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Abstract
Exosomes are very small extracellular vesicles secreted by cells to local and distant tissues. These mini signal transporters 
elicit acute and chronic effects on recipient cells. Studies regarding exosomes and their relationship to disease, as well as 
healthy functions, are eliciting extraordinary excitement as data pours in from groups around the world. Reporting of exo-
some biogenesis, selective loading of cargo, directed release, and resulting changes in adjacent and distal cells are providing 
information that is changing the way we view cancer progression and treatment. As a result, the properties of exosomes are 
being exploited for diagnostic, prognostic, and therapeutic applications. First, by referring to the signaling molecules carried 
by exosomes, they are being tested as indicators of the presence of transformed cells in early stages of cancer. Secondly, the 
cargo of exosomes secreted from tumors have been linked to prognostic factors and metastatic properties. Thirdly, exosome-
based therapies are being developed which utilize the inherent properties of these mini-transporters to affect and interfere with 
cancer. Exosome creation, loading, and release plays an important role in cancer formation, progression and organotropic 
metastasis. The developed and developing therapies should be considered with understanding of their advantages and pitfalls, 
as well as the various roles exosomes play in normal and pathogenic processes. The combination of previously discovered 
attributes of exosomes with new discoveries occurring daily provide valuable and additive relevant factors to be considered 
as we embark on the continued discovery of exosomes and their relationship to cancer diagnostics and therapeutics.

Key Points 

Exosome processing and role in cancer formation and 
progression is varied between cells and tissue states.

Exosomes relate to diagnostic, prognostic, and therapeu-
tic potential on many levels.

Several promising approaches to using exosomes for bio-
markers, delivery vehicles, and therapeutics are changing 
the landscape of cancer diagnosis and treatment.

1 Introduction

In this review, we discuss exosomes as related to their role 
in cancer. In vitro and animal studies have demonstrated 
that many cell types communicate via intercellular signal-
ing using soluble factors and secreted extracellular vesicles 
(EVs) [1–3]. While they are secreted by all cells, cancer 
cells release significantly more EVs than normal cells, and 
these can be found in most bodily fluids, including urine, 
ascites, serum, and plasma [4–8]. Exosomes are a type of 
EV that delivers cargo containing bioactive lipids, cytokines, 
growth factors, receptors, transcription factors, DNA, non-
coding regulatory RNAs, and messenger RNAs (mRNAs) 
into recipient cells. This cargo can have profound effects 
on recipient cells and reflect the cell of origin. Intercellular 
communication by exosomes contributes to the regulatory 
signaling of both normal and pathological processes, includ-
ing cancer [1, 3, 9, 10]. Exosomes have a common mor-
phology, size distribution, and specific marker expression, 
regardless of tissue origin. Although there are common exo-
some characteristics, the markers and cargo they carry differ 
with the original tissue, cell, and cell state. Additionally, 
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the cargo content of exosomes can reflect the origin of the 
cell and may even indicate pre-metastatic niche formation. 
With these considerations, exosomes have been recognized 
as potential diagnostic and prognostic markers for various 
diseases [11, 12] as well as the assessment of treatment effi-
ciency. Eventually, the data from exosome studies may be 
used to discover new ways to detect and eliminate malignant 
precursor cells.

Exosomes were first described as EVs released by tumor 
cell lines [13]. Since then, they have been described as 
small, round, and cup-shaped vesicles that collect in multi-
vesicular bodies (MVBs) with size ranges reported from 20 
to 200 nm. Exosome biogenesis involves inward budding 
at the plasma membrane which produces intracellular early 
endosomes [14]. These bud inward, forming small vesicles 
termed intraluminal vesicles (ILVs) within a MVB [14]. 

There are several processes that are believed to facilitate 
the biogenesis and secretion of exosomes (Fig. 1). These 
include the endosomal soring complex required for trans-
port (ESCRT) pathway [15–18] and a ceramide-dependent 
pathway [16, 19, 20]. Their formation may be controlled 
by the interaction of syndecan heparin sulphate chains with 
syntenin-1 and ALG-2 (apoptosis-linked gene 2)-interact-
ing protein X (Alix) for recruitment of the ESCRT machin-
ery [21–23]. In addition, protein cargo sorting [24, 25] and 
release [26] involve the ESCRT complex [19, 27] and other 
associated proteins such as Alix [21, 28] and Tsg101 [29]. 
The four components of the ESCRT pathway (ESCRT-O, -I, 
-II, and -III) aid in the movement of ubiquitinylated proteins 
[16, 30, 31]. Biogenesis has also been shown to occur in 
an ESCRT-independent manner through ceramide, flotillin 
[21], phospholipase D2 (PLD2)/ADP ribosylation factor 6 

Fig. 1  Exosome biogenesis. a Inward budding of the plasma mem-
brane creates early endosomes. b Invagination of the early endosome 
membrane results in ILVs. This may be accomplished by several 
mechanisms, including: c Lipid rafts may be converted to ceramide, 
prompting inward budding of the membrane. d Syntenin may bind 
to ARF6 through the action of PLD2, promoting inward budding. e 
Ubiquitinated proteins may bind to ESCRT O, which recruits ESCRT 
I, II, and III. Cooperative interaction of sydecan chains with syn-
tenin, the CD63 tetraspanin, and Alix promotes invagination, fol-

lowed by interaction of Alix with ESCRT III. f The endosome with 
the ILVs is referred to as a MVB. The ILVs that remain for secre-
tion to the extracellular space are exosomes. Note that the process by 
which exosomes are created results in the same orientation of sur-
face markers as the cell membrane. Alix ALG-2 (apoptosis-linked 
gene  2)-interacting protein  X, ARF6 ADP ribosylation factor  6, 
ESCRT  endosomal soring complex required for transport, ILVs intra-
luminal vesicles, MVB multivesicular body, PLD2 phospholipase D2
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(ARF6) [32], and CD81 [33]. The ceramide-dependent path-
way depends on lipid raft modification to ceramide [19, 20], 
which ultimately prompts the formation of ILVs in the MVB 
[16].

