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Abstract
Psoriasis, a chronic inflammatory skin disease, affects millions of people worldwide. It imposes a significant burden on 
patients’ quality of life and healthcare systems, creating an urgent need for optimized diagnosis, treatment, and management. 
In recent years, image-based artificial intelligence (AI) applications have emerged as promising tools to assist physicians by 
offering improved accuracy and efficiency. In this review, we provide an overview of the current landscape of image-based 
AI applications in psoriasis. Emphasis is placed on machine learning (ML) algorithms, a key subset of AI, which enable 
automated pattern recognition for various tasks. Key AI applications in psoriasis include lesion detection and segmentation, 
differentiation from other skin conditions, subtype identification, automated area involvement, and severity scoring, as well 
as personalized treatment selection and response prediction. Furthermore, we discuss two commercially available systems 
that utilize standardized photo documentation, automated segmentation, and semi-automated Psoriasis Area and Severity 
Index (PASI) calculation for patient assessment and follow-up. Despite the promise of AI in this field, many challenges 
remain. These include the validation of current models, integration into clinical workflows, the current lack of diversity 
in training-set data, and the need for standardized imaging protocols. Addressing these issues is crucial for the successful 
implementation of AI technologies in clinical practice. Overall, we underscore the potential of AI to revolutionize psoriasis 
management, highlighting both the advancements and the hurdles that need to be overcome. As technology continues to 
evolve, AI is expected to significantly improve the accuracy, efficiency, and personalization of psoriasis treatment.

Key Points 

The primary applications of automated image analy-
sis in psoriasis involve detecting and outlining lesion 
borders, distinguishing psoriatic lesions from other skin 
conditions, objectively calculating area involvement and 
severity scores, and selecting treatments while predicting 
their response.

Currently, two commercial systems utilize total body 
photography, automated image segmentation, and semi-
automated Psoriasis Area and Severity Index (PASI) 
calculation to enhance clinical patient care.

Key challenges for future successful AI implementation 
include the need for model validation and generalizabil-
ity, efficient integration into clinical workflows, and the 
establishment of standardized imaging protocols.
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1 Introduction

Artificial intelligence (AI) is a branch of computer science 
concerned with replicating human cognitive functions 
and analyzing large amounts of data [1]. As a field with 
primarily visual diagnoses and a large patient base, der-
matology has recently experienced one of the most rapid 
developments in medical AI applications, particularly in 
the area of computer-guided image classification [2]. The 
development of convolutional neural networks (CNNs) for 
melanoma detection has provided groundbreaking work, 
as algorithms have shown great potential to improve 
human accuracy in the dignity assessment of melanocytic 
lesions [3–6]. For example, in a study by Haenssle et al. 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40257-024-00883-y&domain=pdf
http://orcid.org/0009-0008-9995-2912


 E. V. Goessinger et al.

comparing the diagnostic performance of 58 international 
dermatologists with a CNN in melanoma detection using 
dermoscopic images, most dermatologists were outper-
formed by the algorithm [3]. In a real-world setting, the 
combination of human and artificial intelligence, or aug-
mented intelligence, has been shown to increase diagnostic 
sensitivity and specificity in the evaluation of melanocytic 
lesions by integrating CNN classification into clinical 
decision making [6]. Naturally, these advancements in the 
early recognition of skin cancer have spurred research into 
CNN applications for other dermatoses, such as psoriasis.

Psoriasis is a common chronic immune-mediated 
inflammatory skin disorder that affects approximately 
2–3% of the general population worldwide [7]. Onset can 
occur at any age and the disease is not yet curable [8]. 
Clinical presentation is variable and may include palmo-
plantar, scalp, intertriginous, and nail involvement. Plaque 
psoriasis most commonly presents with sharply demar-
cated, silvery, erythrosquamous plaques on the extensor 
surfaces of the elbows and knees and the lumbosacral 
region (Fig. 1A). Other less common subtypes, such as 
erythrodermic (Fig. 1B) or guttate psoriasis (Fig. 1C), as 
well as genetically and phenotypically distinct pustular 
psoriasis (Fig. 1D), add to the diagnostic complexity [8, 
9]. Since psoriasis is typically diagnosed visually and is 
easily photographed by healthcare providers and patients, 
the resulting image repositories lend themselves to anal-
ysis by AI [1]. In addition to cutaneous manifestations, 
patients are susceptible to multiple comorbidities, such as 
psoriatic arthritis and cardiometabolic syndrome, and most 
patients experience a decrease in quality of life, with an 
associated higher risk of developing depression [8, 10–12].

