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Abstract Antibody-based therapeutics has emerged as a

major tool in cancer treatment. Guided by the superb

specificity of the antibody variable domain, it allows the

precise targeting of tumour markers. Recently, eliciting

cellular effector functions, mediated by the Fc domain, has

gained traction as a means by which to generate more

potent antibody therapeutics. Extensive mutagenesis stud-

ies of the Fc protein backbone has enabled the generation

of Fc variants that more optimally engage the Fcc receptors
known to mediate cellular effector functions such as anti-

body-dependent cellular cytotoxicity (ADCC) and cellular

phagocytosis. In addition to the protein backbone, the

homodimeric Fc domain contains two opposing N-linked

glycans, which represent a further point of potential

immunomodulation, independent of the Fc protein back-

bone. For example, a lack of core fucose usually attached

to the IgG Fc glycan leads to enhanced ADCC activity,

whereas a high level of terminal sialylation is associated

with reduced inflammation. Significant growth in knowl-

edge of Fc glycosylation over the last decade, combined

with advancement in genetic engineering, has empowered

glyco-engineering to fine-tune antibody therapeutics. This

has culminated in the approval of two glyco-engineered

antibodies for cancer therapy: the anti-CCR4 moga-

mulizumab approved in 2012 and the anti-CD20 obinu-

tuzumab in 2013. We discuss here the technological

platforms for antibody glyco-engineering and review the

current clinical landscape of glyco-engineered antibodies.

Key Points

Antibody glycosylation can significantly influence

clinical efficacy.

Design and selection of antibody glycoforms offers a

route to enhanced therapies.

1 Introduction

Since the approval in 1997 of rituximab, the first mono-

clonal antibody (mAb) approved for the treatment of can-

cer, antibody-based therapies have revolutionised the field

of clinical oncology [1, 2]. The success of rituximab has

driven an explosion of interest in antibody therapeutics and

fostered the desire to identify other therapeutic targets and

to augment antibody efficacy through protein engineering

[3]. As of June 2016, 24 mAbs, mostly human IgG-based,

had been approved by the US Food and Drug Adminis-

tration (FDA) for the treatment of solid or haematological

tumours [4–6].

Antibodies used in cancer treatment can be broadly

classified into two categories based on their target type.

The conventional ‘direct targeting’ class of cancer
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antibodies, comprising the majority of approved antibodies

such as the anti-CD20 rituximab and anti-Her2 trastuzu-

mab, target tumour cells by direct engagement of either

lineage-specific antigens (e.g. CD20), tumour neoantigens

(e.g. glycans) or overexpressed oncogenic antigens [e.g.

epidermal growth factor receptor (EGFR)]. After antibody

engagement, the tumour cells are selectively depleted via

various routes such as signalling-induced apoptosis or Fc-

mediated complement-dependent cytotoxicity (CDC),

antibody-dependent cell-mediated cytotoxicity (ADCC)

and/or antibody-dependent cell-mediated phagocytosis

(ADCP), depending on the nature of the antibody, target

antigen and epitope [7]. The second class of anti-cancer

antibodies, so-called immunomodulatory mAbs, do not

directly engage the tumour cells but rather target receptors

on cells of the host immune system in an attempt to

stimulate increased activity, principally through cytotoxic

CD8? T cells [8–10]. Antibody immunotherapy of this

type came to the spotlight when the first immune ‘check-

point blocker’ anti-CTLA4 mAb ipilimumab received

approval to treat advanced melanoma, following the

demonstration that it could significantly improve the

prognosis for a proportion of patients with this aggressive

malignancy [11].

Despite the evident clinical efficacy of anti-cancer

antibodies, their modes of action are often incompletely

understood. It is generally accepted that for the conven-

tional direct-targeting antibodies, the variable domain

targets the tumour-selective antigen, conferring speci-

ficity, while the Fc domain mediates the elimination of

tumour cells via the host immune system [12, 13].

However, antibodies designed to effectuate through the

blockade of signal transduction, such as the anti-Her2

trastuzumab, may also work in part through the same

mechanisms and moreover could attain additional func-

tionality through Fc engineering. The relative contribution

of the variable and Fc domains to the immunomodulatory

mAbs is currently unclear. For example, agonistic anti-

CD40 mAbs, which stimulate host antigen-presenting

cells to potentiate an immune response against the tumour

by activating CD40, a tumour necrosis factor receptor

(TNFR), were also found to require the Fc domain for

therapeutic efficacy [14]. However, the specific Fcc
receptor (FccR) required was shown to be entirely dif-

ferent to that engaged by direct targeting mAb in several

pre-clinical models [14–18]. Moreover, isotype switching

to the less common IgG2 obviated the need for the Fc

domain, resulting in Fc-independent agonistic activity

[15, 19]. Similar paradigms have been seen with other

TNFR targets, demonstrating that the Fc and its interac-

tion with FccR are critical in delivering therapeutic

responses for many antibody classes [15, 20].

2 Rationale for Antibody Glyco-Engineering

2.1 The Fc-FccR Engagement

The general requirement of the IgG Fc domain for a fully

functional cancer antibody has prompted the use of Fc

engineering to improve the efficacy of mAb effector

functions. The IgG Fc engages a set of FccRs that are

expressed predominantly on immune effector cells to

mediate effector functions [21, 22]. These FccRs are cat-

egorised as either activatory or inhibitory based on their

intracellular signalling motif. The human activatory FccRs
(FccRI, FccRIIa, FccRIIc and FccRIIIa) contain an intra-

cellular activatory immunoreceptor tyrosine-based activa-

tion motif (ITAM) signalling motif within the cytoplasmic

domain of the receptor (FccRIIa and IIc) or on the asso-

ciated FccR chain; while the sole inhibitory FccRIIb con-

tains an inhibitory immunoreceptor tyrosine-based

inhibitory motif (ITIM) within its cytoplasmic domain

[22, 23]. Humans additionally express another FccR,
FccRIIIb, which is highly homologous to FccRIIIa in its

extracellular domain but contains no transmembrane or

intracellular regions, instead being anchored to the mem-

brane through a glycophosphoinositol anchor and expres-

sed solely on neutrophils [24]. Mice express four

homologs, three of which (FccRI, FccRIII and FccRIV) are
activatory while FccRIIb is inhibitory, as in humans [25].