Exosomes are secreted from the cell when the MVB 
fuses with the plasma membrane instead of fusing with a 
lysosome, releasing their contents extracellularly [14, 34, 
35]. Exosomes may also be secreted by direct budding from 
the plasma membrane. Exosome release involves contribu-
tions from Rab proteins [23, 36–38], the actin cytoskeleton 
[39], the microtubule network [40], and cholesterol [41]. 
Importantly, Rab-mediated release has been shown to occur 
in a cell-specific manner [38, 42]. This process has been 
confirmed in antigen-presenting cells (APCs) [43, 44], epi-
thelial cells [45], and tumor cells [46], among others. Due 
to the mechanism of intake and release, exosomes contain 
proteins from the plasma membrane and cytosol, as well 
as the extracellular domain of surface receptors from the 
cell [47], with very little protein from other organelles [48]. 
As a result, they bear both intraluminal and transmembrane 
proteins with the same orientation as the plasma membrane.

Exosomes enable intercellular communication with-
out direct cell-to-cell contact. This communication can 
be antigen presentation, immune regulation, spread of 
infection, and initiation of altered signaling [49] through 
several mechanisms (Fig.  2). When juxtacrine signal-
ing occurs, the exosomes bind a surface receptor on the 

recipient cell, initiating intracellular signaling. This sign-
aling is markedly different from fusion and phagocytosis, 
which transfer the contents of the exosomes into the cell. 
In endocytosis, the entire exosome is transferred into the 
cell. The exosomes can also be internalized by endocytosis 
through several mechanisms reported to occur at acidic 
pH [41]. There are reports of endocytotic internalization 
of oligodendroglial and microglial exosomes by neurons 
[50, 51]. When direct fusion occurs, the contents of the 
exosomes are delivered to a recipient cell by fusion with 
the recipient cell membrane resulting in direct release 
of the cargo to the recipient cytoplasm. The binding of 
exosomes to the surface of recipient cells has been shown 
to be mediated by integrins, intercellular adhesion mol-
ecules [52], tetraspanins [53], specific glycoproteins [54], 
and heparan sulfate proteoglycans [55].

The variety of mechanisms for the loading of proteins 
into exosomes, release mechanisms, and signal deliv-
ery routes are not necessarily contradictory. It points to 
the heterogeneity of exosome populations. In fact, the 
silencing of specific components of the exosome bio-
genesis machinery do not affect all exosomal markers in 
the same way. For example, breast cancer cells secrete 
exosomes with differing sizes, microRNA, and protein 
content [56]. In epithelial cells and a colon carcinoma cell 
line, exosomes released from the apical side of the cells 
are enriched in specific and different proteins from the 

Fig. 2  Mechanisms of exosome uptake by recipient cells. a The pro-
cess by which exosomes are created results in the same orientation 
of surface markers as the cell membrane. b Exosome information is 
transferred to recipient cells through several mechanisms. Some cell 

types utilize multiple mechanisms. EBV Epstein-Barr virus, HIV 
human immunodeficiency virus, MHC myosin heavy chain, NK natu-
ral killer cells, Tregs regulatory T cells
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basolateral side, even though both populations are identi-
cal on electron microscopy and typical exosome markers 
[57, 58].

Methods to isolate exosomes are a subject of constant 
debate [59–61]. There are many ways to isolate from any 
number of tissues and cells. The most widely used and 
reported technique is ultracentrifugation (UC) [4, 61–65]. 
It has been reported that UC accounts for 81% of all exo-
some isolation techniques [66]. UC involves spinning 
suspensions at very high speeds with or without den-
sity gradients. Density gradient UC separates exosomes 
based on their size and mass compared to the medium. 
This requires large, vacuum-fitted, cooled ultracentri-
fuges that need much maintenance and user training. UC 
suffers from high exosome loss [67] and at high veloci-
ties (> 100,000g), proteins aggregate and exosomes may 
clump [5, 59, 68]. Additionally, the viscosity of plasma 
and presence of lipoproteins, which have similar density 
and diameter to exosomes, co-isolate with the exosome 
component [59, 62, 63, 69, 70]. Isolation may also be 
accomplished using polymer-based precipitation of the 
exosomes by binding water surrounding the particles [71, 
72] or immuno-affinity capture with antibodies against 
consensus exosome markers [73, 74]. Exosomes cannot 
be identified by using standard flow cytometry because 
they are too small to be distinguished from junk signals. 
But, the existence of markers on the surface of exosomes 
can be used to sort them [75] if attached to beads with 
consensus exosomal cell surface markers, such as CD63 
and CD81 for distinction. The exosomes bound to beads 
are then probed with fluorescent antibodies against the 
same or other consensus exosomal cell surface markers. 
The distribution of these markers is varied amongst exo-
some populations from various cell types and tissue states. 
Microfluidics passes solution with exosomes through small 
channels on microchips that are treated with antibody [76, 
77]. Ultrafiltration utilizes filter-based fractionation at spe-
cific speeds and membrane porosity to capture exosomes 
and other EVs [67, 78]. Commercially available kits have 
been developed using these techniques [79]. However, 
these kits have been criticized for low purity, contamina-
tion by other microvesicle types, contamination by pro-
teins, loss of exosomes, and undesirable effects on the 
exosomes themselves [80]. Size exclusion chromatography 
(SEC) has been shown to isolate exosomes from blood 
plasma with no significant impurities [62, 67, 81–83]. The 
principle of SEC is separation based on size differences 
[84, 85]. SEC has been used to isolate vesicles from sera, 
ascites, and saliva, and was shown to effectively separate 
vesicles from proteins [62, 63, 86–90]. Böing et al. [62] 
showed that there is no risk of lipoprotein complex for-
mation or vesicle aggregation as compared to differential 
centrifugation. With respect to the undesirable effects 

on the exosomes themselves [80], compared to UC, SEC 
results in a good recovery of vesicles with almost complete 
removal of contaminants [4, 62].

An enormous amount of information can be acquired by 
analysis of exosome contents. These analyses can include 
differential expression of genomes, transcriptomes, micro-
RNA, lipid and proteome profiles, in addition to more 
detailed analysis of post-transcriptional or post-translational 
modifications. The analysis of exosome cargo is accom-
plished through numerous methodologies, including mass 
spectroscopy for complete protein screening [91–93], the 
more specific Western blot, next-generation sequencing for 
complete transcriptome screening [94–96], reverse transcrip-
tion polymerase chain reaction (RT-PCR) for more specific 
RNA questions, and Nanostring for panels of RNA and 
microRNA probes. Data from such studies has led to the 
discovery of various exosome sources involved in cancer 
establishment and progression. Some of these sources are 
described in this review.

