, dose
volumes and concentration, and outcome measures of visual
improvement [72]. The most widely used measure of visual
function used in these trials was the best-corrected visual
acuity (BCVA) measure, although some trials also reported
on retinal thickness, full-field light sensitivity threshold
(FST) testing, mobility testing, kinetic visual field, and/or
pupillary light reflex. Wang and colleagues [72] recently
conducted a systematic review and meta-analysis of the
compiled BCVA results from the long-term follow-up
(up to 3 years) of the different LCA2-RPEG65 clinical tri-
als. Pooling of treated eyes compared with untreated eyes
shows that improvement in BCVA is only significant at the
1-year follow-up. At the 2- or 3-years follow-up, the BVCA
improvement in the treated versus untreated eyes was no
longer significant. This finding is in agreement with some
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reports showing that the rate of degeneration remains una-
bated even after treatment delivery [55]. However, a pooled
analysis of treated eyes across the different LCA-RPEG trials
can be challenging as considerable design differences exist
between the trials. Patient selection (age, mutation, variable
baseline visual function), vector design (serotype, promoter,
regulatory elements), doses, number of injections, retinal
area covered and technical/surgical procedural differences
can all influence the visual outcome measures.

When analysed in isolation, the LCA-RPEG6)5 trials con-
ducted at the Children’s Hospital of Philadelphia/Spark
Therapeutics provided further validation of their treatment,
including follow-up trials such as treating the contralateral
untreated eye [54, 59], and measurements of visual cortex
activity in treated patients [74]. It is also the only group
that progressed to a randomised, controlled, open-label
phase III trial [62] and FDA/EMA approval for this treat-
ment, now commercialised under the trademark Luxturna®.
Indeed, a recent study by Maguire et al. (2019), reporting on
the results from their phase I and III trials, showed that the
improvements seen early on in the multi-luminance mobil-
ity test and FST were maintained up to 4 years. They also
report that treated patients were able to maintain a stable
BVCA up to the 4-years follow-up, suggesting a halt in dis-
ease progression over time [75]. There are currently five
LCA-RPEG65 trials that are still active or recruiting, includ-
ing long-term follow-ups. Therefore, we will continue to
learn what this ground-breaking approach can deliver to
LCA2 patients in the future.

Similarly, the MERTK phase I trial also showed that
delivery of their AAV2/2-VMD2-hMERTK agent was well
tolerated and caused no adverse events up to the 2-year fol-
low-up [73]. Visual acuity improvement was, however, very
mild and only persisted in two out of the six treated eyes, but
with one of the two eyes showing a decline from the 1-year
follow-up onwards [73].

2.1.2 The Choroideremia Trials—Targeting RPE
and Photoreceptors

The second IRD condition to undergo a series of clinical
trials using AAV2/2 was choroideremia, a rare type of inher-
ited X-linked retinal disorder that largely affects men due to
random X chromosome inactivation [76]. Affected individu-
als present with progressive vision loss symptoms starting
with loss of night vision in early childhood, followed by
increasing loss of peripheral vision [77, 78]. It is caused
by mutations in the CHM gene [79], which encodes for the
Rab escort protein-1 (REP-1) protein found throughout the
body [80]. REP-1 is an essential component of the com-
plex system of intracellular trafficking [80] and its absence
usually leads to degeneration of the choroid, RPE and pho-
toreceptors. However, the pathophysiological mechanisms
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behind this degeneration are still under debate [80-83]. The
success of the LCA2 trials, combined with the relative ease
of genetic diagnosis of choroideremia patients, slow pro-
gression of the clinical phenotype [78] and small size of the
CHM gene [84] provided encouragement for researchers and
clinicians to pursue a gene therapy treatment approach. The
confirmed safety of AAV2/2 for human use in the retina,
combined with its capacity for targeting both RPE and pho-
toreceptors, made this serotype the obvious choice for the
choroideremia studies.