To objectively report the extent of skin involvement 
and treatment response remains a major challenge in rou-
tine practice and research trials [13–15]. In the absence of 

established biomarkers, a variety of clinical scoring tools 
are currently used, most commonly the Psoriasis Area and 
Severity Index (PASI), Body Surface Area (BSA), and Phy-
sician’s Global Assessment (PGA) [13]. Major weaknesses 
of these include low efficiency, low intra- and inter-rater 
reliability, and questionable accuracy [13–15]. Since no 
single assessment tool has been shown to be superior or 
to fulfil ideal validation criteria, combinations are often 
used, depending on the application [13]. As treatment deci-
sions and regulatory drug approvals are largely based on 
such measures, accuracy and consistency are paramount and 
could potentially be greatly improved through automated 
calculation. In addition, reimbursement for expensive bio-
logical treatments in most countries is based on minimum 
score ratings, for which BSA and PASI > 10 are considered 
cut-offs for severe disease [16].

In recent years, immunological targeting of key patho-
genetic cytokines with biological therapies has revolution-
ized the therapeutic management of severe psoriasis [8]. In 
addition to well-established treatments such as methotrexate, 
tumor necrosis factor alpha (TNFα) inhibitors (adalimumab, 
certolizumab pegol, etanercept, infliximab), interleukin 
(IL)-17 inhibitors (brodalumab, ixekizumab, secukinumab), 
IL-23 inhibitors (guselkumab, risankizumab, tildraki-
zumab), IL-12/23 inhibitors (ustekinumab), and Janus kinase 
(JAK) inhibitors such as tofacitinib are increasingly being 
prescribed [8]. As early systemic treatment with IL-12/23 
or IL-23 inhibitors appears to be protective by reducing the 
risk of arthritis progression [17], and treatment with TNFα 
inhibitors is suggested to reduce occurrence of cardiovas-
cular events [11, 18], timely diagnosis and accurate severity 
assessment are increasingly critical. In addition, apart from 
facilitated diagnosis and treatment surveillance, objective 
image-based AI support could hopefully lead to a fairer 

Fig. 1  Clinical examples of 
different psoriasis subtypes. 
A Plaque psoriasis. B Eryth-
rodermic psoriasis. C Guttate 
psoriasis. D Pustular psoriasis. 
Clinical image courtesy of the 
University Hospital Basel
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distribution of resources and improve the quality of clinical 
trial data [16].

With such high hopes for AI to address unmet needs in 
the management and treatment of psoriasis and ultimately 
provide faster, cheaper, and more accurate results, some 
important questions remain—where are we now and what 
might our near future really look like? What challenges do 
we still face and how might they be overcome? After pro-
viding a basic introduction to the concept of image-based 
AI, the aim of this article is to provide an overview of cur-
rent developments and their potential in psoriasis applica-
tions. Subsequently, we will discuss the remaining hurdles to 
implementation of AI for routine use and research purposes.

2  Overview of Image‑Based Artificial 
Intelligence (AI)

Successful interpretation of computer-generated results 
and useful assistance for clinical decision making requires 
that dermatologists first acquire an understanding of the 
basic concepts of image-based AI.

In our review we will focus on machine learning (ML), 
currently the most commonly used subset of AI for medi-
cal applications regarding psoriasis [1]. ML allows a com-
puter program to extract data patterns and attributes in an 
automated learning process in order to complete a given 

task [19]. ML that uses deep neural networks (DNNs) ena-
bles complex predictions by processing data in a similar 
way to biological neurons [1, 19]. Specifically, CNNs—a 
type of DNN architecture designed to process input data 
with a grid pattern—have proven well suited for medical 
image classification tasks [20–22].