In humans, the activatory FccRIIIa is widely regarded to
be the most important for delivering natural killer (NK)

cell-mediated ADCC, as FccRI and IIa are not expressed

on these cells and FccRIIc is only expressed in a relatively

small proportion of people due to the presence of a stop

codon [26]. Furthermore, a functional polymorphism pre-

sent within FccRIIIa at position 158, which alters the

receptor’s affinity for IgG1 and 3, has been reported to

significantly affect the clinical response to rituximab

therapy [27, 28]. The importance of effective Fc-FccR
engagement for anti-tumour antibody efficacy has led to

exhaustive Fc mutagenesis studies, which have identified

residues critical for FccR engagement and also enabled the

generation of Fc variants that selectively engage specific

FccRs [29]. Many of these characterisations were carried

out in vitro in systems where the mAb of interest represents

the dominant antibody, which fails to recapitulate the

in vivo environment where a high concentration of

endogenous serum IgG (approximately 10 mg/mL) will

compete with exogenously administered therapeutic anti-

bodies for FccR engagement [30]. Weakening such

intrinsic endogenous IgG-FccR interaction through the

inactivation of serum IgG Fc, a strategy termed ‘receptor

refocusing’, could effectively improve the activity of

therapeutic mAbs [31].
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2.2 Antibody Glycosylation and FccR Engagement

Besides protein mutagenesis, antibody Fc glycosylation

could also significantly modulate the Fc-FccR interaction,

through its conserved N-linked oligosaccharide attached to

asparagine 297 [32]. Antibody N-glycosylation occurs co-

translationally in the lumen of the endoplasmic reticulum

(ER) and initially follows a highly conserved and well

delineated pathway involving the transfer of a large pre-

assembled glucosylated oligomannose-type oligosaccha-

ride. As the protein transits from the ER and through the

Golgi apparatus, different glycan transferases and gly-

cosidases add or remove different monosaccharides to

create a diverse range of oligosaccharides differing in size

and complexity. The diversity of IgG Fc glycoforms, like

the myriads of other glycoproteins, arises from both the

cellular environment and the intrinsic three-dimensional

structure of the protein. However, despite the potential for

considerable chemical heterogeneity, IgG Fc glycosylation

is characterised by a predominant population of glycans

displaying limited processing of terminal residues giving

rise to a characteristic fingerprint of glycoforms with par-

tial galactosylation.

Our current understanding of how the Fc glycan regulates

antibody function has undergone a recent transition from

being a simple structural support to a major immunomod-

ulating agent. Early evidence supporting the importance of

Fc glycan came from in vitro studies where IgG deglyco-

sylation abrogated its effector functions [33–35]. Since then,

divergent activities of various IgG glycoforms, whether

naturally occurring or engineered, have firmly established its

immune-modulatory potential. The first clinical association

was noted in rheumatoid arthritis patients, where a lack of

terminal galactose in the IgG Fc glycoforms was correlated

with disease induction, suggesting a pro-inflammatory role

of agalactosylated glycoforms [36]. This was further sup-

ported by reports that the typical period of symptom

remission noted during pregnancy was associated with a

decrease in the level of agalactosylated IgG glycans [37–39].

Furthermore, HIV controllers who demonstrate better viral

containment exhibit globally more agalactosylated IgG

glycoforms [40]. In contrast to agalactosylation, more

recently, it was described that Fc bearing terminal a2,6-
linked sialic acids possess general anti-inflammatory effects

in vivo [41, 42] and this effect may be influenced by the

fucosylation status [43].

Besides galactose and sialic acid, the monosaccharide

that has the most explicit influence on antibody therapeu-

tics is the core fucose: fucose a1,6-linked to the protein-

proximal GlcNAc residue. Engineered IgG Fc that lacks

the core fucose was initially found to display significantly

enhanced ADCC through improved engagement with

FccRIIIa, an observation since reproduced by many

independent laboratories [44–48]. The crystal structures of

fucosylated Fc in complex with the human FccRIIIa ele-

gantly illustrate how the receptor glycan clashes with the

antibody fucose; a conflict which is resolved with afuco-

sylated Fc, explaining its enhanced affinity [48, 49]

(Fig. 1).

2.3 Fc Engineering and Immunogenicity

The human immune system is well known for its ability to

recognise and reject foreign entities, through both humoral

and cell-mediated responses. Therefore, it is not surprising

that, for example, patients receiving the chimeric mouse/

human anti-CD20 rituximab can elicit a human anti-mouse

antibody immune response directed against the remaining

mouse framework regions upon first exposure, which then

complicates repeated use due to hypersensitivity reactions

and reduced mAb half-life [50, 51]. Site-directed mutage-

nesis of native antibody Fc domains, which dominates the

current landscape of Fc engineering, could therefore

potentially spawn Fc neo-immunogens, even though there

is a lack of such reports in the current literature. On the

contrary, Fc glyco-engineering, predicated on the appen-

dage of defined endogenous glycoforms, may in fact cir-

cumvent immunogenicity.