1.1  Exosomes from Cancer‑Associated Fibroblasts

To avoid necrosis as tumor size increases, vasculariza-
tion at the tumor begins, which establishes the entry point 
for metastatic cells [97]. Many of the cancer progression 
processes are influenced by cancer-associated fibroblasts 
(CAFs) within the tumor. CAFs stimulate new angiogen-
esis by secreting stromal-derived factor-1 [98], recruiting 
endothelial progenitor cells [99] and stimulating them to 
form tube-like structures [100]. It has been demonstrated 
that CAFs and tumor cells jointly invade blood vessels and 
implant themselves in metastatic sites [101]. Tumor-derived 
exosomes (TDEs) can convert mesenchymal stem cells 
into CAFs [102]. In breast cancer, exosomes from CAFs 
cross-talk with cancer cells to enhance migration [103] and 
stimulate epithelial to mesenchymal transition (EMT) [98] 
by secreting exosome-processed transforming growth factor 
(TGF)-1 [98]. The TGF-1 effect on stroma differentiation 
is abrogated by blocking of exosomes, even if the TGF-1 
levels in the tumor stroma remain constant [98]. The CAFs 
also use enzymes (matrix metalloproteinases) to create tun-
nels through the extracellular matrix that the tumor cells can 
utilize [104]. It has been shown in sarcoma that exosome 
matrix metalloproteinases stimulate metastasis [105] and are 
prognostic for invasiveness in head and neck cancer [106]. In 
addition, exosomal CD81 (a common exosomal marker) was 
shown to work with CAFs to promote cancer cell mobility 
in breast cancer [103].

1.2  Platelets, Exosomes, and Cancer

Under normal circumstances, leukocytes and especially nat-
ural killer (NK) cells are found in close relation to metastatic 
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cells in the bloodstream and eliminate these cells [107]. 
Metastatic cells need to escape this immune surveillance. 
Platelets adhere to metastatic cells to shield them from NK 
cell activity [108]. In addition, direct signaling between 
platelets and cancer cells induces an EMT-like transition 
and promotes metastasis [109]. The depletion of platelets in 
mice inhibits metastasis, and platelet reconstitution restores 
the metastasis [110]. Platelet-derived exosomes assist in the 
maintenance of cancer cells in the tumor and the blood circu-
lation by also accompanying cancer cells in the bloodstream 
and enabling their survival [111] through interaction with 
endothelial cells, leukocytes, and cancer cells [112, 113]. 
Here, they assist tumor cell adhesion to the endothelium of 
the recipient vessels and enable extravasation of tumor cells 
from the bloodstream into the pre-metastatic niche [114], 
especially via P-selectin [113].

2  Tumor‑Derived Exosomes

Normal human blood contains about 1.5 billion exosomes/
mL [72]. It has been reported that there are more exosomes 
secreted from tumor tissue than healthy tissue [115, 116], as 
well as into patient plasma from the tumor tissue [116, 117]. 
In one study, this increase was not shown to further increase 
with tumor progression and was not related to the immune 
response to the tumor [115], but in other studies there is a 
correlation to tumor progression [117, 118]. It is possible 
that the increase is due to local stress within the tumor, such 
as hypoxia [119] and acidic pH [120]. For example, exo-
some release from melanoma cells is significantly higher 
when the medium is not buffered [121] and plasma exosome 
concentrations of patients with stage III–IV melanoma were 
shown to be significantly higher than in the plasma of lower 
stages or healthy patients [118]. Exosomes secreted directly 
from tumors are referred to as TDEs. These serve to medi-
ate the immune response against a tumor, promote tumor 
progression, promote migration and engraftment, and affect 
the response of the tumors to treatment.

Briefly, some mechanisms by which TDEs mediate the 
immune response against a tumor is by inducing apop-
tosis of T cells, inhibiting dendritic cell differentiation, 
inhibiting NK cell cytotoxicity, and inducing myeloid 
suppressor cells and regulatory T cells [122]. Addition-
ally, the pro-tumorigenic inflammatory response created 
by TDEs has been shown to support neo-angiogenesis, 
invasion, and matrix remodeling [123]. This relation-
ship between TDEs and tumorigenic inflammation has 
been shown in pancreatic ductal adenocarcinoma [9] and 
liver cancer. TDEs affect the surrounding stromal EMT 
[124], migration [125], invasion, and engraftment in part 
by stimulating tumor-associated macrophages [126]. The 
Toll-like receptors on the surface of the macrophages 

interact with the TDEs, activating nuclear factor (NF)-κB 
in the macrophages [127]. For example, in breast cancer, 
an increased concentration of macrophages correlates with 
poor prognosis [126].

2.1  Role of Microenvironmental Factors

Since tumor cells are continuously subjected to various 
forms of stress, there are increased secretions of exosomes by 
cancer cells [128]. The acidic microenvironment is charac-
teristic of the tumor microenvironment and is considered an 
important phenotype of malignant tumors [129, 130]. This 
acidic microenvironment stimulates release of exosomes 
and enhances their cell fusion capabilities by affecting 
the lipid composition [121]. Logozzi et al. [131] showed 
definitively in 2017 that the acidic environment of prostate 
cancer cells increases the release of exosomes from tumor 
tissue into patient plasma and this does not occur under buff-
ered conditions. Furthermore, in 2018, Logozzi et al. [132] 
reported that acidity, as occurs in the tumor microenviron-
ment, increases the release of homogenous exosomes in five 
different cancer cell lines. This was compared to buffered 
condition, which resulted in a smaller release of heterog-
enous exosomes. Clearly, environmental acidity is a key 
factor in TDE characteristics and release. Heat is a stressor 
that increases release of immunosuppressive exosomes from 
B cells in leukemia and lymphoma [133]. Heat may also lead 
to antitumor functions by inducing the release of exosomes 
with heat shock proteins (HSPs). Hypoxia is a stressor in 
the tumor that induces the secretion of exosomes contain-
ing proteins associated with cell migration, extracellular 
matrix degradation, growth hormone signaling, endocyto-
sis, and vascular endothelial growth factor (VEGF) signal-
ing [104, 134]. These signals alter the microenvironment 
and facilitate angiogenesis and metastasis. For example, 
malignant brain tumor glioblastoma cell growth is increased 
and more angiogenic when exposed to exosomes derived 
under hypoxic conditions, as compared to normoxia-derived 
exosomes [135]. Exosomes from hypoxic tumor cells can 
impair NK cell function by secretion of TGF-β1 [136]. This 
leads to activation of EMT, which plays an important role 
in metastasis [109]. These stress-induced changes can also 
provide protective signals influencing the response of distant 
cells. For example, during oxidative stress or starvation in 
neuronal development, oligodendrocytes secrete exosomes 
that are taken up by neurons, promoting neuronal viabil-
ity [51]. During ischemia/reperfusion injury, mesenchymal 
stem cells and cardiac progenitor cells release exosomes that 
have a cardio-protective effect [137] and reduce inflamma-
tion [138]. Recognizing the response of tumors to stress and 
their subsequent exosome release is important for directing 
discovery of diagnostic and prognostic biomarkers.
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2.2  Cargo and Cancer

