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Abstract
Due to the increasing threat to public health and the economy, governments internationally are interested in models to esti-
mate the future clinical and economic burden of antimicrobial resistance (AMR) and to evaluate the cost-effectiveness of 
interventions to prevent or control resistance and to inform resource-allocation decision making. A widely cited UK report 
estimated that 10 million additional deaths will occur globally per annum due to AMR by 2050; however, the utility and 
accuracy of this prediction has been challenged. The precision of models predicting the future economic burden of AMR is 
dependent upon the accuracy of predicting future resistance rates. This paper reviews the feasibility and value of modelling 
to inform policy and resource allocation to manage and curb AMR. Here we describe methods used to estimate future resist-
ance in published burden-of-disease models; the sources of uncertainty are highlighted, which could potentially mislead 
policy decision-making. While broad assumptions can be made regarding some predictable factors contributing to future 
resistance rates, the unexpected emergence, establishment and spread of new resistance genes introduces substantial uncer-
tainty into estimates of future economic burden, and in models evaluating the effectiveness of interventions or policies to 
address AMR. Existing reporting standards for best practice in modelling should be adapted to guide the reporting of AMR 
economic models, to ensure model transparency and validation for interpretation by policymakers.

Key Points for Decision Makers 

The overuse and inappropriate use of antimicrobials, 
and the consequent impact on the risk of antimicrobial 
resistance, extends well beyond the individual recipient 
of the antimicrobials, however the wider consequences 
are difficult to quantify.

Consideration of the cost-effectiveness of interventions 
to address antimicrobial resistance must take a One 
Health perspective and incorporate the costs and benefits 
to all sectors, including human health care, animal health 
care and the health of the environment.

Methods and assumptions used to model future resist-
ance rates should be transparently and consistently 
reported to assist interpretation by policymakers who 
must determine whether the models are credible and 
clinically relevant.
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1  Introduction

“All models are wrong, but some are useful” [1]. This 
quote from renowned statistician George Box encapsulates 
the concept that no mathematical model can perfectly sim-
ulate real-life, but some well-structured and adequately 
populated models may estimate future scenarios with suf-
ficient accuracy to usefully inform decision making.

Cost-effectiveness models are used to inform healthcare 
resource allocation by providing decision-makers with 
quantitative estimates of the future costs and benefits of 
alternative health technologies and health policies [2, 3]. 
Cost-effectiveness models constructed to inform funding 
decisions typically extrapolate healthcare resource use 
and health outcomes over an appropriate time horizon, 
based on the results of clinical trial data or non-trial data 
(real-world data/observational data). Forecasting models 
are used to estimate the impact of near-term expenditure 
on interventions that will prevent or reduce future eco-
nomic burden due to a particular disease or public health 
concern [4].

This narrative overview examines the methodologies 
and limitations of existing models of the clinical or eco-
nomic burden of antimicrobial resistance (AMR), and 
reflects on the value and potential role of such models 
in informing policy and practice. A literature search of 
peer-reviewed literature (Medline and Embase) was con-
ducted in 2018 and updated in October 2021, and included 
the search terms ‘antimicrobial resistance’ or ‘antibiotic 
resistance’ (and associated MeSH terms) in addition to 
any of the following terms: models, modelling, cost of 
illness, cost-benefit analysis, cost-effectiveness models 
or economic models. The search was supplemented with 
searches of the grey literature, and included the websites 
of both the UK AMR review (https://​amr-​review.​org) and 
DRIVE-AB (drive-ab.eu), an international collaboration 
of 12 countries developing economic models to promote 
antibiotic innovation. Reference lists of relevant papers 
were searched to identify additional evidence sources. No 
date limits were set for the literature search.