Nevertheless, for mAbs produced in non-human cell

lines, the impact of glycosylation on antibody immuno-

genicity has been recognised as a potential issue. For

example, the anti-EGFR cetuximab, which contains both

Fab and Fc N-linked glycans, was found to contain the non-

human glycan structure galactose-a1,3-galactose in its Fab

glycans when produced in mouse Sp2/0 cells [52, 53].

Humans express natural IgG reactive towards galactose-

a1,3-galactose, and it was discovered that patients with

high levels of pre-existing anti-galactose-a1,3-galactose
IgE, a class typically associated with allergy, displayed a

hyper-sensitivity reaction to cetuximab [54, 55]. Interest-

ingly, the same cetuximab-specific IgE antibodies isolated

from patients that had demonstrated hypersensitivity did

not react with cetuximab produced in Chinese hamster

ovary (CHO) cells which naturally lack a1,3-galactosyl-
transferase activity. This further highlights the importance

of antibody glycosylation and the choice of appropriate

host cell line for therapeutic antibody production.

Given the immunomodulatory capacity of Fc glycan,

glyco-engineering presents a viable path besides protein

engineering to optimise the therapeutic activity of anti-

tumour antibodies. As fucose engineering dominates the

current portfolio of tumour-targeting antibodies, we focus

this review on platforms for fucose engineering, and dis-

cuss fucose-engineered antibodies. It is, however, impor-

tant to note that other means of glyco-engineering could

prove equally useful in the future, especially for the
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immunomodulatory antibodies whose glycoforms remain

largely unexplored.

3 Platforms for Fucose Engineering

IgG Fc with a low level of core fucose engages FccRIIIa
and FccRIIIb with higher affinity and therefore leads to

enhanced ADCC and ADCP [56–58]. This finding had

triggered extensive research into methods for generating

low fucose or fully afucosylated IgG. Several major

methodologies have emerged to be applicable in making

therapeutic antibodies.

3.1 Genetic Modification of the Host Biosynthesis

Pathway

Altering the endogenous host N-glycosylation pathway

could either reduce or completely remove fucose from

antibody Fc. In a landmark study by Umana and colleagues

[58], it was discovered that overexpressing the GnTIII

enzyme, which catalyses the addition of bisecting GlcNAc,

in CHO cells led to the production of recombinant IgG1

mAb with significantly reduced core fucosylation, associ-

ated with higher ADCC in vitro. The technology based on

this GnTIII overexpression for generating low fucose

therapeutics is referred to as GlycoMab, which was

acquired by Roche [59]. The addition of bisecting GlcNAc

to Fc glycan by GnTIII pre-empts the downstream action of

the a1,6-fucosyltransferase; thus, bisecting GlcNAc acts as

a competitive inhibitor of core fucosylation, and overex-

pression of GnTIII in mammalian cells provides a means of

producing IgG with low fucose [60]. To further diminish

the fucose level, the same group engineered a recombinant

form of GnTIII, which possesses the localisation motif of

the Golgi a-mannosidase II, whose overexpression gave

rise to approximately 60–70% afucosylated complex and

hybrid-type glycans [61]. As we will discuss later, this

GnTIII-engineered platform forms the basis of producing

obinutuzumab, the recently approved anti-CD20 mAb used

for the treatment of non-Hodgkin’s lymphoma (NHL) and

chronic lymphocytic leukaemia (CLL). While the impact

of bisecting GlcNAc predominantly impacts ADCC

through its inhibitory effect on core fucosylation, there are

some indications that GlcNAc might modulate receptor

affinity independent of this effect [62].

Although the overexpression of GnTIII in a cell line

leads to reduced levels of fucose, this is not complete and

there remains significant room for improvement, that is,

complete defucosylation. One means of achieving this

involves genetically disabling the a1,6-fucosyltransferase
encoded by the FUT8 gene. Just such a FUT8 knock-out

(KO) cell line was generated in CHO cells via homologous

recombination, and led to the production of 100% afuco-

sylated antibodies [63]. This FUT8 KO antibody produc-

tion platform was coined Potelligent technology, and was

Fig. 1 Structural basis of afucosylation-mediated enhancement of

IgG receptor interaction. Crystal structures of fucosylated and

afucosylated IgG1 Fc in complex with FccRIIIa containing a glycan

at Asn162 reported by Ferrara et al. [48]. The FccRIIIa component is

shown in orange with transparent surface representation and cartoon

representation of the protein chain. The FccRIIIa glycan at Asn162 is

shown in either red or green for the structure containing Fc fucose

and that without Fc fucose, respectively. The Fc protein is shown in

grey with transparent surface and cartoon representation of the protein

chain. Fc glycans are shown as sticks. The steric clash between the

receptor glycan and the Fc fucose is highlighted by cartoon clash

symbols

154 X. Yu et al.



the system used to develop the anti-Cysteine-Cysteine

chemokine receptor 4 (CCR4) mAb, mogamulizumab, the

first approved glyco-engineered antibody [64] (see Sect.

4.1). Another means of dampening a1,6-fucosyltransferase
activity involves siRNA targeting of FUT8. Unfortunately,

these reagents are not highly efficient, reducing FUT8

transcription by only 20%, resulting in approximately 60%

afucosylated IgG [65].