The first-in-human clinical trial for choroideremia
(NCTO01461213) was based in Oxford and used a therapeu-
tic construct containing the human CHM gene driven by the
chicken fB-actin (CBA) promoter and a Woodchuck hepatitis
virus post-translational regulatory element (WPRE) down-
stream of CHM. The results have been reported at 6 months
[85], 3.5 years [86] and 5 years [87] after treatment. Out
of the six treated patients, two patients reported significant
improvement in their baseline BCVA based on the Early
Treatment Diabetic Retinopathy Study (ETDRS) letters that
was sustained long term (5 years after treatment) [87]. From
the remaining four patients, three were able to maintain their
BCVA up to 5 years post-treatment [87]. What is interest-
ing in the data reported for this initial group of patients is
that the level of visual improvement directly correlated to
the vector dose received. In contrast to previous trials, this
trial used post-injection fundus imaging to calculate the
treated area and therefore adjust the actual dose received
per patient based on the size of the treated area [84]. This
is a potentially more accurate approach since other trials
tend to report only the injected dose independent of the sub-
retinal area treated. Corroborating this approach, the results
showed that the best reported visual improvement was seen
in the two patients who received the highest dose of vector
per mm? of treated retina. These patients received 13.2 and
8.1E9 genome particles (gp)/mm? of retina, respectively,
while the three patients that maintained their baseline acu-
ity ranged from 1.2 to 5.6E9, and the sixth patient, who
had the worst reported outcome, only received a dose of
0.7E9 gp/mm? due to surgical complications that caused a
permanent retinal thinning [85, 86]. The second group of
eight patients received a higher dose of vector at 1E11 gp
and significant visual acuity improvement from baseline was
reported in seven out of the eight patients at the 2-years trial
endpoint follow-up [87]. The one patient from the high-dose
group that reported no improvement experienced significant
intraocular inflammation 2 weeks after treatment, which was
attributed to the vector. Analysed as a group, the results from
the Oxford trial show that the median visual improvement
by ETDRS in the treated eyes was 5.5 letters above baseline
at the 2-years follow-up [87].

Unlike the LCA2 trials, where direct comparisons
between trials is challenging due to vector, construct and

dose differences, all but one of the choroideremia trials used
the exact same therapeutic agent developed by the Oxford
team and at the same dose (Table 1). These trials recruited
six patients each and the 12-months or 2-years follow-up
results show that two to three of the treated eyes in each trial
showed improved BCVA [88-90]. Interestingly, in the trial
conducted in Germany (THOR, ClinicalTrials.gov identifier
NCT02671539) [88], a significant improvement of visual
acuity in the treated eye was observed at the 3-months fol-
low-up in four out of six patients. This, however, declined
at the 12-months follow-up to two out of six, but the minor
changes in the other two patients indicate the maintenance
of their baseline visual acuity. Furthermore, there was a shift
in some patients of their preferred retinal locus used for fixa-
tion towards the treated area [88]. Overall in these trials,
visual acuity in the untreated eyes showed a fairly stable
progression but areas of preserved RPE cells appeared to
decline at a similar rate between treated and untreated eyes
[90]. Despite a lack of significant differences in retinal sen-
sitivity, there was a trend towards improvement in the treated
eyes [88-90]. The remaining trial, conducted by Spark Ther-
apeutics (NCT02341807), is the only one that uses a differ-
ent therapeutic construct. In this trial, the AAV2/2 construct
incorporates the same CAG promoter, but not the WPRE
used to increase gene expression present in the other trials
[91].

2.1.3 The LHON Trials—Targeting Retinal Ganglion Cells

The third group of AAV2/2-based gene therapy clinical trials
were for a retinal condition called Leber Hereditary Optic
Neuropathy (LHON), an inherited mitochondrial disorder
that is characterised by subacute central vision loss in one
eye shortly followed by visual loss in the second eye, usu-
ally in the second to third decades of life [92]. The major-
ity of mutations that cause LHON are present in mitochon-
drial genes involved in the mitochondrial respiratory chain
and energy production [93]. In particular, mutations in the
NADH dehydrogenase subunit 4 complex I (ND4) gene
account for 60% of LHON cases worldwide [93]. Despite
disease-causing mutations being present in genes expressed
in all mitochondria, in LHON patients the disease pheno-
type is restricted to the loss of RGCs and degeneration of
the optic nerve [92]. Different from LCA2 and choroider-
emia, which affect the photoreceptors and/or the RPE cells, a
gene therapy approach for LHON must target the RGCs and,
more specifically, deliver the therapeutic construct into the
mitochondria. For this to occur successfully, gene therapy
for LHON had some significant and unique challenges to
overcome. First, as the target cells are the RGCs, the ideal
delivery route is intravitreal because subretinal delivery of
AAV has shown little to no RGC targeting in macaque eyes
[94]. RGC targeting in macaques was slightly improved
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when AAV?2/2 was delivered intravitreally [43]. Several
studies have attempted, with some success, to improve intra-
vitreal RGC transduction in non-human primates by sur-
gically removing the inner limiting membrane [95, 96] or
the vitreous [97], or by applying an electrical current [98].
Despite the poor RGC transduction rate in non-human pri-
mate retinas, AAV2/2 has become the vector of choice for
RGC targeting based on successful transduction in the rodent
retina [10]. The second challenge to overcome was that once
in the RGCs, the AAV-delivered gene needs to reach the
mitochondria. An elegant solution was provided by Guy and
colleagues [99] by creating a synthetic ND4 subunit that
allowed for allotropic expression plus the addition of a mito-
chondrial targeting sequence that provided effective traffick-
ing to the mitochondria. This novel approach was validated
in an LHON animal model [100] and was quickly moved
towards clinical trials. Two groups have led the effort for the
AAV2/2 LHON trials: the Huazhong University of Science
and Technology team and the GenSight Biologics team. A
third team based in the USA is behind the only trial currently
recruiting, but as this trial uses a modified AAV2tYF capsid,
it will be discussed in a separate section.