Exosomes, regardless of origin, contain proteins, lipids, and 
nucleic acids. The acquisition of cell membrane components 
and the specific sorting of cargo into exosomes are what dis-
tinguish exosomes as being from a particular cell, cell type, 
or cell state. These differences will distinguish the exosomes 
from one origin versus exosomes from another origin. The 
cargo of TDEs is varied and valuable to cancer progres-
sion. Consequently, understanding the cargo is important 
for research of tumor origination, as well as diagnostic, 
prognostic, and therapeutic uses. Since the exosomes con-
tain lipids and receptors from the cell membrane, cytokines, 
growth factors, cytoplasmic receptors, transcription factors, 
non-coding regulatory RNAs, and mRNAs, they are good 
candidates for detection of the presence of abnormal cells 
using various body fluids. For example, significantly higher 
levels of macrophage migratory inhibition factor (MIF) were 
found in the serum exosomes of patients with pancreatic 
ductal adenocarcinoma with liver metastasis and progressive 
disease than in patients with full remission, suggesting MIF 
as prognostic marker in pancreatic carcinoma [9].

2.2.1  Proteins

Protein cargo of exosomes can be cytosolic, nuclear, trans-
port-involved, adhesion-related, and plasma membrane-
bound [48]. These can include cytokines, chemokines, 
growth factors, receptors, and hormones [139]. Accord-
ing to Exocarta [140], exosomes contain more than 41,860 

different proteins. Commonly referenced proteins used to 
describe exosomes include integrins, tubulin and actin, sort-
ing proteins Alix and Tsg101, major histocompatibility com-
plex (MHC) class I (MHC-I) [141], HSP70, HSP90 [48], and 
tetraspanins CD9, CD63, CD81 and CD82. Differentially 
expressed protein cargo can be queried to indicate the status 
of the cells of origin. Transmembrane protein 256 in the 
urine has been shown to indicate prostate cancer with 94% 
sensitivity and 100% specificity [142]. Melo et al. [143] and 
Hu et al. [144] reported that Glypican-1 in serum exosomes 
can indicate tumor load/metastasis and stage, respectively, of 
pancreatic cancer patients with 100% sensitivity and speci-
ficity. Conversely, Yang et al. [145] reported much lower 
sensitivity and specificity for Glypican-1 in pancreatic can-
cer. Lai et al. [146] reported that, although their own pre-
vious studies show a relationship between Glypican-1 and 
pancreatic cancer, this marker alone is not sufficient and bet-
ter results were seen using specific microRNAs. Hence, the 
use of Glypican-1 as a marker alone for pancreatic cancer is 
controversial. It is likely that more robust specificity will be 
achieved using a combination of proteins and microRNAs. 
Examples of other protein indicators found in exosomes are 
depicted in Table 1. Recent advances in proteomic analysis 
of exosomes by mass spectroscopy [147, 148] are sure to 
advance our understanding of exosome activity.

2.2.2  Lipids

Exosomes also contain lipids from membrane lipid rafts 
including ceramides, sphingolipids, cholesterol, and 

Table 1  Examples of published proteins found in tumor-derived exosomes

CD47 integrin associated protein, CD49d integrin alpha 4, CXCR4 C-X-C chemokine receptor type 4, Del-1 epidermal growth factor-like repeats 
and discoidin domains  3, EGFR epidermal growth factor receptor, GSTP1 glutathione S-transferase P, HER2 human epidermal growth fac-
tor receptor  2, HGS hepatocyte gf-regulated tyrosine kinase substrate, HOXC homeodomain protein  C, HSP90 heat shock protein 90, HTR7 
5-hydroxytryptamine receptor 7, KDR kinase insert domain receptor, KISS1R Kisspeptin (KiSS1)-derived peptide receptor, MMP13 matrix met-
allopeptidase 13, NEUROD1 neurogenic differentiation 1, TGF-β1 transforming growth factor-β1, TRPC5 transient receptor protein 5

Protein Cancer Exosome source References

CD34 Acute myeloid leukemia Plasma [149]
EGFR vIII Glioma Tumor cells [150]
Glypican 1 Pancreatic cancer Serum [151]
CD44, CD47, CD49d, CXCR4, Del-1, GSTP1, HER2, HOXC, 

HTR7, KDR, KISS1R, NANOG, NEUROD1, TRPC5
Breast cancer Blood [152]

HGS Colorectal cancer Tumor cells [153]
HSP90 Tumor cells [154]
Integrins Lung cancer, brain cancer Tumor cells [155]
MMP13 Nasopharyngeal carcinoma Tumor cells [106]
Phosphotidylserine Ovarian cancer Plasma [156]
Ras-related protein Rab-3D EMT Tumor cells [157]
TGF-β1 Acute myeloid leukemia, lung cancer Plasma, A549 cells [158, 159]
TRPC5 Breast cancer Plasma [160]
WNT-11 Breast cancer Fibroblasts [103]
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glycerophospholipids [48]. The localization of many cell 
membrane components to lipid rafts, which preferentially 
transfer to exosomes, allows selective omission of some 
signaling molecules that would otherwise lead to elimina-
tion of the exosomes within the extracellular space. Exo-
somal lipids have also been used for therapeutic targeting. 
For example, blocking ceramides to reduce the shedding of 
TDEs.