In simple overview, a CNN consists of an input layer, 
multiple hidden layers, and an output layer (Fig. 2). The 
input layer receives the input image pixel values, which 
are passed on to a series of hidden convolution and pool-
ing layers [21].

A convolution layer typically uses combinations of lin-
ear mathematical ‘convolution’ functions as filters while 
scanning the input image by employing small, learnable 
parameter grids named ‘kernels’ to identify features and 
extract them [22]. In simple terms, these filters can be 
thought of as a magnifying glass that scans and focuses on 
small image sections to identify features such as edges or 
textures. As an analogy, one could imagine a resident der-
matologist first examining a patient for clinical findings.

Next, an activation layer applies a non-linear mathemati-
cal function (most commonly the rectified linear unit, or 
ReLU) to the previous output to introduce complexity to the 
network and therefore allow more intricate tasks to be per-
formed [22]. More simply, this layer decides which patterns 
are important by using ReLU to highlight significant features 
and ignore irrelevant information. In our analogy, the new 

Fig. 2  Exemplary architecture of an image-based convolutional neu-
ral network (CNN). Feature extraction: The input layer receives the 
pixel values of the input image. In the convolution layer, filters are 
used to scan the image in many sections to detect features such as 
edges or shapes, like a magnifying glass that highlights important 
details. In the activation layer, a mathematical function is applied 
to handle complex patterns by introducing non-linearity, like a light 
switch that highlights important details. The pooling layer zooms in 

on the big picture, summarizing information and reducing data size 
to make further processing steps more efficient. Classification: In the 
fully connected layer, all previously detected features are combined to 
make a final classification, or diagnosis. This result is presented in the 
output layer with a probability score. Clinical image courtesy of the 
University Hospital Basel, used with patient permission. ReLU recti-
fied linear unit
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resident would further consult with a senior dermatologist 
to determine which clinical findings on the skin are relevant.

Pooling layers apply mathematical functions to reduce 
the dimensionality of the feature maps produced by convo-
lutional layers (e.g., by selecting the maximum or average 
value of the current view) [23]. In other words, this layer 
zooms out to see the bigger picture by focusing on the most 
important features while reducing the size of the data to 
make the information easier to manage. In our analogy, the 
senior dermatologist would summarize the resident`s find-
ings in a short report.

The feature map resulting from the entire extraction 
process is then flattened into a one-dimensional vector and 
mapped by fully connected layers with learnable weights 
to the final network outputs, that is, class probabilities of 
dermatological diagnoses [22]. The learnable kernels and 
weights of the model are then optimized in an automated 
training process with the goal of reducing the differences 
between the real image classification, or ground truth, and 
output classifications calculated by the models [22]. In our 
analogy, this step can be imagined as a panel of expert der-
matologists reviewing the summary report from the senior 
physician and integrating all available information to make 
a final diagnosis of the skin disorder of the patient.

Model training can be performed in a supervised, semi-
supervised, or unsupervised manner [21]. In supervised 
learning, which is most commonly used for image classifi-
cation tasks, training inputs are pre-labelled to provide the 
correct output for the model for trial and error improvement 
of the classification error [19, 21]. In unsupervised learning, 
unlabeled training data sets allow pattern discovery without 
human guidance in the form of a ground truth [19, 21]. As a 
combination of these two forms, semi-supervised learning 
is helpful in reducing the burden of labelling [19].

If the training data set size is too small, the model may 
overfit, meaning that the model only reflects the test distribu-
tion and does not generalize well to unseen input [23]. To 
counteract this issue, image augmentation techniques such 
as flipping, color adjustment, cropping, rotation, transla-
tion or noise injection can be applied to the training set to 
achieve more accurate model predictions [23]. The current 
approaches of image data augmentation techniques and their 
effects on model performance have recently been extensively 
reviewed [24]. For example, Krizhevsky et al. developed the 
AlexNet CNN architecture based on training on the Ima-
geNet dataset [24, 25]. The authors increased the size of 
the dataset by 2048 times through image augmentation by 
randomly cropping, rotating, and color adjusting the original 
images, which helped reduce the error rate of the model by 
over 1% by avoiding overfitting [24, 25].