2 � The Potential Role of Burden‑of‑Disease 
Models to Inform Antimicrobial Resistance 
(AMR) Policy and Resource Allocation

AMR is the natural adaptation of micro-organisms to resist 
those medicines designed to inhibit their growth [5]. AMR 
is associated with increased clinical and economic costs 
due to suboptimal treatment or treatment failure [6–10]. 
Although it is agreed that AMR is becoming an increasing 

burden on the healthcare system and society in general, 
published estimates of the clinical and economic burden 
vary significantly [9, 11–17]. While modelled estimates 
of burden would be useful for all levels of government, 
the ability to do this is constrained by substantial uncer-
tainty about the future evolution of resistance in differ-
ent bacterial species, and the multifarious nature of the 
epidemiology and transmission dynamics of antimicro-
bial resistance, including multidirectional relationships 
between human and animal health and the environment 
(Fig. 1) [18–21].

For governments to plan their future approach to manag-
ing AMR, an accurate estimate of the future clinical and 
economic burden of resistance could enable better predic-
tions of:

•	 The cost-effectiveness of policies or programs (such as 
antimicrobial stewardship (AMS) interventions), infec-
tion control procedures, policies regarding animal or 
environmental use of antimicrobials to curtail the spread 
of resistance;

•	 The cost-effectiveness of new rapid diagnostic tests, 
directing appropriate antimicrobial treatment in a timely 
manner, and reducing inappropriate antimicrobial use; or

•	 The cost-effectiveness or “value” of new antimicrobials 
and other types of pharmacological interventions.

3 � Estimating Future Resistance—Modelling 
Methodology and Parameter Uncertainty

From the perspective of policy-makers, the validity of 
the structure of any economic model and its inputs must 
be clearly described in order for the model’s outputs to be 
interpreted with clarity in light of any limitations [3]. The 
scope and perspective of an economic analysis, as well as 
the type of policy questions requiring answers, are important 
considerations in determining the type of model required to 
inform policy [22]. A key aspect of models designed either 
to estimate the future economic burden of AMR, or to com-
pare the cost-effectiveness of different interventions, is the 
prediction of future resistance [23–25].

Although there is a correlation between antimicro-
bial use and resistance, the emergence of AMR is largely 
unpredictable and can occur either via spontaneous muta-
tions in the bacterial chromosome or much more com-
monly by acquisition of an existing resistance gene or 
genes via mobile genetic elements or transformation 
(gene acquisition) [18]. Acquisition of multiple resist-
ance genes, either sequentially or bundled within mobile 
genetic elements, means that exposure to one antimicro-
bial can enable resistance to other antimicrobials, either 
of the same class or to an unrelated class, a process that 

https://amr-review.org
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is difficult to predict or model. Transmission dynamics of 
AMR are complex, with a myriad of factors and multidi-
rectional pathways transferring resistant genes or bacte-
ria between humans, animals, food and the environment 
[18–21] (Fig. 1).

While the link between antimicrobial use and resistance 
is complex, the drivers of antimicrobial use and misuse, 
including the volume and choice of antimicrobials used, 
are also multifaceted and often unpredictable, and include 
social, cultural, ethical, economic and political factors [26]. 
The inter-sector, multi-directional transmission of AMR is 
acknowledged in the ‘one health’ approach by policymakers 
in addressing the issue, whereby it is recognised that human 
health is dependent upon and connected to the health of ani-
mals and the environment [27].

Emergent pathogens are also unpredictable and cannot be 
anticipated with any certainty for the purposes of predictive 
modelling; their impact on global burden can be illustrated 
by Candida auris, a fungal pathogen that was first isolated 
from a patient in 2009, but 10 years later is a global health 
threat causing severe invasive infections with reported mor-
tality rates of up to 72% [28]. The exact number of human 
pathogens is not known; however, a comprehensive lit-
erature survey identified over 1,400 pathogens of which 

approximately 40% were bacteria, and of those bacterial 
species, 10% were considered emerging or re-emerging [29].

Although deterministic or compartmental models have 
been developed to conceptualise the emergence and spread 
of resistant pathogens within certain defined settings, for 
example, in a ward or a hospital, the complexity of transmis-
sion described above means these modelling approaches for 
long-term predictions of rates of resistance at a population 
level are highly uncertain.