Apart from a direct FUT8 gene KO, a second approach

involves interfering with the GDP-fucose de novo biosyn-

thesis pathway, whose resulting substrate GDP-fucose is

essential for routinely cultured cells to produce fucosylated

glycoproteins. One target enzyme in the pathway, the GDP-

mannose 4,6-dehydratase (GMD), is involved in the catalytic

process of converting D-glucose to GDP-fucose, the sub-

strate of a1,6-fucosyltransferase that is indispensable for IgG
core fucosylation [66]. CHO cells deficient in the GMD gene

showed a complete lack of GDP-fucose, and in the absence

of exogenous L-fucose produced 100% afucosylated IgG

[67]. Yet another means of interfering with GMD activity

involves the heterologous expression of the GDP-6-deoxy-D-

lyxo-4-hexulose reductase (RMD). RMD catalyses the pro-

duction of monosaccharide GDP-D-rhamnose, which pro-

vides feedback inhibition to GMD activity [68], resulting in

less GDP-fucose production and lowered antibody fucosy-

lation [69]. The introduction of heterologous RMD produced

a surprisingly high (98%) level of afucosylated IgG,

reflecting the potency of this feedback inhibition pathway

[69]. The technology based on this heterologous induction of

RMD is referred to as GlymaxX, developed by the company

ProBioGen.

The above-mentioned glyco-engineering methods,

notably carried out in CHO cells, produce the most mam-

malian-like IgG glycoforms comprising mostly biantennary

complex-type glycans. Oligosaccharides early in the

N-glycosylation pathway intrinsically lack core fucose, as

the a1,6-fucosyltransferase only acts from the mid-phase of

the N-glycosylation pathway with the target glycans

becoming more favoured substrates following the action of

GnTI [70]. Therefore, retaining the oligosaccharide in its

early immature form, prior to GnTI action, should enable

the production of relatively homogenous afucosylated

glycoforms. Indeed, the HEK293S cell line, which is

engineered to be deficient in the GnTI enzyme required for

oligosaccharide maturation, is commonly used to produce

afucosylated oligomannose glycoforms [71, 72]. However,

despite homogeneous afucosylation, the predominance of

the oligomannose antibody glycoforms produced deviates

significantly in composition from the endogenous

biantennary complex-type glycoforms [73], triggering

debates over its perceived inferior in vivo pharmacokinet-

ics [74–76]. On balance, it seems that oligomannose-type

glycoforms of IgG do exhibit more rapid serum clearance,

presumably driven by lectin-mediated clearance pathways

[75]. Nonetheless, this HEK293S cell line remains a useful

glyco-engineering tool in the laboratory.

Besides mammalian cells, other eukaryotic systems

have been engineered to produce low fucose antibodies.

For example, the yeast Pichia pastoris has been extensively

engineered to produce both homogeneous fucosylated and

non-fucosylated glycoforms [77]. More recently, the uni-

cellular ciliate, Tetrahymena thermophile, has been repor-

ted to generate highly afucosylated mAbs with the

advantageous ease of production [78]. Furthermore, the

plant Lemna minor, when transfected with siRNA to sup-

press its intrinsic a1,3-fucosyltransferase and b1,2-xylo-
syltransferase activity, was able to generate 96%

afucosylated, di-galactosylated glycoforms [79]. Notwith-

standing the versatility of such non-mammalian systems,

the existence of non-self carbohydrate epitopes, even in

minute amount, has generally been considered a source of

concern for their clinical use.

3.2 Metabolic Interference of Host Biosynthesis

Pathway

Genetic modification of cellular systems usually requires

significant investment, both temporal and financial. There

are also substantial regulatory hurdles to pass before new

cell lines are approved for the production of clinical grade

material. Metabolic interference, which employs soluble

enzyme inhibitors, potentially provides an alternative to the

generation of new cell lines and is especially useful in

preclinical laboratory settings where proof of concept takes

priority. One molecule, kifunensine, an alkaloid inhibitor

of the a1,2-mannosidase I enzyme, prevents the mannose

trimming of the initial oligosaccharide and thus retains the

N-glycan in its early afucosylated oligomannose form

[80, 81]. Moreover, synthetic inhibitors (such as 2-fluoro-

fucose) based on the structure of metabolic intermediates

of the GDP-fucose de novo synthesis pathway were shown

to elicit 95% afucosylated glycoforms in CHO cells [82].

However, compared with genetically modified host cell

lines, inhibitor-based metabolic interference can prove

impractical when production is scaled up for clinical use.

3.3 Post-Translational Enzymatic Modification

An alternative strategy involves employing post-transla-

tional modification. Rapid advancement in chemical biol-

ogy has expanded the set of synthetic tools available for

post-translational glycan modification. In recent years,

chemoenzymatic glyco-engineering has emerged as a

reliable method for generating homogeneously glycosy-

lated antibodies. In vitro enzymatic or chemoenzymatic

glyco-engineering involves serial enzymatic treatments of
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purified antibodies to achieve the desired glycoform, which

offers the potential to produce both diverse yet homoge-

neous glycoforms. For example, the serial treatment of IgG

with recombinant galactosyltransferase and sialyltrans-

ferase coupled with their respective substrate is able to

generate tetra-sialylated antibodies with an anti-inflam-

matory effect [41]. However, much work still remains to do

in this field as certain enzymatic reactions, such as defu-

cosylation, within the N-glycosylation pathway cannot yet

readily be reproduced in this manner on natively folded

antibodies with the full biantennary complex glycans [83].