3  Current Applications and Potential 
of Image‑Based AI in Psoriasis

Main automated image analysis applications in psoriasis 
include detecting and outlining lesion borders, differentiat-
ing psoriatic lesions from other skin conditions, objectively 
calculating area involvement and severity scores, as well as 
selecting treatments and predicting their response.

3.1  Image Segmentation of Lesions

In addition to correctly identifying psoriasis on skin pho-
tographs, a critical step in performing next-level tasks such 
as assessing disease severity is the automated detection and 
delineation of individual lesions. Manual image segmen-
tation is a tedious task for dermatologists, so researchers 
have focused on developing automated image segmentation 
algorithms. A major advantage for this feat is that psoriatic 
lesions are usually easy to distinguish from the surround-
ing unaffected skin. However, challenges arise from poor 
image quality, including insufficient illumination, blur, or 
artifacts such as camera reflections, as well as the polymor-
phic appearance of lesions [26]. Previous algorithms often 
relied on feature engineering (e.g., feature-based Bayesian 
framework), lacked accuracy, or failed to segment challeng-
ing input images correctly (e.g., Markov random field com-
bined with a support vector machine), limitations that have 
been partially overcome by the use of CNNs [1, 26]. Dash 
et al. developed PsLSNet, a 29-layer deep U-net-based CNN 
(designed for image segmentation, featuring a U-shaped 
architecture that effectively captures context in images and 
enables precise localization), which automatically extracts 
spatial information and was validated on 5241 images from 
1026 psoriasis patients, including more challenging images 
[26]. Results showed an accuracy of 94.8%, outperforming 
all previous approaches [26]. In addition, two deep learning 
models (DLMs) based on a U-net architecture with a ResNet 
backbone (which enables training of very deep models with 
hundreds or thousands of layers) were developed and trained 
by Amruthalingam et al. to anatomically map and segment 
hand eczema lesions with high accuracy [27]. According to 
the authors, this model could also be applied to psoriasis, 
as both conditions can present very similarly with red, scaly 
patches and plaques on the dorsal and palmar aspects of the 
hands [27].

At the histopathological level, CNNs are expected to 
provide future clinical support by automatically analyz-
ing skin biopsy images. As a first step, a U-net-based CNN 
was applied by Pal et al. to successfully segment psoriasis 
skin biopsy images into epidermis, dermis, and non-tissue, 
which is a prerequisite for the development of more sophis-
ticated models that can recognize characteristic pathological 
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features of the disease within each skin layer [28]. Such 
forms of image segmentation are not only valuable at the 
microscopic level, but can also be applied to macroscopic 
images to evaluate the presence of lesions, as well as disease 
extent and severity, as outlined in the following sections.

3.2  Diagnosis and Subtype Classification

For proper treatment, psoriasis must first be correctly diag-
nosed. In clinical routine, diagnosis is usually based on 
an inspection of the entire skin surface, including scalp 
and nails, while taking into account the patient’s medical 
and family history. Significant advances have been made 
by several research groups in developing image-based AI 
algorithms trained on large datasets of annotated psoriasis 
images to extract quantitative image features and automati-
cally detect and classify lesions [29–33].