The results from both the GenSight and Huazhong Uni-
versity trials [101-103] were conducted in patients carry-
ing the ND4-G11778 A mutation and used a CMV promoter
to drive gene expression. The Huazhong University trial
injected a total of nine patients, where seven received a
1E10 gp dose and two, who were under 12 years of age at
treatment, received a lower dose of SE9 gp due to safety
concerns. The GenSight trial used four different doses: 9E9,
3E10, 9E10 and 1.8E11 gp. No ocular adverse events were
reported in the Huazhong University trial up to 36 months
post-treatment [101], but quite a few treatment-emergent
adverse events (TEAEs) were reported for the GenSight trial
at 96 weeks post-treatment, especially in the higher dose
cohorts [102]. They reported 96 TEAEs (40 systemic and 56
ocular), but 96% of these were considered mild. Of the ocu-
lar TEAES, 61% were considered treatment-related and the
most frequent type of event was intraocular inflammation.
All ocular events resolved spontaneously or after appropri-
ate treatment. The discrepancy in the reporting of ocular
adverse events between these two trials is not unexpected as
the higher dose used in the Huazhong University trial is very
close to the lower dose administered in the GenSight trial.
However, further analysis on the GenSight trial assessed
if there was an association between an immune response
and the intraocular inflammation reported after treatment
[104]. They calculated a composite ocular inflammation
score (OIS) to quantify the systemic immune response and
showed that neither were associated with the administered
dose, thus suggesting that intravitreal administration of
AAV2/2-ND4 in LHON patients was safe [104]. In relation
to treatment efficacy, both trials reported around half of
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the treated eyes showed significant improvement in BCVA
compared with baseline. The Huazhong University trial also
showed improvement in the visual field index in five out
of nine treated eyes but no changes at 36 months on visual
evoked potentials (VEPs; measure of optic nerve function)
and thickness of the retinal nerve fibre layer. The results of
the remaining ongoing trials by both groups, especially the
two more recent trials that have recruited at least 90 patients
each, will be eagerly awaited and hopefully provide more
informative data regarding a treatment for LHON.

The group of LHON trials has included some of the most
recent trials that have opted for a ubiquitous promoter such
as CMV, where other trials have started to significantly shift
towards the use of cell-specific promoters (Table 1). For
example, from all trials started from 2017 (10 years from
the start of the first LCA2 trials) onwards, 72% are using
cell-specific promoters while only 4 out of the 14 trials are
using ubiquitous ones. Within the LHON trials, the non-
cell-specific nature of the CMV promoter is likely less of
an issue due to the combination of an intravitreal delivery
method that targets the RGCs and the presence of a mito-
chondrial targeting sequence providing effective trafficking
to the mitochondria. However, high expression levels gen-
erated by a CMV promoter could potentially become toxic.
Furthermore, it has been reported in other systems, including
liver [105], muscle [106] and parts of the central nervous
system [107, 108], that the CMV promoter can be silenced
over time. This seems to be more the case in rapidly prolif-
erating cells and stem cells, whereas in non-proliferating
cells CMV-driven expression is much more stable. In the
post-mitotic non-proliferative retina, CMV silencing has not
yet been reported and long-term stable expression for up to
3 years has been shown in the canine retina [25]. Interest-
ingly, however, some form of gene silencing may sometimes
be useful because, dependent on the nature of the introduced
transgene, chronic expression of a molecule—especially one
that is secreted—can result in altered cell morphology [109]
or altered expression of endogenous genes [110], with poten-
tial functional consequences.