2.2.3  Nucleic Acids

Importantly, exosomes contain nucleic acids such as micro-
RNA [69], mRNA, DNA, and long non-coding RNAs (lncR-
NAs). Mitochodrial DNA [161], single-stranded DNA, and 
chromosomal segments (transposons) [162] have been 
identified in tumor microvesicles. In 2014, double-stranded 
DNA was found in exosomes from the serum of pancreatic 
cancer patients that reflected the mutations in the cells of 
origin [163]. Since the genetic material can be processed and 
expressed within the recipient cells, the presence of mutated 
DNA in TDEs is an important consideration. This cargo is 
not researched as extensively as RNA content and should 
not be overlooked.

mRNAs are selectively enriched in exosomes [69]. 
Microvesicles from embryonic stem cells were able to 
reprogram hematopoietic progenitors [164] and endothelial 
microvesicles activated endothelial cells [165] by ‘horizontal 
transfer’ of mRNA. The sorting of mRNAs normally occurs 
through coding in the 3’-untranslated region (UTR), as pre-
viously described [166]. Trafficking of specific mRNA into 
exosomes may also be due to coding and potentially sub-
sequent folding within the 3ʹUTR fragments [167]. In an 
interesting 2013 study, Batagov et al. [168] reported that 
mRNAs in exosomes exhibit enrichment of 3ʹUTR frag-
ments. These are potential insights into the specific sort-
ing mechanism for mRNA secretion to exosomes, although 
considerably more information is still sorely needed. The 
3ʹUTRs have many regulatory sequences for RNA-binding 
proteins and microRNAs [167, 169] and the major RNA 
content of exosomes is microRNAs. MicroRNAs in TDEs 
are representative of the altered microRNA profile of the 
tumor. After transport to local and distant sites, the result 
is influence of gene expression in the target cells of the sur-
rounding stroma and the distant pre-metastatic niche [170]. 
MicroRNAs packaged in exosomes are very stable in serum 
and plasma, making the use of exosomes for cancer micro-
RNA profiles very appealing. The idea that mature micro-
RNA, which is normally quickly degraded, is present outside 
of the cell in the plasma is fascinating. Mitchell et al. [116] 
showed that these are surprisingly stable and claims that 
they can be at room temperature for 24 h and can tolerate up 
to eight freeze/thaw cycles.

Interestingly, processing of pre-microRNAs to mature-
microRNAs can occur within exosomes, which allows for 
direct effects on the recipient cells without further process-
ing [171]. In 2007, Kawahara et al. [172] reported the impor-
tance of adenosine-to-inosine (A-I) editing of microRNA. 
Since, A-I microRNA editing has been related to several 
human cancers [173, 174]. In fact, microRNA editing has 
been related to human cancer prognosis with an exhaus-
tive characterization of microRNA sequences for 20 can-
cer types [175]. These data were further explored to show 
that A-I microRNA editing is repressed in cancer tissue 
as compared to normal tissue [176]. Importantly, a recent 
study has reported, for the first time, that microRNA editing 
occurs within exosomes which may be predictive of cancer 
pathogenesis [177]. MicroRNA has become a highly inves-
tigated component of cancer at all stages and microRNA 
in exosomes is becoming more illustrative by the day. For 
example, in prostate cancer, compared to patients with non-
recurrent disease, both miR-141 and miR-375 are increased 
in the plasma exosomes with recurrent disease after radi-
cal prostatectomy [178]. Mitchell et al. [116] also showed 
increased miR-141 indicative of prostate cancer metastasis 
with 60% sensitivity and 100% specificity. Table 2 presents 
some examples of published exosomal microRNA research 
related to cancer.

The second most abundant RNA in exosomes is lncRNA 
[220]. This RNA is responsible for regulating gene expres-
sion by binding to DNA, but does not code for proteins, 
or at least does not demonstrate more than 100 amino acid 
reading frames. lncRNA has been shown to play a role in 
tumorigenesis. With consideration of the DNA content in 
exosomes mentioned previously, this component is an inter-
esting part of the signaling carried by TDEs. It is likely the 
lncRNA studies will reveal more in-depth information about 
the transfer of mutated DNA to healthy cells, as well as the 
protection of that DNA during transport. Some studies of 
lncRNA have been included in Table 2.

3  Exosomes and Cancer Progression

Exosomes contribute to all phases of tumor progression and 
metastasis (Fig. 3).

3.1  Epithelial to Mesenchymal Transition

It is believed that the tumor-stroma interaction initiates the 
EMT, which frequently begins the metastatic process. The 
tumor cells lose their polarity and junctions, reduce prolif-
eration, and increase migration and invasion [221]. This is 
reversed when the tumor cells reach their destination niche. 
TDEs can force other cancer cells to follow this process as 
well. TDEs, but not exosomes in general, are able to induce 
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Table 2  Examples of published small RNAs found in tumor-derived exosomes

Small RNA Cancer Source References

Let-7b Multiple myeloma Serum [179]
miR-100-5p Prostate Primary tumor cell lines [180]
miR-10a MDS MSCs [181]
miR-10b-5p Gastric Serum [182]
miR-122 Breast Blood [183]
miR-1246 Breast, pancreatic Plasma, serum [152, 184, 185]
miR-125b Hepatocellular Serum [186]
miR-126 Non-small cell lung Plasma, lavage [187]
miR-130a-3p Breast Tissue [152]
miR-132-3p Gastric Serum [182]
miR-139-5p Prostate Primary tumor cell lines [180]
miR-141 Prostate, ovarian Plasma [188, 189]
miR-15/16 Lymphoma Plasma [190]
miR-17-3p Pancreatic, leukemia Serum [191, 192]
miR-17-5p Pancreatic, leukemia, breast Serum [152, 191, 192]
miR-17-92a Colorectal Serum [193]
miR-185-5p Gastric Serum [182]
miR-18a Pancreatic, leukemia, multiple myeloma Serum [179, 191, 192]
miR-192-5p Hepatocellular Serum [194]
miR-195-5p Gastric Serum [182]
miR-19a Pancreatic, leukemia Serum [138, 192]
miR-19a-3p Colorectal, lung Serum [195]
miR-19b Pancreatic, leukemia Serum [138, 192]
miR-200 Breast Tumor cells [196]
miR-20a Pancreatic, leukemia Serum [191, 192]
miR-20a-3p Gastric Serum [182]
miR-21 Ovarian, lung, breast, hepatocellular, glioblas-

toma, lymphoma, oral, pancreatic
Effusions, serum, plasma, cell line, tumor, blood [152, 184, 