Aggarwal [29] was able to improve the performance of 
a CNN model discriminating five dermatological diseases 
(acne, atopic dermatitis, impetigo, psoriasis, and rosacea) 
by augmenting the input data with image transformations 
such as zooming, shearing, rotating, and horizontal and 
vertical flipping. Zhao et al. developed a two-stage CNN 
using 8021 images to discriminate nine different diagno-
ses based on clinical photographs, which made 9% fewer 
errors in diagnosing psoriasis compared with 25 dermatolo-
gists using a test set of 100 images (accuracy of CNN: 0.96, 
mean human accuracy: 0.87) [30]. Using Xiangya-Derm, 
the largest dermatology data set of the Chinese population 
with over 150,000 clinical images of 571 different skin dis-
eases, Huang et al. developed a CNN to differentiate six 
common skin diseases, outperforming the accuracy of 31 
dermatologists by 6.6% [31]. Several other CNNs have been 
developed to discriminate psoriasis from other dermatologi-
cal diagnoses, with overall accuracy mostly comparable to 
or better than dermatologists [32, 33]. However, there is a 
lack of research on real-world applicability and open-source 
training data for currently published algorithms.

Furthermore, image-based AI applications need not be 
limited to the analysis of macroscopic images. Dermo-
scopic images offer high-resolution visualization of the skin, 
revealing subtle details such as vascular or pigment patterns 
through magnification of epidermal and upper dermal lay-
ers, potentially enhancing diagnostic accuracy depending on 
the clinical task. However, acquiring and interpreting these 
images requires time, specialized equipment, and exper-
tise. For CNN classification purposes, dermoscopic image 
data sets tend to be more standardized, improving model 
generalizability.

In contrast, macroscopic images are more accessible, 
faster to acquire, and provide a broader clinical overview 
of lesions, making them preferable for initial screenings. 
Based on macroscopic assessment, clinicians can determine 

whether additional dermoscopic examination is necessary. 
A combined approach, utilizing both macroscopic and der-
moscopic images, can be advantageous in providing both 
context and detail.

For instance, differentiating between psoriasis and sebor-
rheic dermatitis on the scalp can be challenging using mac-
roscopic assessment alone. Dermoscopy can offer additional 
diagnostic clues, such as the presence of annular and hairpin 
blood vessels indicative of psoriasis, or unstructured white 
areas and atypical vessels suggestive of seborrheic dermati-
tis, aiding in more accurate diagnosis [34]. Yu et al. trained 
GoogLeNet, a 22-layer deep CNN pre-trained on the Imag-
Net dataset, to differentiate scalp psoriasis from seborrheic 
dermatitis using dermoscopic images [34]. The algorithm 
outperformed five dermatologists with varying levels of 
experience with a 26.7% higher sensitivity and 6.8% higher 
specificity (sensitivity: CNN 96.1%, dermatologists (mean) 
69.4%; specificity: CNN: 88.2%, dermatologists (mean) 
81.4%) [34]. Furthermore, non-qualified physicians were 
able to achieve diagnostic performance similar to that of 
dermoscopy-proficient dermatologists through assistance 
from the model (mean sensitivity 79.1%, mean specificity 
81.9%) [34].

This suggests that physicians without specialized train-
ing (e.g., in remote areas) or teledermatological applica-
tions could directly benefit from additional AI expertise to 
optimize patient management with dermatologists referred 
to when needed. The Telemedicine Working Group of the 
International Psoriasis Council recently determined that 
managing psoriasis through teledermatology is feasible in 
most cases, with exceptions for special affected areas such as 
the genitals or scalp [35]. A previous study has demonstrated 
that both online and in-office dermatologic follow-ups for 
psoriasis result in comparable improvements in psoriasis 
severity and Dermatology Life Quality Index scores [36]. 
While diagnostic AI holds significant potential to enhance 
these services, further studies are necessary to assess its 
implementation and effectiveness.

In terms of subtype classification, a CNN was used by 
Aijaz et al. to differentiate plaque, guttate, inverse, erythro-
dermic, and pustular psoriasis with high accuracy (84.2%) 
[37]. The training sets used included 80% of 172 images of 
normal skin and 301 images of psoriasis from the Derm-
net dataset, while the remaining 20% were used for valida-
tion and testing [37]. Plaque and guttate psoriasis images 
were overrepresented in the dataset (plaque: n = 99, gut-
tate: n = 96), followed by pustular (n = 48), erythrodermic 
(n = 33), and inverse psoriasis (n = 25) [37]. Regarding 
the classification performance for individual subtypes, the 
highest accuracy was achieved for inverse psoriasis (100%), 
followed by a sensitivity of 96.5% for normal skin (28/29), 
87.2% for guttate (34/39), 85.2% for erythrodermic (23/27), 
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73.3% for pustular (22/30), and 70% for plaque psoriasis 
(28/40) [37].