4 � Published Models Estimating the Current 
and Future Economic Burden of AMR

For predictive modelling to accurately inform policy and 
evaluate the impact of various interventions or policies, it is 
first necessary to establish the baseline expected costs and 
outcomes without those interventions or policies in place.

A 2016 report commissioned by the UK government to 
model the future clinical and economic impact of antimicro-
bial resistance estimated that with increasing resistance to 
currently available antimicrobials, drug-resistant infections 
could kill more than 10 million people globally per year by 
2050, including 22,000 per year in Oceania [11]. Although 

Fig. 1   Epidemiology of antimicrobial resistance. (Source: ACSQHC [18]. Reproduced with permission from the author)
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widely cited, the methodology used in the study and lack of 
peer review raised questions regarding the accuracy and util-
ity of this estimate [30]. However, despite the questionable 
model output, the UK report has been a useful reference to 
highlight the issue of AMR to governments globally.

A 2018 systematic review of published economic burden 
studies found only six of the 11 identified studies utilised 
evidence synthesis—a best-practice method for estimat-
ing model input parameter values [31]. Two of the identi-
fied modelling studies informed the UK Review on AMR 
[11]. RAND Europe, an independent not-for-profit research 
organisation, and KPMG UK have published overviews of 
their economic models developed to inform the review [16, 
32]. The models projected the economic impact of different 
future AMR scenarios based on the change in mortality rates 
and the predicted impact on labour efficiency (productivity) 
under each scenario with varying resistance rates.

To estimate the impact of AMR on productivity, the 
authors of both models published their estimates of the 
reductions in the ‘working age’ population due to resist-
ance-attributable mortality [16, 32]. The authors of the 
RAND model stated that AMR-attributable mortality is 
dependent upon the incidence of infections caused by the 
included pathogens, as well as current and future resistance 
rates, but they are not explicit in their calculations. They 
acknowledged there was limited data to estimate future 
AMR-attributable mortality, which was a limitation of their 
model. KPMG modelled mortality as a function of infec-
tion rate, resistance rate and attributable mortality rate, but 
justification for the attributable mortality rate was unclear, 
with the two scenarios for increased resistance rates being 
arbitrary (40% or 100% resistance across all countries for 
the six pathogens modelled).The uncertainty regarding the 
magnitude of these estimates (e.g., confidence intervals) was 
not provided in either model [16, 32].

The scope of both models included only three patho-
gens that are common causes of community- and hospital-
acquired infections (E. coli, K. pneumoniae and Staph. 
aureus), in addition to HIV, tuberculosis and malaria. Future 
resistance rates were not based on historical AMR data, 
rather three arbitrary future resistance rates were projected 
(5%, 40% and 100%) and compared to baseline (0%). The 
growth rate of resistance was assumed to be a ‘one-off step’ 
in year 0 to year 15 for all six pathogens, rather than an 
increase from baseline over time based on statistical mod-
elling of available surveillance data. Although not stated 
explicitly, it appears that the models assumed resistance to 
be defined as non-susceptible to all possible available treat-
ment options when used as either monotherapy or combina-
tion therapy.

How to model the impact of AMR on the future inci-
dence of infections is also unclear. Notably, both models 
informing the UK AMR review explicitly excluded costs 

associated with stewardship and infection control [16, 32]. 
For the three common hospital pathogens, and for transmis-
sible infections, HIV and TB, two scenarios were modelled 
in the KPMG model, one where incidence rates remain con-
stant until 2050, and another scenario where current infec-
tion rates doubled between 2014 and 2050 [32]. The RAND 
model also assumed no change to future incidence as “there 
is a lack of agreement among health specialists about the 
future changes to incidence rates and/or their direction” [16]. 
The potential impact of resistance on the prevalence of HIV 
and TB was not discussed [16, 32].