2.1.4 Mutating AAV2/2—the AAV2tYF-Based Clinical Trials

In parallel to the discovery and development of novel AAV
serotypes, further research into the biology of AAV vectors
has allowed for targeted modifications of existing serotypes
to improve tropism or efficiency. In 2008, Zhong and col-
leagues reported that mutating surface-exposed tyrosine
residues on the AAV?2 capsid reduced capsid ubiquitination
and therefore allowed for increased transduction in vitro
and in vivo [111]. This was further refined in a 2011 study
by Petrs-Silva and colleagues, who tested the efficiency of
combining multiple tyrosine mutant AAV2 vectors in trans-
ducing retinal cells [112]. They reported that a triple mutant
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vector (Y444,500,730F-AAV2tYF) was the most efficient at
targeting RPE and photoreceptors after subretinal delivery
[112]. The triple vector was also better than AAV2/2 and
the other mutants at targeting RGCs and inner nuclear layer
neurons after intravitreal delivery [112]. Furthermore, the
addition of modified promoters may provide greater selectiv-
ity for RGCs after intravitreal delivery [113].

Based on the safety profile data for AAV2/2 and the
improved tropism of AAV2tYF shown in pre-clinical stud-
ies, the use of the modified AAV2tYF vector in new clinical
trials was not unexpected. There are currently five active
trials for IRD conditions with AAV2tYF-based therapeu-
tic delivery (Table 1). These include trials for LHON,
X-linked RP, X-linked retinoschisis (RS) and achromatopsia
(ACHM). However, results have only been reported so far
for the US-based LHON trial [114, 115]. Similar to the other
LHON trials, the delivery was intravitreal to target RGCs
but they used a CAG promoter instead of CMV. Visual acu-
ity improvement (at or above baseline) in the treated eye
was reported mostly in patients (4/6) with acute bilateral
visual loss (< 12 months’ onset) while bilateral chronic
vision loss patients (> 12 months in one eye and at least
6 months in the other eye) only saw improvements in one of
six treated eyes [115]. Furthermore, in treated eyes the base-
line thickness of the retinal nerve fibre layer (RNFL) was
maintained at 12 months while the untreated eyes showed a
reduction in thickness over time [115]. This is a potentially
significant result as none of the AAV2/2-based trials had
shown improvement in RNFL thickness. The visual acu-
ity results seen in this trial are similar to the ones reported
in the other AAV2/2-based trials, where half of the treated
patients saw improvements in their visual acuity after treat-
ment. However, the difference in outcomes in the AAVtYF
trial between the acute and chronic patients does raise the
question concerning an optimal window for treatment in
LHON. The remaining AAV2tYF trials are all sponsored
by Applied Genetic Technologies Corp. and have not yet
reported results. As clinical trials for these same conditions
are also ongoing using AAV2/8 and AAV2/5, it will be inter-
esting to compare results once they become available.

2.2 AAV2/4 and AAV2/5-Based Clinical Trials

Both AAV4 and AAVS were described soon after AAV2
[116]. Subsequent testing in the mouse, canine and primate
retinas following subretinal injections showed that AAV2/5
was capable of transducing RPE and photoreceptor cells
with higher tropism and efficiency compared with AAV2/2
[117, 118], while AAV2/4 showed improved RPE cell trans-
duction [118]. The RPE specificity of AAV2/4 and long-
term expression in primate retinas [118, 119] led to studies
investigating the use of this vector for the delivery of RPE65
to a LCA2 canine model [66, 67], providing the pre-clinical

validation of an AAV2/4-based clinical trial for LCA2. The
published results for this trial show that after treatment,
visual acuity improvement was seen in a third of the treated
eyes (all within the higher dose cohort) and the overall mean
visual acuity in the treated eyes remained stable, while the
untreated eye saw a decline in function [61].

The remaining trials are all AAV2/5-based and include
an optimised vector for LCA2-RPE65 [120] led by the UK
group behind one of the first LCA2 trials, for RP caused by
mutations in the PDE6B gene and for X-linked RP caused
by mutations in the RPGR gene. No data has been reported
for these trials yet but will in the future provide an interest-
ing comparison of vector efficiencies, especially for LCA2
and RP-RPGR.