Therefore, transglycosylation, a method in which the bulk

Fc oligosaccharide is first removed followedby the additionof

pre-synthesised glycans of the desired structure, was devel-

oped to bypass some inefficient glycosyltransferases and

glycosidases in the N-glycosylation pathway. The first-gen-

eration transglycosylation was pioneered by the Wang group

that uses EndoH to deglycosylate the bulk oligomannose Fc

glycan, followed by the addition of synthetic small bianten-

nary glycans back onto the same glycosylation site using the

glycosyltransferase EndoA to generate fully afucosylated Fc

glycoforms [62]. However, EndoA lacks the ability to trans-

glycosylate the typical full-length complex-type glycans,

which prompted the engineering of another bacterial gly-

cosidase EndoS. EndoS usually deglycosylates Fc glycan but

when mutated could be converted into a versatile Fc-specific

trans-glycosyltranferase [83]. Indeed, the serial application of

wild-type EndoS to first remove the bulk Fc glycan and the

fucosidase to remove any Fc core fucose, followed by the

mutated EndoS (trans-glycosyltranferase) for the addition of

fully afucosylated glycan, generated a human-like afucosy-

lated Fc glycoform [83]. It is important that glycans pre-

synthesised for transglycosylation in vitro do not undergo

autocatalysis such as epimerisation, which has been reported

to contribute to heterogeneity [84]. Thus, chemoenzymatic

glyco-engineering is an emerging route to generate fully

afucosylated Fc glycoforms. However, this approach is likely

to be advantageous over simple cell line or metabolic engi-

neering mainly when particular synthetic challenges are

faced; for example, when transglycosylation is employed to

generate glycan-based antibody–drug conjugates [85].

Moreover, transglycosylation presents a significant challenge

to cost of goods, and is likely to be highly impractical as a

manufacturing process unless it imparted critical functionality

that could be obtained no other way.

4 Glyco-Engineered Antibodies in Clinical
Oncology

Most antibodies approved for cancer therapy have

demonstrated, to various extents, components of ADCC or

ADCP in their therapeutic efficacy. Afucosylated antibody

glycoforms uniquely exhibit enhanced Fc engagement with

the activatory FccRIIIa and FccRIIIb resulting in more

potent ADCC and ADCP [56–58]. Since the first definitive

report of defucosylation-mediated ADCC enhancement in

the early 2000s [44], two glyco-engineered, afucosylated

mAbs have already been approved for cancer therapies

[86, 87]. A list of fucose-engineered antibodies developed

for clinical oncology is shown in Table 1.

It is important to note that while fucose-engineered

mAbs have gained most attention for cancer indications,

various glycan-engineered mAbs are also being developed

for other diseases. For example, roledumab, a low fucose

anti-Rhesus D mAb, is currently in a phase II/III clinical

trial to combat haemolytic disease of the foetus or newborn

[6, 88]. This section will focus on glyco-engineered anti-

bodies for cancer treatment.

4.1 Mogamulizumab, the First Approved Glyco-

Engineered mAb

As detailed above, mogamulizumab was the first approved

(in Japan) glyco-engineered mAb for cancer therapy [89].

Generated through the Potelligent technology, it is an

afucosylated therapeutic targeting the chemokine receptor

CCR4. CCR4 is normally expressed on CD4? Th2 cells and

some other T-cell subsets, but is also abundant on most

adult T-cell leukaemia lymphomas (ATLL) and cutaneous

T-cell lymphomas (CTCL) [86, 90]. Mogamulizumab

gained approval in 2012 for treatment of relapsed or

refractory CCR4? ATLL, and later in 2014 for treatment of

relapsed or refractory CCR4? CTCL [86]. Preclinical

studies indicate that mogamulizumab acts only through

ADCC or ADCP, as no CDC or direct cell death was

observed [91]. Moreover, mogamulizumab engagement of

CCR4 is claimed not to induce CCR4 internalisation,

which might contribute to its favourable pharmacokinetics

[92]. In addition, while various in vitro assays demonstrate

the dominance of ADCC in mediating mogamulizumab

efficacy, a non-glyco-engineered counterpart was not

examined for comparison [91].

4.2 Obinutuzumab and the Anti-CD20 mAb Family

CD20 represents one of the most studied tumour targets

with five of the 26 currently approved anti-cancer mAbs

targeting this same receptor. The approval of rituximab in

1997 transformed the treatment of NHL and CLL [3, 93],

and paved the way for subsequent antibody therapeutics.

Although various CD20-targeting mAbs followed suit into

the clinic, the precise mechanism of action of anti-CD20

antibodies in the clinical setting remains debatable, partly

due to the large amount of incongruous data generated over

the years by different groups [94]. In preclinical studies,
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Table 1 List of fucose-engineered mAbs for cancer treatment

mAb name Target Modification Technology Condition Phase Results

Mogamulizumab CCR4 Afucosylated Potelligent ATLL, CTCL Approved In relapsed CCR4? ATLL, ORR was 50%, 8

CRs, n = 26. Ref. [155]

In CTCL, ORR was 39%, 13 PRs, n = 38. Ref.

[156]

Obinutuzumab CD20 Low fucose GlycoMab CLL, follicular

lymphoma

Approved In CLL, obinutuzumab ? chlorambucil

increased PFS to 26.7 vs. 16.3 months with

rituximab ? chlorambucil, n = 781. Ref. [87].

In rituximab-refractory indolent NHL,

obinutuzumab plus bendamustine increased

PFS to 22.5 months compared with

14.9 months with bendamustine monotherapy,

n = 396. Ref. [95]

Trastuzumaba Her2 Afucosylated FUT8 KO

CHO

ND Preclinical ND

GA201 EGFR Low fucose GlycoMab EGFR-positive

solid tumours

Phase I 1 CR and 2 PRs in observed colorectal cancer

patients, disease stabilisation observed in 27

patients, n = 75. Ref. [116]

KB004 EphA3 Afucosylated ND Advanced

haematological

malignancies

Phase I 3 AML patients achieved clearance of bone

marrow blasts, 3 patients with myelodysplastic

syndrome achieved SDs ranging from

2–12 months, OR observed in 4 patients,

n = 64. Ref [118]

MDX-1342 CD19 Afucosylated Potelligent Relapsed or

refractory CLL

Phase I In CD19-positive relapsed or refractory CLL, 1

patient had PR, 6 had SD, 2 had DP, n = 12.