A 2019 systematic review of economic studies reporting 
the additional burden of antimicrobial resistance identified 
12 peer-reviewed studies in addition to the two reports by 
RAND and KPMG [33]. All 12 studies reported attribut-
able costs associated with AMR from a healthcare system 
or hospital perspective, rather than from a societal perspec-
tive [33].

Kaier (2012) published a model that aimed to determine 
the economic impact of the recovery of antibiotic effec-
tiveness, simulating different scenarios to model the bur-
den of AMR as an externality of antimicrobial use (where 
reduced usage led to a decrease in AMR) [34]. The model 
was limited to a single hospital setting and was based on the 
assumption that a reduction in antibiotic use would result in 
a decline in the frequency of resistant bacteria. The authors 
themselves acknowledged that the recovery of antibiotic 
effectiveness differs between bacterial species; in some 
cases, even where a reduction in use occurs, an increase in 
resistance is observed [34].

In 2017, the World Bank published a report estimating 
the possible impact of AMR on the global economy from 
2017 to 2050 [14]. A narrative description of the structure 
of the economic model is provided in the report, describing 
it as a “dynamic, multi-country, multi-sector, general equi-
librium model”, with two scenarios described as “low AMR 
impacts” and “high AMR impacts”; however, the definition 
and methodology for these scenarios was not provided. No 
graphical representation of the model variables and their 
relationship was provided, nor were any details of the simu-
lations of future resistance rates. The report estimated that 
without effective containment, AMR will likely reduce 
annual global GDP by between 1.1% and 3.8% by 2050 [14].

5 � Using Current Data to Estimate Future 
Resistance Rates and Future Economic 
Burden

The use of currently available data to inform and forecast the 
future clinical and economic burden of a disease is a com-
mon approach to inform policy decision-making. There are, 
however, many gaps in the currently available surveillance 
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data of antimicrobial use and antimicrobial resistance in 
humans, animals and the environment. Diverse approaches 
have been used in published studies to estimate future resist-
ance, and reiterated the lack of comprehensive data to inform 
predictive models [33].

To estimate the future economic burden associated with 
AMR, accurate data are needed to quantify the marginal 
health costs associated with the treatment or prevention of 
multi-drug-resistant infections (compared to treatment of 
susceptible infections), as well as more comprehensive sur-
veillance data of antimicrobial use and resistance.

5.1 � Data to Inform Marginal Costs Associated 
with Drug‑Resistant Infections

Most published studies investigating the incremental costs of 
resistant infections are hospital based and have focused on a 
specific disease or pathogen [9]. Costs assessed in published 
studies have included additional investigations, drug costs, 
costs associated with side effects from more toxic drugs or 
drug combinations, length of hospital stay and increased 
mortality rates. A 2015 modelling study investigated the 
additional surgical-site infections and deaths likely with 
increasing resistance to antimicrobials used for surgical 
prophylaxis [17]. To our knowledge there are no studies that 
model the societal cost impact of scenarios with no effective 
antibiotics for procedures or interventions where antibiotics 
are currently used routinely, such as prophylaxis in surgery, 
to quantify the impact on the workforce or economy due to 
being unable to perform these interventions safely.

In 2014, the WHO conducted a systematic review of evi-
dence relating to the health and economic burden of three 
multi-resistant organisms: Escherichia coli (E. coli)—resist-
ant to third-generation cephalosporins and fluoroquinolones, 
Klebsiella pneumoniae—resistant to third-generation ceph-
alosporin and carbapenems, and Staphylococcus aureus—
resistant to methicillin (MRSA) [21]. The review found 
there was a lack of published studies collecting healthcare 
resource consumption concurrently with clinical outcomes 
for E. coli, and none for K. pneumoniae. Limitations in the 
methodology used to capture cost data were identified: data 
collection on healthcare resource use were mostly retrospec-
tive, often not done at the same time as the collection of 
clinical data, and limited to an estimate based on length of 
stay in hospital and the proportion requiring treatment in 
intensive care [21]. The magnitude of marginal costs asso-
ciated with resistance is likely underestimated due to the 
paucity of definitive cost evidence available, especially with 
regard to the global and regional impact of specific multi-
resistant pathogens [21].