2.2.1 The Gene Editing AAV2/5 Trial

Genome editing is at the forefront of precision medicine
today, and when married with advances in AAV efficiency,
specificity and deliverance, holds great promise for many
inherited retinal disorders. This is especially relevant in
conditions where the traditional gene replacement therapy
will not work, such as autosomal inherited and mutations in
genes too large to fit into an AAV vector. Genome editing
is possible due to the action of targeted nucleases, which
create site-specific double-strand breaks in the genome, and
their advantage lies in the fact that they offer a permanent
and precise in situ correction of genetic mutations causa-
tive of a disease. Several methods of genome editing have
been developed and used in pre-clinical proof-of-principle
studies, including meganucleases, zinc finger nucleases
(ZFNs), transcription activator-like effector-based nucle-
ases (TALEN) and the clustered regularly interspaced short
palindromic repeats (CRISPR/Cas9) system [121]. Recently,
CRISPR/Cas9 has emerged as the preferred system due to
its flexibility and user-friendly design platform. While in the
other systems the site recognition is mediated by the nucle-
ase protein itself, in the CRISPR/Cas9 system this is done
by a guide RNA (gRNA), significantly reducing the costs,
complexity and time needed to design it [121]. CRISPR/
Cas genome editing in the retina has been a growing area
recently, with great potential for new treatment options
[reviewed in 122].

The genome editing company Editas has taken advan-
tage of this technology and launched in early 2019 the
first genome editing clinical trial (NCT03872479, EDIT-
101, also known as AGN-151587) combining CRISPR/
Cas9 and AAV technologies to correct the IVS26 mutation
(c.29914+1655A>G in intron 26) in the CEP290 gene that
causes Leber Congenital Amaurosis type 10 (LCA10). The
EDIT-101 therapeutic uses an AAV2/5 vector carrying two
gRNA to recognise the mutation site and the Cas9 enzyme
under the rhodopsin kinase promoter, limiting its expression
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to the targeted photoreceptor cells [123]. The results from
this trial will be eagerly anticipated by the gene therapy
field. A CRISPR/Cas9-based approach has the potential to
treat inherited retinal conditions where the limitations of
the AAV platform have hindered the development of treat-
ment options. However, the mutation-specific design of a
CRISPR/Cas9-based treatment does mean that, unlike tra-
ditional gene therapy treatments that work for all patients
within a specific gene-affected condition, individual prod-
ucts will have to be developed for each different mutation
within the same gene.

2.3 AAV2/8-Based Clinical Trials

AAVS was isolated from non-human primates in 2002 and
AAV?2/8 vectors were shown to have up to 100-fold higher
transduction capacity compared with other known capsids
[124], especially for liver [125] and muscle cells [126]. In
the retina, AAV2/8 also proved to be a more efficient vector
compared with AAV2/2 and AAV?2/5; it provided both faster
onset and stronger transgene expression, especially in photo-
receptors [127, 128]. From this point onwards, several pre-
clinical gene therapy studies for IRDs started to use AAV2/8
in lieu of other serotypes and from 2015 onwards several
clinical trials for IRDs using AAV?2/8 vectors commenced
(Table 1). There are currently six trials using AAV2/8: four
for achromatopsia (CNGA3 and CNGB3 mutations), one for
X-linked RPGR-RP and one for X-linked retinoschisis. All
three conditions are recessive conditions due to mutations in
genes affecting photoreceptors specifically. Thus, in contrast
to the initial AAV2/2 trials, the selection of the AAV2/8
vector with stronger photoreceptor tropism was, therefore,
more appropriate. These conditions do, however, have some
crucial differences between them that was reflected in the
design of each trial.

The AAV2/8 RPGR trial is led by the Oxford/NightStar
team behind the choroideremia trials, and is the trial that
has tested the highest number of doses, ranging from SE9
to 4E11 gp. Similar to what they reported in the choroider-
emia trial, the dose received by each patient varied slightly
as it was adjusted by the injection volume [129]. In the
6 months follow-up, Cehajic-Kapetanovic and colleagues
[129] reported that visual acuity remained stable and similar
to baseline in the treated eyes. This is not unexpected, as
this study is only 6 months after treatment and visual acuity
in the untreated eye has remained stable. Visual function
gains compared with baseline by microperimetry measure-
ment was variable and seen in around a third of treated eyes.
Although the delivery route used in this study was subretinal,
they reported mild inflammatory responses in eyes treated
with higher vector doses (> 1E11 gp), all of which were
resolved after oral treatment. It remains to be seen if a con-
nection between visual gain and post-treatment inflammation
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will be present in the later follow-up studies and whether
or not long-term improvement might be affected, especially
because visual function improvement above baseline was
not observed after gene therapy in a RPGR-deficient animal
model [130].