190, 191, 
197–204]

miR-210 Pulmonary Tumor cells [205]
miR-21-5p Colorectal, prostate Serum, tumor cells [180, 195]
miR-22 Gastric Serum [206]
miR-221, 222 Hepatocellular Serum [207]
miR-221-3p Lung Plasma [199]
miR-224 Hepatocellular Serum [207]
miR-24-3p Nasopharyngeal Serum [208]
miR-27b-3p Hepatocellular Serum [194]
miR-296-5p Gastric Serum [182]
miR-29c Gastric Serum [206]
miR-302-a Non-small cell lung Plasma, lavage [187]
miR-302-c Non-small cell lung Plasma, lavage [187]
miR-340-5p Breast Tissue [152]
miR-34a Hepatoblastoma, prostate Serum, tissue, and urine [209, 210]
miR-34b Hepatoblastoma Serum [209]
miR-34c Hepatoblastoma Serum [209]
miR-3976 Pancreatic Serum [185]
miR-425-5p Colorectal Serum [195]
miR-4306 Pancreatic Serum [185]
miR-451 Breast HEK293T cells, blood, milk, ductal [211, 212]
miR-4644 Pancreatic Serum [185]
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Table 2  (continued)

Small RNA Cancer Source References

miR-4772-3p Colon Serum [213]
miR-718 Hepatocellular Serum [214]
miR-92a Pancreatic, leukemia Serum [191, 192]
miR-93-5p Breast Tissue [152]
miR-96 Lung Serum [215]
panel Glioblastoma CSF [216]
lncRNA
lncRNA H19 Liver Liver CD90+ cells, hepatoma cell lines [217]
lncRNA-p21 Prostate Urine [218]
CRNDE-h Colorectal Serum [219]

CSF cerebrospinal fluid, CRNDE-h ColoRectal Neoplasia Differentially Expressed – h, lncRNA long non-coding RNA, MDS myelodysplastic 
syndrome, miR microRNA, MSCs mesenchymal stem cells

Fig. 3  The contributions of exosomes to cancer progression. 
Exosomes contribute to all phases of tumor progression and metasta-
sis. EMT: tumor cells secrete exosomes to surrounding stromal cells 
and nearby vasculature, signaling EMT in stromal cells and increas-
ing the porosity of the vessels. Migration: exosomes from different 
tumors are attracted to specific distal tissue types. Preparation: at the 

distal sites, exosomes alter the local signaling to suppress the immune 
response and send inflammatory signals, increasing vascular leaki-
ness for incoming cells (arriving tumor cells). Metastasis: as tumor 
cells arrive at the prepared sites, their exosomes continue to suppress 
the immune response and alter the new environment. EMT epithelial 
to mesenchymal transition, TDEs tumor-derived exosomes
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EMT and enhance migratory activity. Exosome-depleted 
cancer cells fail to gain a stroma-mediated growth advan-
tage in vivo [98]. Exosomes from nasopharyngeal carcinoma 
induce EMT by high hypoxia inducible factor 1a (HIF1a) 
and high latent membrane protein 1 (LMP1; which reduces 
degradation of HIF1a) [222]. Exosomes from invasive blad-
der cancer caused urothelial cells to exhibit EMT features, 
but exosomes from embryonic kidney cells did not cause 
these changes [223, 224]. This has also been seen in glio-
blastoma, lung carcinoma, and gastric cancer cells [55, 225, 
226]. In lung carcinoma and melanoma, exosomal miR-23a 
leads to EMT promotion [227, 228]. Exosomes from mela-
noma, gastric, and colorectal cancer contain miR-191 and 
let7a, which modulate EMT [229–231]. These examples 
leave little doubt that stromal EMT, facilitating migration 
of tumor cells, is controlled in part by TDEs.

3.2  Migration and Metastasis

When tumor cells lose their adhesion to the stroma they 
may migrate into the bloodstream (migration/metastasis). 
TDEs have been shown to play a role in this process as well. 
TDEs promote migration and invasion in oral and esopha-
geal squamous carcinoma [188]. In breast cancer, miR-105 
in TDEs influences invasion into blood vessels. In brain 
cancer, blocking TDEs from astrocytes inhibits metastasis 
[23]. Zhou et al. [170] showed that miR-105 in patient serum 
is prognostic for metastasis and miR-105 in the exosomes 
correlates with miR-105 levels in the primary tumor [170]. 
Further, miR-21 in serum exosomes correlates with migra-
tion, invasion, recurrence, and metastasis of esophageal 
cancer [232].

The tumor cells must recognize the prepared sites for 
invasion and, upon arrival to these distant sites, exit the cir-
culation and invade the tissue. Prior to invasion and engraft-
ment, the host organ is prepared by TDEs. Hence, the meta-
static site is also a consequence of intricate tumor–stroma 
interactions [233]. Paget’s [235] 1989 ‘soil and seed’ 
hypothesis expanded upon Fidler [234], suggesting that 
circulating tumor cells form metastatic nucleation sites 
only if the seed (tumor cell) and host (organ) are compat-
ible. A pre-metastatic niche formation is required for tumor 
cells to engraft a distant organ. It was shown in vivo and 
in vitro with malignant melanoma that this pre-metastatic 
niche is partially signaled through TDEs. In fact, TDEs are 
sufficient to direct tumor cells to a specific organ [155]. In 
malignant melanoma, melanoma exosomes home to senti-
nel lymph nodes in vivo and recruit melanoma cells [236]. 
An elegant study of an organotropic metastasis process in 
pancreatic cancer by Costa-Silva et al. [9] presented that the 
TDEs cause induction of inflammatory and fibrotic sign-
aling, which activates migration inhibitory factor, which 
supports TGF-1 production, which enhances production of 

fibronectin, which attracts bone marrow dendritic cells to 
the liver. In support of this process, high levels of TGF-1 
have been associated with poor prognosis in pancreatic 
ductal adenocarcinoma [237] and higher levels of migra-
tion inhibitory factor (supports TGF-1 function) were found 
in the serum of patients with pancreatic ductal adenocarci-
noma with liver metastasis and progressive disease than in 
patients with full remission [9]. Additionally, TGF-1 inhibi-
tors are having positive results in clinical trials [238]. In 
2016, Lugini et al. [239] showed that exosomes from tumor 
cells induce transformation of mesenchymal stem cells, sup-
porting the growing evidence that exosomes are important 
for metastasis.