A major limitation of these reported results is the lack 
of external test sets with diverse patient populations in dif-
ferent clinical settings, which would provide more insight 
into the generalizability of algorithms and their potential 
for real-world clinical use. In addition to psoriasis sub-
types, other differential diagnoses presenting with red, scaly 
plaques such as atopic dermatitis, tinea corporis, mycosis 
fungoides, pityriasis rosea, or cutaneous lupus erythema-
tosus must be distinguished from psoriasis by AI. To make 
an accurate diagnosis, CNNs must be trained using large 
datasets containing these differential diagnoses to recognize 
subtle differences in appearance and distribution patterns. As 
dermatology training sets become larger and include more 
images of psoriasis subtypes, differential diagnoses, and 
diverse patient populations, future algorithms are expected 
to become more comprehensive. In addition to diagnostic 
applications, AI has great potential to facilitate the assess-
ment of the extent and severity of psoriasis, as detailed in 
the following section.

3.3  Assessment of Disease Extent and Severity

Automated assessment of psoriasis disease extent and sever-
ity has the potential to significantly reduce physician work-
load while ensuring a high degree of standardization and 
reproducibility.

3.3.1  Clinical Scores

Dermatologists currently mainly use the PASI, BSA, or PGA 
systems to grade clinical severity of plaque psoriasis [2, 14].

PASI is most commonly used in research studies and 
assesses the intensity of erythema, induration, and desqua-
mation on different anatomical areas using a scale from 0 
to 72 (maximum disease activity) [38]. It is often used as a 
standard measurement tool in the validation of new scores 
and usually correlates well with physician-based assess-
ments, as measured by Spearman or Pearson correlation 
coefficients [13]. For example, Bozek and Reich evaluated 
the reliability of PASI, BSA, and PGA in the examination of 
nine patients by ten dermatologists, with each subject being 
assessed twice by the physicians [14]. Significant Pearson 
correlations were observed between all three scales, and no 
assessment instrument was significantly superior [14]. Major 
criticisms of the PASI score include its complexity, exten-
sive time requirements, high variability, low responsiveness 
in mild disease, and non-linear scale [13–15]. Since PASI 
uses a discontinuous score from 0 to 6 to assess area involve-
ment (0: 0%, 1: 1–9%, 2: 10–29%, 3: 30–49%, 4: 50–69%, 5: 
70–89%, 6: 90–100%), changes within a score interval are 
not adequately reflected [39]. To address these inaccuracies, 

the linearly increasing PrecisePASI score was developed to 
accurately reflect the severity of lower BSA ranges by using 
the actual percentage of area involvement as opposed to 
imprecise area class intervals [39].

BSA calculation is often included in the assessment of 
psoriasis severity and can be estimated using the ‘rule of 
nines’ or the number of patient hand areas affected (with one 
hand representing approximately 1%) [13]. While computa-
tion is easily feasible in clinical routine and results in a linear 
measure, BSA is prone to overestimation and inter-rater reli-
ability is variable [13].

PGA provides an ordinal 5- to 7-point rating ranging 
from ‘clear’ to ‘very severe psoriasis’, with good reliabil-
ity independent from observer experience [13]. PGA has 
been shown to display the highest inter-rater reliability in 
comparison with BSA and PASI by Bozek and Reich (coef-
ficients of variation [%]: PGA 29.3, PASI 36.9, BSA 57.1) 
[14]. It can be used statically to assess a single time point or 
dynamically for baseline comparison. Disadvantages include 
the high inter-rater reliability and lack of body surface area 
assessment [14]. Given these limitations, a more reproduc-
ible, standardized, and time-efficient estimation of disease 
severity is needed, which could be provided by image-based 
AI algorithms.