A 2019 systematic review found data were available to 
allow justifiable estimates of the AMR-associated economic 
burden for healthcare-associated Enterobacteriaceae and 

methicillin-resistant Staphylococcus aureus bloodstream 
infections. For all other infections, and settings, there was 
insufficient data to generate accurate estimates of the costs 
attributable to resistance [33].

5.2 � Data on Antimicrobial Resistance and Usage 
Data for Statistical Forecasting Models

Extrapolating future resistance rates from available surveil-
lance data has been used as a method to forecast the health 
and economic burden of resistance [24, 35, 36]. Statistical 
modelling methods such as interrupted time series regres-
sion are a practical modelling method using historical data 
and current observations to investigate the relationship 
between antimicrobial utilisation and resistance over time. 
However, this method is also limited by the comprehen-
siveness and completeness of available surveillance data. In 
addition to data gaps regarding emergence and transmissibil-
ity, there is also a lack of standardisation regarding defining 
and measuring AMR, further complicating the interpretation 
of the available data [37].

A recent statistical modelling paper suggested that an 
autoregressive linear model with consumption as an inde-
pendent parameter was the most appropriate approach to 
a predictive model of future resistance [38]. Further vali-
dation of this model is required using different ‘drug-bug’ 
combinations, as it is not always clear that the relationship 
between antimicrobial use and resistance is linear for differ-
ent ‘drug-bug’ combinations. Emerging research suggests 
a non-linear relationship is more probable, with selection 
pressure increasing once antimicrobial use exceeds a cer-
tain threshold [39]. Non-parametric time-series models 
using historical surveillance data have been used to identify 
non-linear relationships between population antimicrobial 
use and resistance burdens [39]. These methods may enable 
prediction of thresholds of antimicrobial consumption above 
which resistance to particular pathogens increases. Valida-
tion of these methods may enable improved estimates of 
burden in the future, in addition to setting targets for reduc-
tions in antimicrobial use.

6 � Dynamic Transmission Models 
and Incorporation of Antimicrobial 
Consumption as an Externality

Dynamic modelling methods are used to develop mathe-
matical representations of non-linear systems, incorporat-
ing feedback loops and multiple interdependent variables 
that evolve over time [40]. Dynamic models can be used 
to simulate the impact of an intervention at a systems level 
and are used increasingly to inform policy making [41–43]. 
They provide an explicit method to synthesise available 



484	 N. T. Hillock et al.

evidence regarding the effectiveness and costs of alternative 
healthcare interventions or strategies [44]. A 2018 scoping 
review investigated the range of published studies that used 
dynamic models to analyse the problem of AMR, identify-
ing 81 studies in relation to human or animal use [45]. Only 
two of the 81 studies incorporated multiple host species in a 
shared environment, highlighting the lack of a ‘one health’ 
approach to modelling in the literature. The use of an anti-
microbial in an individual person, a human population, or 
multiple animal species potentially impacts the risk of drug-
resistant pathogens in that individual, or in other human or 
animal populations. Ideally, dynamic modelling of AMR 
needs to include consumption as an ‘externality’, that is, a 
cost or benefit associated with one person’s activity (e.g., 
consumption of an antimicrobial) that impacts the popula-
tion who did not choose to incur that cost or benefit [46]. For 
example, stewardship interventions that result in prescrib-
ers utilising narrower-spectrum antimicrobials instead of 
broader-spectrum ones may potentially reduce the selection 
pressure for resistant organisms in the population.

7 � Discussion

Very crude models of future economic burden, using hypo-
thetical scenarios of future resistance rates, lack the accuracy 
to adequately inform governments seeking optimal alloca-
tion of resources to limit AMR. Governments globally are 
seeking ‘better models’ for a more accurate estimate of 
country-specific future burden; however, it is questionable 
whether sufficiently accurate estimates are possible given the 
substantial uncertainties regarding the transmission dynam-
ics of AMR. The National Institute for Health and Care 
Excellence (NICE) in the UK is currently undergoing wide 
consultation in order to seek consensus among stakeholders 
on other methods and models for evaluating antimicrobials 
given the limitations highlighted here [47].