3.3  Engraftment

When exosomes reach their pre-metastatic niche, they either 
become dormant tumor cells or proliferate. The TDEs recruit 
bone marrow dendritic cells by upregulating inflamma-
tion, which enhances vascular leakiness at the metastatic 
sites [240]. Hood et al. [236] showed that exosomes from 
highly metastatic melanoma cell lines localize to the lungs 
and increase the permeability of lung endothelium (likely 
by enhancing the expression of HSP90 and HSP70), which 
promotes invasion of tumor cells. These exosomes were also 
seen to localize to bone marrow, kidney, liver, and spleen, 
establishing metastatic niches, but do not remain in the 
blood. Bone marrow that has been exposed to metastatic 
melanoma exosomes had three times more metastatic spread 
in a mouse model. In pancreatic cancer, the exosomes from 
the pancreatic tumor interact with the liver Kupffer cells to 
promote engraftment of tumor cells in the liver [9]. Engraft-
ment begins with reversion of EMT to an epithelial, pro-
liferative, less migratory phenotype with establishment of 
stable cell junctions. In the recipient organ, TDEs help main-
tain the tumor cells by promoting immunosuppression. They 
inhibit effector cells and stimulate regulatory T cells [241, 
242], reduce NK cell cytotoxicity [243, 244], and suppress 
T cell activation by activating myeloid-derived suppressor 
cells [245, 246].

4  Acquired Resistance Through Exosomes

Recognizing the response of tumors to stress and their sub-
sequent exosome release is not only important for directing 
discovery, but also for understanding therapeutic responses. 
Hepatocellular carcinoma cells respond to anticancer drugs 
by releasing HSP-bearing exosomes, which stimulate the 
NK cell response [247]. Exosomes may also be involved 
in removing chemotherapeutic agents from the tumor cells. 
Exosomes from drug-resistant cells have been shown to 
contain multidrug resistance-related proteins [248] which 
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help sequester the drugs into vesicles. P-glycoprotein and 
multidrug resistance protein-1 can be transferred from drug-
resistant  to drug-sensitive cells through exosomes [249, 
250], resulting in an increase in the substrates efflux. For 
example, after treatment with cisplatin, ovarian carcinoma 
cells show an increase in the secretion of exosomes carry-
ing cisplatin [251]. Irradiation can induce a senescent phe-
notype associated with increased production and release of 
exosome-like vesicles into the microenvironment that can 
potentially influence tumor progression [252]. For example, 
proton irradiation has the potential to increase the release of 
exosomes with survivin, an anti-apoptotic protein involved 
in cellular proliferation, survival, and tumor cell invasion 
[253]. The transfer of multidrug resistance-related mRNAs 
and microRNAs from drug-resistant to drug-sensitive cells 
may also play a role in the spread of resistance [254]. Inter-
estingly, shear stress has been shown to induce the trans-
fer of athero-protective microRNA from endothelial cells 
to smooth muscle cells, where they reduce atherosclerotic 
lesion formation [255].

5  Exosomes for Therapeutics

A significant response against cancer cells is antibody-
dependent cytotoxicity, a process that is the basis for ther-
apeutic antibodies [256]. Unfortunately, TDEs have been 
shown to neutralize antibodies against tumors by forming a 
complex at the surface [257], potentially reducing the effects 
of anticancer drugs [258]. For example, in breast cancer it 
was shown that TDEs express HER2 (human epidermal 
growth factor receptor 2) and epithelial cell adhesion mol-
ecule (EpCAM) antigens. These bind antibodies and render 
them ineffective [258]. B cell lymphoma secretes exosomes 
with CD20. The rituximab CD20 antibody therapy for B cell 
lymphoma is neutralized by these exosome–antigens. In sup-
port of this finding, depleting exosomes from the plasma of 
B cell lymphoma patients increased the efficacy of rituximab 
[257].

As reported in Sect. 3.1 and  3.2, inhibiting tumor exo-
some release may be a therapeutic approach in cancer treat-
ment. The synthesis of ceramide (a component of the exo-
somal membrane) or the secretion of microRNAs could be 
chemically blocked. GW4869, a chemical blocker, impairs 
release of both exosomes and pro-inflammatory cytokines 
through blockage of neutral sphingomyelinase 2, which reg-
ulated both ceramide and microRNA secretion. GW4869 
has been shown to inhibit tumor exosome release in vitro 
[259]. Unfortunately, concerns remain about possible sys-
temic off-target effects of inhibiting exosome release or 
potential undesirable effects of altering microRNA secretion. 
It would be a lofty aim, and potentially beneficial, to find/
develop exosome blockades that are cancer specific or only 

elicit local inhibition. With evidence emerging regarding the 
risk linked to pathway inhibitor metagenomics, and assays 
designed to detect associated exosome profiles, the future of 
synthetic nucleotides, encapsulation, and vesicle-based gain-
of-function strategies would seem both opportune and obvi-
ous from the perspective of minimalist bacterial genomes 
and cells that have been built since 2010 by Craig Venter 
and his team at Synthetic Genomics (https ://www.synth eticg 
enomi cs.com/).

APC-derived exosomes carry MHC-I molecules loaded 
with antigen. These are presented to dendritic cells, mediat-
ing T cell activation and T cell-dependent immune responses 
against the tumor cells. These properties with exosomes as 
antitumor vaccines support the added benefit of being cell-
free [44]. The difficulty with this method is that APCs are 
very difficult to culture. The specific tumor antigen must 
be MHC-I haplotype matched and the specific tumor anti-
gens need to be transferred to the APCs [260]. Hence, the 
exosomes would need to be prepared and collected from 
APCs for each individual patient based on their MHC-I 
haplotype and their specific cancer. TDEs can carry shared 
tumor antigens, not just antigens specific to one tumor [46], 
which may provide cross-protection against various cancer 
types. Importantly, these do not require MHC-I haplotyping. 
For example, human Mucin 1 (hMUC1) has been shown to 
indicate aggression and poor outcome. Exosomes carrying 
hMUC1 could be used as a vaccine against MUC1-express-
ing tumors independent of MHC-I [261]. Another example is 
the heat treatment of tumor cells to induce HSP70 release in 
the tumor exosomes. HSP70 stimulates monocytes and den-
dritic cells, amplifying the immune response further [260]. 
The HSP70-loaded exosomes could also directly activate 
NK cells to initiate the apoptosis of tumor cells [10], which 
has been shown to decrease the size of primary tumors and 
reduce metastasis in a mouse model [262]. Andre et al. [6] 
showed that exosomes from melanoma patient ascites acti-
vated dendritic cells to produce an antitumor T cell response 
[6]. Phase I clinical trials are showing promising results for 
stage III/IV malignant melanoma [263] and non-small lung 
carcinoma [264].