Achromatopsia became a potential candidate for gene
therapy clinical trials following the very successful rescue
of cone-mediated vision after AAV-based gene therapy in
several animal models of achromatopsia [131-137]. Dif-
ferent from the other outer retinal IRDs targeted so far,
achromatopsia affects only the cone photoreceptors, with
patients suffering from birth from absent colour vision, poor
visual acuity and photophobia [138]. There are six genes
that have been associated with achromatopsia and there
are six clinical trials ongoing for two of the most common
genes affected (CNGA3 and CNGB3; Table 1). However,
data for only one of the trials (AAV2/8-based for CNGA3,
NCT02610582) has been reported. All trials have opted to
use cone-specific promoters such as the human cone arrestin
promoter (hCARp) or promoters based on the red or green
opsin promoter regions (PR1.7 and hG1.7p). The 12-months
follow-up results from the AAV2/8-CNGA3 trial showed
that treatment was well tolerated and that both visual acuity
and contrast sensitivity was improved [139]. Interestingly,
the eyes that received the lower dose showed better visual
improvement compared with the eyes that received the
higher doses. Further studies and data from the other trials
might clarify whether this effect was due to the lower dose
eyes having worse acuity and contrast sensitivity at baseline
and, therefore, more room for improvement, or if the higher
doses could have a detrimental effect on cone function. The
reporting of significant improvements in half of the treated
eyes in colour vision-specific tests provides encouragement
for an AAV-based gene therapy treatment for achromatopsia
[139]. However, achromatopsia is usually considered a fairly
stable condition where patients do not experience a progres-
sive loss of vision as the symptoms are present from birth.
Under these circumstances, it is questionable whether a gene
therapy treatment, and the associated risks, is necessary for
these patients. Furthermore, since they have not possessed
colour and high acuity vision since birth, experts are also in
doubt whether the necessary, mature connections within the
visual cortex for colour and high acuity vision have devel-
oped and if such connections can be established at a later
stage of life.

The AAV?2/8-based clinical trial for X-linked retinoschi-
sis (XLRS) differs significantly from the achromatopsia
and RPGR trials as XLRS patients have an extremely frag-
ile retina due to the presence of schisis cavities (structural
retinal lamellar separations) that are characteristic of this
condition. Despite being a condition that affects photorecep-
tors directly, the fragile nature of the retina does not safely
support subretinal delivery of a therapeutic. Successful
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restoration of the retinal architecture and closure of schi-
sis cavities in a mouse model of XLRS was achieved after
intravitreal delivery of an AAV2/8-RS1 vector [140] and
provided encouragement that this approach could ben-
efit patients. Unlike the results reported in the intravitreal
AAV?2/2 LHON trial by GenSight (discussed in the AAV2/2
section), an increase in ocular inflammation and antibodies
against AAV?2/8 after intravitreal AAV2/8-RS] delivery was
dose-dependent, but both were resolved by oral and topical
corticosteroid treatment within 4-6 weeks. Visual acuity
improvements at the 18-months follow-up was not consid-
ered significant due to the high testing variability for XLRS
patients, and neither were any improvements seen in retinal
sensitivity, electroretinogram or optical coherence tomogra-
phy [141]. It is clear that intravitreal delivery of AAV-based
therapeutics is possible albeit post-operative care needs to
be in place to manage inflammation. However, the correla-
tion between ocular inflammation events and treatment effi-
cacy is still unclear and could potentially compromise the
clinical application of intravitreally delivered AAV-based
therapeutics.

3 Delivering Inserts for All Occasions—the
Multipurpose Use of AAVs

Hundreds of genes have been implicated in IRDs, thus mak-
ing specific gene therapy for each individual gene mutation
an enormous task, from the labour-intensive lab research,
to clinical testing, to regulatory approval for each one. Fur-
thermore, the majority of gene therapy studies and clinical
trials for IRDs have targeted genes involved in autosomal
recessive disorders (i.e. those that create null genotypes);
thus, replacing the gene to produce a functional protein can
potentially be a straightforward approach. In contrast, other
types of inheritance, such as autosomal dominant or gain of
function, can create other challenges that limit the develop-
ment of therapies using the AAV platform. Importantly, the
use of AAV is not limited to direct replacement or correc-
tion of a disease-causing gene [142]. It can also be used to
augment downstream processes and pathways, which may
be beneficial for more eye diseases, including glaucoma,
autosomal dominant optic atrophy, macular degeneration,
retinal ischaemia and optic neuritis, providing an even
broader range of potential therapeutic uses in ophthalmol-
ogy. Thus, gene therapies that target a larger population of
causative agents are very appealing, such as inducing and
over-expressing neuroprotective factors [3, 143—148] and
in experimental strategies that focus on novel, potentially
therapeutic, optogenetic technologies [149, 150].
Glaucoma is a heterogeneous group of conditions charac-
terised by progressive death of RGCs and associated visual
field loss, sometimes leading to blindness in the most severe