Ref. [125]

MEDI-551 CD19 Afucosylated Potelligent Relapsed or

refractory FL,

DLBCL, CLL,

MM

Phase I/II In relapsed or refractory FL, DLBCL, CLL,

MM, 3 patients experienced PRs and 2 CRs

(lasted 9 months), n = 25. Ref. [129]

In refractory CLL, 4 had PR and 13 had SD,

n = 20. Ref. [128]

In relapsed or refractory CLL, MEDI-551 ?

bendamustine demonstrated efficacy but

results not further disclosed, n = 147. Ref.

[157]

In CLL, DLBCL, FL and MM, 9 had CR, 12 had

PR, 42 had SD, median PFS about 9 months,

n = 83. Ref. [158]

DI-B4 CD19 Low fucose ND CD19-positive

indolent B-cell

lymphoma

Phase I Results pending

MDX-1401 CD30 Afucosylated Potelligent Refractory or

relapsed HL

Phase I In refractory or relapsed HL, 8 patients had SD

(of which 2 had tumour burden reduction by at

least 40%), 4 patients had DP, n = 12. Ref.

[134]

SEA-CD40 CD40 Afucosylated Metabolic

interferenceb
Various

advanced

malignancies

Phase I Patient recruitment in process

J6M0-

mcMMAF

BCMA Afucosylated Potelligent MM Preclinical ND

AML acute myeloid leukaemia, ATLL adult T-cell leukaemia lymphoma, BCMA B-cell maturation antigen, CCR4 C-C motif chemokine receptor

4, CHO Chinese hamster ovary, CLL chronic lymphocytic leukaemia, CR complete response, CTCL cutaneous T-cell lymphoma, DLBCL diffuse

large B-cell lymphoma, DP disease progression, FL follicular lymphoma, HL Hodgkin’s lymphoma, KO knock out, MM multiple myeloma, ND

not disclosed, OR objective response, ORR overall response rate, PFS progression-free survival, PR partial response, SD stable disease
a Afucosylated trastuzumab
b This production method is inferred from related patents filed by Seattle Genetics, Inc., the company which developed SEA-40
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both Fc-mediated ADCC, ADCP, CDC and Fab-mediated

direct cell death were evident for various anti-CD20 mAbs

[94]. The current consensus indicates that the Fc domain,

and in particular host activatory FccRs, are required to

recapitulate the clinical efficacy of anti-CD20 [12, 13]. The

development of obinutuzumab, a low-fucose anti-CD20

mAb approved in 2013 for treatment of CLL [94] and in

2016 for rituximab-relapsed/refractory follicular lym-

phoma (FL) [95], was based on the premise that anti-CD20

mAb depletes malignant B cells through FccRIIIa-medi-

ated ADCC and/or ADCP [57, 96, 97]. Conceived from the

GlycoMab platform, obinutuzumab was shown to mediate

superior ADCC using human peripheral blood mononu-

clear cells as effectors to target CD20-expressing cell lines

compared with the non-glyco-engineered obinutuzumab

variant (i.e. with predominantly fucosylated glycans), and

rituximab, an observation recapitulated in xenograft

tumour models [97, 98]. Interestingly, the same study

reported similar in vitro ADCP activity for all anti-CD20

mAbs examined regardless of the level of fucosylation

[56, 98]. In addition, obinutuzumab has been reported to

exhibit increased neutrophil activation and phagocytosis

through the neutrophil restricted activatory FccRIIIb
compared with rituximab [56]. This is perhaps unsurprising

as FccRIIIb is highly homologous to FccRIIIa. The two

genes likely arose through a gene duplication event and,

despite their similarity, differences in antibody binding

affinity and cellular distribution may imply their differen-

tial immunological roles [99].

In 2014, data from a large phase III trial concluded that

obinutuzumab in combination with chlorambucil gave

more complete responses and improved progression-free

and overall survival compared with rituximab plus chlo-

rambucil in patients with untreated CLL and coexisting

conditions [87, 100, 101]. Despite these conclusive clinical

trial data, which many regard as a triumph for glyco-

engineered anti-CD20 mAb therapy, questions remain over

whether improvements conferred by obinutuzumab result

from its low level of fucosylation, or from the fact that

obinutuzumab is intrinsically a type II anti-CD20 mAb, a

class of anti-CD20 antibodies associated with enhanced

efficacy compared with type I anti-CD20 mAbs such as

rituximab both in vitro and in multiple animal models

[94, 102]. Type I and type II anti-CD20 mAbs differ in

their mode of CD20 engagement and are typically char-

acterised by their ability to redistribute cell surface CD20

molecules to lipid rafts, among other differences

[97, 103, 104]. More importantly, type II anti-CD20 mAbs

are much less prone to internalisation once bound to CD20

than type I mAbs, which are rapidly depleted from circu-

lation [98]. This enhanced bioavailability of the type II

obinutuzumab over the type I rituximab could contribute to

the superiority of obinutuzumab in the trial, a hypothesis

supported by a recent in vivo study demonstrating that the

non-glyco-engineered, fucosylated form of obinutuzumab

also outperforms rituximab in CLL clearance [105].

4.3 Trastuzumab

Trastuzumab, commonly known as Herceptin, targets the

Her2 molecule and was originally approved in 1998 for

treatment of Her2-positive early-stage breast cancer. Her2

is a cell surface receptor with tyrosine kinase activity,

whose overexpression leads to constitutive signalling for

cell survival [106]. Like rituximab, its precise mechanism

of action remains unresolved. Although early reports sug-

gested that trastuzumab acts by disrupting Her2 down-

stream signalling leading to apoptosis [107, 108], recent

studies suggest the importance of ADCC/ADCP in its

efficacy [109]. The clinical implication of the FccR-me-

diated effector functions first emerged when one study

found that patients treated with trastuzumab had better

objective response rates when they possessed the high

affinity V/V 158 FccRIIIa allotype compared with patients

with the low affinity F/F or mixed V/F allotypes [110].