As illustrated in this review, the feasibility and accuracy 
of estimating long-term cost-effectiveness of new antimicro-
bial drugs or stewardship interventions is dependent upon 
being able to correlate the effect of that drug or intervention 
with long-term effects on resistance rates, and therefore on 
public health. Compared to other medication use, antimicro-
bial treatment is unique in that its use generates a negative 
externality, antimicrobial resistance, reducing the effective-
ness of that drug into the future.

At a national level, antimicrobial utilisation has been used 
as a surrogate outcome measure for policy or stewardship 
interventions, with the assumption that reduced antimicro-
bial consumption will lead to a reduction in future resistance 
rates and therefore reduce the risks of treatment failure and 
improve clinical and economic outcomes. Comprehensive 
surveillance data measuring consumption across all sectors 

(human, animal and the environment) is required to reduce 
the uncertainty regarding the correlation between usage and 
future resistance rates. The Global Antimicrobial Resistance 
and Use Surveillance System (GLASS) has grown from 729 
surveillance sites when it was established by the WHO in 
2015 to 24,803 surveillance sites in 70 countries [48]. As 
surveillance data improves, the precision of statistical fore-
casting models will improve, allowing further exploration of 
non-linear relationships between use and resistance, as well 
as further research to identify possible thresholds of usage 
at which resistance emerges [39].

While broad assumptions can be made regarding some 
predictable components of resistance rates, the unexpected 
emergence, establishment and spread of new resistance 
genes limits the feasibility of models to provide govern-
ments with accurate predictions regarding the long-term 
cost-effectiveness of AMR policies or interventions. While 
models may crudely predict the immediate clinical and eco-
nomic impact of antimicrobial failure in a particular clinical 
area, the complexity of AMR limits the utility of dynamic 
models in predicting future resistance rates. Even if more 
comprehensive antimicrobial usage and resistance surveil-
lance data were available, there are multiple unpredictable 
behavioural and social factors that introduce uncertainty into 
dynamic models of future AMR, such as patient compliance 
with antimicrobial treatment and compliance with infection 
control methods.

The COVID-19 pandemic has illustrated how models esti-
mating the future economic burden of a particular disease 
can divide political opinion, resulting in contrasting policy 
decisions, based on political trade-offs between economic 
and health outcomes. Like COVID-19, future AMR risks at 
a patient and population level are dependent upon both poli-
cies implemented by governments but also by human com-
pliance and behaviour. However the COVID-19 pandemic 
has also illustrated that complex models that incorporate 
behavioural and social factors can be developed [49, 50]. 
Improved surveillance may reduce the uncertainty in statisti-
cal forecasting of resistance, which in turn could be used as 
inputs into dynamic models in the future. Expert elicitation 
methods have been investigated to address the fundamen-
tal challenges of predicting future resistance, with experts 
demonstrating relevant knowledge not captured in statistical 
forecasts [51]. Future modelling frameworks could employ 
such methods to (a) design parsimonious model structures 
and (b) estimate uncertain parameters.

One issue that can be fairly easily addressed is that the 
methods and assumptions used in models to estimate the 
burden of AMR, or in cost-effectiveness analyses, should 
be transparently reported. Without these, the policy maker 
is unable to judge whether the assumptions and inputs used 
to inform the model are credible and clinically relevant. 
Existing reporting standards for best practice in modelling 
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should be adapted to guide the reporting of AMR economic 
models [3].

Without consistency in reporting and transparency 
regarding the level of uncertainty about future resistance 
rates and transmission dynamics, and the future incidence 
of drug-resistant infections, the value of modelling to guide 
decision-making on which interventions will be the most 
cost-effective use of resources for managing AMR is limited.
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