cases. While increased intraocular pressure is an important
risk factor [151], and most current pharmacological or sur-
gical strategies are aimed at pressure reduction, hereditable
factors are also important in a proportion of the population.
In paediatric glaucoma, for example, a number of candidate
genes have been identified [152, 153]. For these individuals,
additional neuroprotective strategies should be explored to
further reduce the rate of RGC death and visual field loss
[154]. Gene therapy is an effective tool to transduce RGCs,
and AAV2/2-mediated delivery of neurotrophic factors
such as brain-derived neurotrophic factor (BDNF) [155,
156] or ciliary neurotrophic factor (CNTF) [157] promote
RGC viability in experimental models of glaucoma. A gene
therapy protocol that increases expression of both BDNF
and its receptor (TrkB) in RGCs is currently in pre-clinical
development [146, 158]. Secretion of, for example, BDNF
by transduced RGCs can have a beneficial bystander effect
on neighbouring non-transduced neurons [159] and also may
act indirectly via effects on resident Muller glia, releasing
other supporting factors [160]. However, a possible down-
side to sustained neurotrophin expression in RGCs is the
impact that the factors can have in altering the phenotype
of, and gene expression in, other retinal neurons [110]. Note
here that gene therapy to upregulate appropriate transcrip-
tion factors such as Brn3b, and hence various downstream
signalling pathways, has also been tested [161], as have viral
vector approaches that prevent activation of death-related
pathways [162].

In a model of retinal ischaemia/reperfusion injury, use of
self-complementary AAV?2/2 vectors to deliver the enzyme
C3 transferase, which inactivates Rho GTPases to reduce
apoptosis and enhance cytoskeletal stability, resulted in
RGC protection [163]. In another study, using the experi-
mental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis (MS), AAV2/2 was used to deliver either
nuclear factor (erythroid derived)-like 2 (NRF2) or Sir-
tuin 1 (SRT1) to RGCs—both factors known to have ben-
eficial anti-inflammatory effects and to be associated with
anti-apoptotic and anti-oxidant effects [164]. Reduced RGC
loss was seen but neither vector was able to reduce optic
nerve inflammation or demyelination. On the other hand,
using a similar EAE model in mice, intraocular delivery of
AAV?2/2 encoding a mutant phosphorylation-resistant ver-
sion of collapsing response mediator protein 2 (CRMP2)
not only protected RGCs and axon integrity, but also main-
tained axonal transport and preserved myelin in the optic
nerve during active neuroinflammation [165, 166]. CRMP2
regulates tubulin dynamics, interacts with motor proteins
kinesin and dynamin, and is important in the growth, main-
tenance and repair of neuronal processes. CRMP2 activity is
inhibited when phosphorylated, resulting in destabilisation
of cytoskeletal proteins, reduced growth, degeneration of
axons and disruption of axonal transport systems. It is of
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interest that the same AAV2/2 vector protects RGCs and
myelin after partial optic nerve trauma [147], and could be
useful in glaucoma, given that there is evidence of disrupted
axonal transport and breakdown of microtubules in RGC
axons that precedes RGC loss [167, 168].

4 Antisense Oligonucleotides (ASO),
the Anti-AAV?

In recent years, one technology has been gaining ground and
started to offer an alternative approach to AAV-based thera-
pies for IRDs. ASOs are short synthetic and single-stranded
nucleic acid sequences that bind to selected sequences of
mRNA and manipulate gene expression by targeting a patho-
genic mutation or splicing defects [169]. In contrast to AAV-
based constructs, the size of the gene is not a limitation when
designing ASO-based therapies [169]. The first generation
of ASOs inhibited gene expression by degrading the target
mRNA through RNase-H-mediated cleavage. This genera-
tion appeared after chemical modifications that improved
their binding affinity and increased the resistance of ASOs
to nucleases, and include the phosphorothioate backbone
(PS) class, which has the ability to interfere with splicing but
is highly toxic [170-172]. The second generation of ASOs
was a result of further modification that reduced toxicity
and improved target specificity [173, 174]. Several ASOs
have been approved by the FDA and include eteplirsen and
golodirsen for Duchenne muscular dystrophy, fomivirsen
for cytomegalovirus retinitis, milasen for Batten disease,
mipomersen for homozygous familial hypercholesterolaemia
and nusinersen for spinal muscular atrophy.