Consistently, PMBCs isolated from patients with the high

affinity V/V 158 allotype exhibited enhanced ADCC

against Her2-positive human breast cancer cell lines [110].

On the other hand, genetic polymorphisms within the

FccRIIB or FccRIIA were not found to influence thera-

peutic outcomes [110]. This apparent association of supe-

rior therapeutic efficacy with high affinity FccRIIIa
engagement warrants Fc-engineering to further improve

trastuzumab activity. Indeed, an afucosylated version of

trastuzumab was produced using the FUT8 KO CHO cell

line, which exhibits an 11-fold enhancement in ADCC

against the Her2-amplified BT474-M1 cell line compared

with its non-glyco-engineered parent [111]. Furthermore,

afucosylated trastuzumab significantly improved the sur-

vival of tumour-xenografted animals transgenic for the

human FccRIIIa compared with the non-glyco-engineered

trastuzumab, an effect lost when the hFccRIIIa is absent,

further demonstrating the superior efficacy of an afucosy-

lated trastuzumab [111]. The enhanced ADCC observed

in vitro and survival benefits in animal models warrant the

continued clinical development of an afucosylated

trastuzumab.

4.4 Afucosylated Anti-EGFR GA201

EGFR is a receptor tyrosine kinase whose expression and

activation are upregulated in diverse epithelial cancers. The

anti-EGFR mAbs, cetuximab and panitumumab, represent

established treatments for colorectal cancer and head and

neck cancer, respectively; however, the overall response

rate and survival benefits remain modest, with patients
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possessing KRAS mutations (of which a large proportion

of these patients do) remaining unresponsive [112, 113].

Although anti-EGFR mAbs are purported to function

through EGFR signalling blockade [114], it was hypothe-

sised that their modest clinical efficacy might benefit from

an engineered Fc. The low-fucose anti-EGFR mAb GA201

was therefore generated using the GlycoMab technology

and shown to be approximately 85% afucosylated [115].

In vitro assays demonstrated that GA201 inhibits EGFR

signal transduction to a similar extent as cetuximab; how-

ever, afucosylation boosted the ADCC activity of GA201

significantly above that of cetuximab or the non-glyco-

engineered GA201 [115]. More importantly, GA201

exhibited ADCC activity towards tumour cell lines with

KRAS mutations [115]. The in vitro efficacy was recapit-

ulated in xenograft animal models in which GA201 treat-

ment led to prolonged survival compared with cetuximab

regardless of the tumour KRAS mutation status [115]. A

phase I clinical trial also provided an early demonstration

of GA201 activity in EGFR-positive solid tumours,

including patients with KRAS mutations [116]. Interest-

ingly, FccRIIIa polymorphism status did not influence the

activity of GA201 in these patients, in contrast to those

involved in the trastuzumab trial discussed earlier

[110, 116], potentially indicating that the glyco-engineer-

ing overcomes the lower activity associated with the low

affinity allele, although this requires a further confirmatory

study in larger cohorts to confirm.

4.5 Anti-EphA3

Similar to EGFR, EphA3 is a receptor tyrosine kinase

belonging to the family of Eph receptor tyrosine kinases

involved in the regulation of cell–cell communication and

development [117]. Although there is no current anti-

EphA3 mAb approved or indeed in late phase develop-

ment, recently an afucosylated anti-EphA3 mAb, KB004,

was reported to demonstrate modest efficacy in a phase I

trial of relapsed and/or refractory haematological malig-

nancies [118, 119]. The mechanism of action of KB004

remains unknown but presumably reflects those described

above for EGFR mAbs.

4.6 Anti-CD19

CD19 is a ubiquitous marker expressed on B cells that

associates with the B-cell receptor and acts to promote

B-cell activation. Due to its widespread expression on B

cells, including early progenitors, CD19 has been assessed

as a target for numerous B-cell malignancies spanning

acute lymphocytic leukaemia (ALL), CLL and NHL [120].

Despite ubiquitous antigen expression, the efficacy of the

conventional anti-CD19 mAbs developed so far indicates

inferiority to their anti-CD20 counterparts, with a

notable lack of durable responses [121, 122]. Given their

disappointing responses to date, antibody engineering has

been attempted on these mAbs to boost activity. To date,

the only approved CD19-targeting biological therapeutic

remains a bispecific anti-CD19/CD3 comprising two scFv

chains, which acts to recruit CD3-positive T cells to exert

cytotoxicity against B cells [120]. In addition, multiple

afucosylated anti-CD19 mAbs have been generated and are

being clinically assessed. For example, MDX-1342, pro-

duced using the Potelligent technology, exhibits both

enhanced ADCC and ADCP compared with its non-glyco-

engineered version, and was able to mediate a higher level

of B-cell depletion in non-human primates [123, 124]. A

phase I trial of MDX-1342 to treat CD19-positive relapsed

or refractory CLL demonstrated partial response in one of

the nine patients recruited [125, 126]. MEDI-551 is another

afucosylated anti-CD19 mAb, which, similar to MDX-

1342, exhibits more potent ADCC in vitro than its non-

glyco-engineered parent as well as efficacy in multiple

xenograft animal models [124, 127]. In a phase I/II clinical

trial in patients with relapsed or refractory FL, diffuse large

B-cell lymphoma, CLL or multiple myeloma (MM),

MEDI-551 demonstrated moderate activity as a

monotherapy [128, 129]. A third afucosylated mAb, DI-B4,

which has been transferred from Merck to Cancer Research

UK as part of its Clinical Development Partnerships (CDP)

programme, has recently been the subject of a phase I trial

in CD19-positive indolent B-cell lymphoma. No clinical

results have been released yet.