3.3.2  Automated Severity Scoring of Plaque Psoriasis

A prerequisite for automated severity scoring is the imple-
mentation of an accurate image segmentation algorithm [1, 
26–28]. With the advancement of ML methods, CNNs (i.e., 
using U-net models) have already been developed that can 
estimate BSA at the level of a dermatologist [40]. However, 
the automated assessment of individual clinical PASI subcri-
teria from two-dimensional images is more technically chal-
lenging, especially with regard to three-dimensional features 
such as induration. Schaap et al. achieved this feat by using 
a CNN structure that takes ordinal scales into account and 
trained a separate network for each anatomical region (trunk, 
arms, and legs) and each PASI subscore category (erythema, 
induration, desquamation, and area), resulting in 12 CNNs 
[41]. The models were able to demonstrate similar perfor-
mance to dermatologists in the scoring of erythema, scal-
ing, and induration, while outperforming physician assess-
ment in image-based area scoring [41]. A single-shot PASI 
system (SS-PASI) was developed by Okamoto et al., which 
assesses a simplified psoriasis severity score from a single 
input image of the trunk, since photographs of this anatomi-
cal area are usually readily available, fairly standardized, 
and show a large skin surface [42]. The CNN performed 
consistently with SS-PASI scores of human raters (13 der-
matologists, 9 medical students) using a test set of 10 images 
that were excluded from the training images [42]. However, 
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since the training set used by the authors contained only 
670 psoriasis images, risk of overfitting is possible [19, 43].

While these and further examples from research applica-
tions and have previously been reviewed by Liu et al. [1], 
we would like to focus on currently available clinical tools.

3.3.3  Commercially Available Systems For Semi‑Automated 
Severity Scoring

The use of total body photography (TBP) lends itself to 
automated psoriasis severity calculations in routine practice. 
Currently, there are two commercially available systems that 
use standardized photo documentation, automated segmen-
tation, and subsequent semi-automated computer-assisted 
PASI calculation for patient assessment and follow-up.

3.3.3.1 Automated Total Body Mapping FotoFinder 
 ATBM® Systems GmbH (Bad Birnbach, Germany) uses 
Automated Total Body Mapping (ATBM) to provide a 
standardized, two-dimensional overview of the skin surface 
by allowing patients to assume various anatomical positions 
in front of a dynamic mount with a cross-polarized, xenon-
flash, high-resolution camera [44]. Using FotoFinder’s 
 PASIscan® analysis software, the underlying psoriasis type 
can be selected and automated lesion segmentation is per-
formed to estimate PASI pre-score values, including affected 
body surface area of the head, arms, trunk, and legs, as well 
as erythema, plaque thickness, and scaling [44]. These val-
ues can then be manually adjusted by the physician for final 
PASI calculation, which may be particularly necessary for 
areas covered by hair, such as the scalp, or body parts cov-
ered by underwear. During follow-up, images can be viewed 
side by side for direct comparison and improvement is auto-
matically quantified by PASI 50, 75, 90, or 100 (indicating 
50%, 75%, 90%, or 100% improvement from baseline) [44]. 
The accuracy and reproducibility of this algorithm was eval-
uated in a comparative observational study involving three 
trained physicians and 120 plaque psoriasis patients, which 
showed a high level of human–AI agreement and demon-
strated superior repeatability of AI assessment compared 
with physicians [45]. Based on the promising precision and 
reproducibility, it may be recommended for use in clinics 
with financial access to such technologies or for research 
trials after further studies have been conducted. Limitations 
include the inability of some patients (especially the elderly) 
to reach predefined positions for image acquisition, and the 
time resources and/or additional personnel required to cap-
ture respective image series [45]. In addition, lack of auto-
mated psoriasis subtype identification and body sites such 
as the genital area or hairy scalp that still require additional, 
thorough clinical examination by a dermatologist are a main 
limitation for the development of a fully automated score 
calculation.