Similar to Luxturna, which was the first-ever FDA-
approved gene therapy, the first antisense oligonucleotide
therapy was approved for an ocular condition. The drug was
called fomivirsen and used for the treatment of cytomeg-
alovirus retinitis in immuno-compromised patients [175].
More recent studies have successfully applied ASO technol-
ogy to treat IRDs, including conditions where traditional
AAV-based gene therapy approaches would be limited.
These include large genes such as ABCA4, CEP290 and
some Usher genes, and dominant RP (reviewed in [176]).
In contrast to AAV gene replacement, ASO can be used to
treat vision loss in Stargardt disease due to deep intronic
mutations in the ABCA4 gene [177] and effectively provide
in vitro allele-specific knock-down of the mutant allele caus-
ing a dominant negative effect in NR2E3-associated auto-
somal dominant RP [178]. Furthermore, a study evaluating
ASOs targeting the ATAXIN-7 gene as a treatment strategy
for spinocerebellar ataxia type 7 (SCA7; an autosomal domi-
nant neurodegenerative disorder characterised by cerebellar
and retinal degeneration) showed improved visual function,
retinal histopathology and retinal gene expression in a mouse
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model of SCA7, suggesting that ASOs targeting ATAXIN-7
might represent a viable treatment for SCA7 retinal degen-
eration [179]. Pre-clinical studies testing ASOs for LCA10
caused by mutations in CEP290 [180] and Usher 2A-asso-
ciated RP [181] have shown the most promising results
to date, allowing for the advancement of these treatments
towards clinical trials (NCT03780257, NCT03140969). The
ASO-based therapeutic approach remains an exciting alter-
native to viral-based gene therapies and future developments
in this field are expected to continue to grow.

5 Concluding Remarks

Despite the promising success of the recent LCA2 trials,
which ultimately led to the approval of the first ocular gene
therapy drug Luxturna®, the translation of retinal gene ther-
apy from lab bench to bedside is still an ongoing process
where both sides need to evolve in an interdependent man-
ner. It is essential that to advance the next generation of
breakthrough retinal trials, improvements from both basic
and clinical research should come together; a thorough
understanding of the molecular mechanisms of degeneration
needs to marry with a thorough clinical characterisation of
the disease process. The increase in clinical trials evaluating
the natural history of different ocular conditions, the grow-
ing availability and technological advancements in the study
of animal models of disease and development of innovative
human disease models such as retinal organoids that can
bridge some of the limitations of animal model study, are all
encouraging developments in the ocular translational field.

Huge strides are also being made in generating better
AAV vectors with a focus on human clinical translation.
The development of novel capsids and an increased assess-
ment in non-human primates (NHP) of these novel serotypes
can help underscore the differences in AAV transduction
between mice and primates, helping consolidate the impor-
tance of careful evaluation of therapeutic vectors in NHPs
prior to clinical trials. Furthermore, NHP studies are crucial
in advancing our understanding of potential adverse immune
responses to AAV-based therapeutics. One of the prized
properties of AAV vectors is the minimal stimulation of the
host immune system, and whilst minimal, it is not negligi-
ble as inflammation/toxicity responses have recently been
attributed to AAV-cis regulatory sequences [182]. Studies
looking into different genetic modification of wild-type AAV
antigenic epitopes that can produce synthetic variants capa-
ble of evading neutralising antibodies without sacrificing
production, transduction efficiency or tissue tropism will be
extremely valuable towards improving future AAV-based
therapeutics [183].

The versatility of AAVs has allowed the gene therapy,
and in particular, the ocular gene therapy field to grow
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exponentially in the last decade and provide hope for the
development of a cure for a myriad of conditions that until
recently were thought to be incurable. Further developments
in capsid and vector engineering, in-depth understanding of
vector and host interactions, and growing clinical knowledge
of vision loss conditions will continue to come together to
provide clinicians and researchers with the tools necessary
to advance these innovative treatments forward.
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