4.7 Anti-CD30

CD30 belongs to the TNFR family involved in the regu-

lation of cell survival. Its expression in normal tissues is

restricted to activated B cells and T cells but it is highly

expressed on T-cell-derived tumours including anaplastic

large-cell lymphoma and cutaneous T-cell lymphoma,

making it a favourable tumour marker [130]. Currently, the

only approved CD30-targeting antibody is brentuximab

vedotin, an antibody–drug conjugate, whose efficacy stems

from the cytotoxic agent monomethyl auristatin E [131].

One anti-CD30 mAb, MDX-60, demonstrated modest

efficacy against Hodgkin’s lymphoma (HL) and anaplastic

large-cell lymphoma in a phase I/II trial [132]. Its afuco-

sylated version, MDX-1401, was subsequently developed

using the Potelligent technology and improved survival in a

xenograft animal model [133]. Moreover, in a phase I trial

involving twelve refractory or relapsed HL patients, MDX-

1401 treatment led to a reduction in tumour burden for

patients experiencing stable disease [134].
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4.8 Anti-CD40

Like CD30, CD40 is a member of the TNFR family and has

been extensively explored as a target for immunotherapy

and anti-inflammatory applications [9, 135]. CD40 is

ubiquitously expressed on various immune cells including

B cells, macrophages, dendritic cells, as well as non-im-

mune cells such as platelets and endothelial cells [136].

Although immunomodulatory (agonistic) anti-CD40 mAbs

dominate the current focus for cancer research [9], some

anti-CD40 mAbs were developed to target CD40-express-

ing B-cell lymphomas as direct-targeting mAbs aiming to

block positive signalling from, or even mediate inhibitory

signalling through, CD40; or to mediate Fc-dependent

cellular destruction. Currently, only one anti-CD40 mAb,

SEA-CD40, has been developed as an afucosylated thera-

peutic directed at CD40, which exhibits enhanced ADCC

in vitro compared with its fucosylated parent SGN40

[137, 138]. The development of SEA-CD40, however, is at

odds with the apparent mechanism of action of its parent

antibody, SGN40. SGN40 demonstrates modest clinical

activity in CLL and diffuse large B-cell lymphoma

[139, 140], but it’s in vivo efficacy, at least in one xeno-

graft animal model, does not appear to require NK cell-

mediated ADCC but rather depends on Fab-mediated

apoptosis as full activity was demonstrated in mice lacking

NK cells [141]. Consistently, the clinical activity of

SGN40 demonstrated in a phase II trial indicates a lack of

correlation between patient FccRIIIa 158 V/F polymor-

phism and therapeutic activity [139]. Nevertheless, the

enhanced engagement between an afucosylated mAb and

the FccRIIIa provides the potential to overcome the in vivo

threshold for SGN40-mediated ADCC and offer synergy

with Fab-mediated apoptosis.

4.9 Anti-B-Cell Maturation Antigen (BCMA)

The B-cell maturation antigen (BCMA) gene was originally

identified from a translocation event in a malignant T-cell

lymphoma patient and was later found to be preferentially

expressed on mature B cells [142, 143]. It has since been

established to be a member of the TNFR superfamily that

interacts with B-cell activating factor (BAFF) and a pro-

liferation-inducing ligand (APRIL) involved in B-cell

survival [144, 145]. The ubiquitous expression of BCMA

on MM cells, but not on other normal human cell popu-

lations and tissues, renders BCMA a direct target for MM

[146, 147]. The first low-fucose anti-BCMA mAb J6M0,

humanised from a murine parent and fucose-engineered

using the Potelligent platform, had an additional functional

feature whereby the cytotoxic drug monomethyl auristatin

(MMA), a synthetic inhibitor of cell division, is conjugated

to its Fc domain [147]. The Fc domain of such a low fucose

antibody–drug conjugate (ADC) would be expected to not

only induce enhanced cellular effector function via

FccRIIIA, but also exert direct toxicity towards target

tumour cells. Consistent with this hypothesis, J6M0-MMA

mediated efficient in vitro phagocytosis of MM cells by

macrophages and reduced the MM cell viability indepen-

dent of immune effectors [147]. Using immune-compro-

mised animal models, the same group also reported

superior in vivo efficacy of J6M0-MMA against human

MM cell lines, compared with J6M0 alone [147]. Never-

theless, neither the murine parent nor a non-afucosylated

variant of J6M0 were included in these experiments for

comparison. While the MMA was covalently conjugated to

the Fc protein backbone of J6M0, it is notable that with the

coming of age of ADC, the unique chemistry of antibody

Fc glycan (as opposed to the amino acid backbone) has

been increasingly exploited as a site for cytotoxic drug

conjugation [148–154]. The marriage between the intrinsic

immune-modulatory properties of Fc glycan and its dif-

ferential chemistry (from the protein backbone) could

prove to be of great utility in the next-generation cancer

therapeutics.

5 Conclusion

It is clear that we are now entering an era when non-

canonical antibody therapeutics are becoming common-

place. With recent advances in glyco-engineering we pos-

sess the tools to fine-tune the ability of the Fc to elicit the

desired interactions with potential receptors and interaction

partners. The developments in afucosylation demonstrate a

proof of principle that we can manipulate these interactions

to elicit more efficacious responses from certain cellular

effectors, potentially overcoming inter-patient variabilities

in sub-optimal FccR genotypes. However, the clinical

experience illustrates that it is more important than ever

that we fully understand the mechanisms of action of the

parental mAbs in vivo before we undertake such studies—

only then will the full potential of glyco-engineering be

realised for patients.
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