Competitive implant (metastatic trap [M-Trap]) is an 
interesting approach where exosomes are embedded in a 
three-dimensional scaffold and implanted into the perito-
neum to establish an artificial pre-metastatic niche. This 
implant competes with the natural peritoneum for metastatic 
cells. This process has demonstrated significant efficacy in 
increasing survival of ovarian cancer patients [265]. An 
additional mode of treatment currently being investigated is 
transport of chemo-, microRNA, and biological therapeutics 
to the tumor cells using natural or synthetic nanoparticles. 
An example of natural nanoparticle transportation is the 
packing of paclitaxel into exosomes, which was shown to 
be 50 times more cytotoxic to drug-resistant lung cancer 

https://www.syntheticgenomics.com/
https://www.syntheticgenomics.com/
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than conventional paclitaxel [266]. Synthetic nanoparticles 
could transport biologicals or tumor-suppressive microRNA 
to tumor cells via liposome preps or mimetics [267, 268] to 
reduce the toxicity of the chemotherapeutic agents [269]. 
For example, in a phase III metastatic breast cancer study, 
administration of liposome-encapsulated doxorubicin HCl 
with cyclophosphamide allowed a higher median cumula-
tive dose (> 1260 vs. 480 mg/mL) to be safely administered 
[270, 271]. This methodology allows the use of higher con-
centrations for release at the tumor sites and has also been 
investigated in metastatic breast cancer and non-Hodgkin 
lymphoma. Cells can be transfected with therapeutic micro-
RNAs to change the exosome cargo profile. This re-program 
could induce apoptosis or increase p53 signaling or direct 
macrophages [272], to name a few. The exosomes collected 
from these transfected cells may be used induce desired 
effects on recipient tissues. Alternatively, the use of anti-
acidic approaches for targeting as well as treatment may be 
combined with known properties of exosome release and 
delivery [129, 130]. For example, the delivery of proton 
pump inhibitors (which correct the acidic pH) to reduce exo-
some release from tumor tissue [130] has been shown to re-
sensitize melanoma to cisplatin treatment both in vitro and 
in vivo [273]. Another approach might utilize pH to control 
the release of therapeutic substances, such as  CO2 [129] or 
acridine orange [274], to create a hostile tumor environment 
or targetable environment (e.g., photosensitization) [275].

6  Conclusion

A significant response against cancer cells is offered in anti-
body-dependent cytotoxicity. As a basis for therapeutics, this 
process embodies the specificity of the tumor that might 
accentuate the host immune systems to recognition, regula-
tion, and enhancement against the hostile defense of transi-
tional tumor cells. In this review, the exosomal contribution 
to cell reaction, immune dodging, and metastatic transition is 
explored with details, generalities, and specificities. Therein 
lies the challenge: specificity is a multi-gene transcriptional 
process, and while there are clearly checkpoint inhibition 
points that might be exploited in treatment, the accountable 
differences existing within distinct populations underpin the 
precision medicine that is being sought.

As a case in point comparing populations of European 
descent with African Americans, 2210 genes express more 
than two-fold increases or decreases in non-small cell lung 
cancer (NSCLC) from African Americans compared with 
matched normal tissue, while for European American sam-
ples, 2921 genes were differentially expressed by more than 
two-fold simply in NSCLC and normal tissue. These num-
bers indicate both overlap and non-overlapping specificity. 
Interestingly, 637 genes were differentially expressed only in 

African Americans and 1844 in European Americans. These 
numbers are likely different when derived from the cargo 
of TDEs, but the questions for precision medicine remain, 
including “should we concentrate on the overlapping sig-
nals for pan-tumor indicators?” or “should we concentrate 
on the patient-specific indicators?” I suggest that both are 
equally important approaches for different purposes. Pan-
tumor indicators for specific cancer groups throughout eth-
nicities greatly simplifies the diagnostic biomarker process 
and could lead to more timely indications of developing 
cancers. The development of patient-specific indicators is 
crucial to prognostics and treatments for obvious reasons. 
Further, does the use of absolute genomics and a full read 
make sense, or do the transitional states of epitope morpho-
genesis noted herein bear a possible diferent strategy for 
exosomal seeding and membrane delivery?

It may be time to rethink how targeted therapy is initiated 
and monitored when managing cancer patients. Driven by 
multiple genetic changes and blood-based tests, a chang-
ing complex genomic landscape suggests that new first-line 
combination therapies target a fuller array of mutations to 
eradicate patient’s cancer before drug resistance can arise 
[276]. Theorizing that drugs targeting an EGFR mutation, 
as an example, may be able to wipe out the cells carrying 
that mutation, this approach risks leaving cells behind that 
might enhance additional mutations; contrasting the prevail-
ing dogma that some cancers (e.g., NSCLC) are ‘driven’ by 
only one primary genetic mutation [186]. The single-driver 
view of cancer was buttressed by cell-free genomic studies 
to analyze patient blood samples for any mutations in 73 
genes known to contribute to cancer. Overall, the research-
ers analyzed liquid biopsy data from 1122 patients whose 
tumors contained a mutated EGFR gene and 944 patients 
whose tumors did not have this mutation. Utilizing basic 
principles of the exosome platform of cell-free exchange 
and circulation, it was possible to determine that 92.9% of 
tumors from patients with advanced-stage lung cancer har-
bored multiple changes in cancer-related genes in addition 
to the EGFR driver mutation. On average, tumors contained 
two to three altered genes in addition to EGFR; however, 
some contained as many as 13 altered genes. What is the 
vector that might offer a successful incorporation of some-
thing akin to a manifold of identities so that each is seeded 
under the same tumor diagnostic? Perhaps it is first-line 
combination therapies capable of targeting multiple genetic 
pathways in patients’ tumors, rather than waiting for resist-
ance to develop before initiating a subsequent drug. Alter-
natively, the use of more basic and global tumor proper-
ties to diagnose, target, and treat malignant tissue may be a 
preferred approach [277]. Examples include quantification 
of TDEs in the circulation and pH targeting or adjustment 
[132]. The International Society for Extracellular Vesicles 
(ISEV) has published a paper presenting the organizational 
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opinions regarding clinical and regulatory foresight for EV-
based therapeutics [278].

Recognition of the value of exosomes in the context of 
amplified release, early signaling to distal cells, harbin-
gers of metastatic potential, and opportunity for multiple, 
minimally invasive access to tumor expression is increasing 
exponentially. Of note, the very simple property of increased 
secretion of exosomes from malignant tissue may be indica-
tive as a stand-alone property. Furthermore, use of exosomes 
as a cell-free delivery of therapeutics might offer broader 
success and less advantage for tumor-evading genetic shifts. 
In some ways, the only meaningful strategy is to address 
the evolving genetic complexity with combinations of post-
transcriptional and translational interception of undesirable 
cell–cell signaling.
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