3.3.3.2 3D Total Body Photography In recent years, 3D 
TBP has been commercially developed using the VECTRA ® 
WB360 (Canfield Scientific, Parsippany, New Jersey, USA) 
and overcomes some of these limitations. This system uses 
images captured instantaneously by 92 cameras in a single 
anatomical position to create a digital avatar of the patient’s 
skin surface from two-dimensional images in macro-quality 
resolution, excluding plantar surfaces, mucous membranes, 
and areas covered by hair (Fig. 3). A psoriasis assessment 
tool has recently been developed for the software that allows 
automated segmentation of the 3D avatar and calculates the 
lesion coverage of each anatomical region (head and neck, 
arms, trunk, legs, and whole body) [46]. Physicians can then 
manually score the erythema, induration, and desquamation 
of each region to calculate an automated whole body PASI 
score. Potential benefits include a simplified, more time-
efficient image acquisition process. This novel algorithm 
has, however, not yet been validated in clinical trials. For 
melanoma screening, it has already been shown that patients 
prefer the 3D TBP system to the 2D-TBP system, mainly 
based on the more time-efficient, facilitated imaging process 
[47]. Further real-world comparative studies are needed to 
determine patient and physician preferences for psoriasis 

Fig. 3  VECTRA ® WB360 avatar of a psoriasis patient captured by 
3D total body photography. Clinical image courtesy of the University 
Hospital Basel, used with patient permission
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applications and to demonstrate true benefit of the Canfield 
algorithm in clinical use. Limitations of this system include 
its high acquisition cost and the significant space needed 
for setup, which restrict its clinical availability mainly to 
larger centers. Additionally, time and personnel resources 
are required to manually score erythema, induration, and 
desquamation for each region to calculate the whole-body 
PASI score. Automatic psoriasis subtype identification, sim-
ilar to Automated Body Mapping, is currently not yet pos-
sible. Furthermore, special areas such as the scalp or plantar 
surfaces are not imaged and must be examined separately, 
limiting the potential use in remote settings (Fig. 3).

3.3.4  Automated Severity Scoring of Other Psoriasis 
Subtypes

While the above-mentioned algorithms focus mainly on 
severity analysis of plaque psoriasis, research has recently 
shifted towards other subtypes. Several well-established 
clinical scores have been developed to assess disease sever-
ity in psoriasis subtypes such as generalized pustular psoria-
sis (e.g., Generalized Pustular Psoriasis Area and Severity 
Index [GPPASI]), or for involvement of specific locations 
such as the nails (Nail Psoriasis Severity Index [NAPSI]) 
[48, 49]. Similar to plaque psoriasis assessments, calcula-
tion in a clinical setting can be tedious and time consuming, 
a task that could potentially be facilitated and standardized 
by the use of AI.

Folle et al. used a transformer DLM, which uses self-
attention mechanisms to weigh the importance of different 
parts of the input image, to automatically quantify NAPSI 
scores with high agreement with human annotations (Pear-
son correlation of 90%) [49]. Amruthalingam et al. quanti-
fied pustular psoriasis efflorescences using a DLM to objec-
tively evaluate disease activity [50]. A very high agreement 
was reached between the model’s predictions and expert 
labelling using a test set (intraclass correlation coefficients 
[ICC]: 0.97 for count and 0.93 for surface percentage) [50]. 
Reliability was confirmed by application to an unstandard-
ized test set with multiple pustular disorders (Spearman 
correlation [SC] coefficients compared with dermatologist 
evaluation: 0.66 for count and 0.80 for surface percentage) 
[50].

While an automated severity score of plaque psoriasis 
would certainly meet the most common demand, we believe 
that it is important to continue a parallel investigation of 
AI applications in these rarer subtypes. If the accuracy and 
reliability of such algorithms continue to improve and even 
surpass human performance in future studies, we predict that 
semi- to fully automated severity scoring will soon serve as 
the gold standard in centers where respective technologies 
are available and for clinical trial assessments. By offer-
ing the advantages of consistency, objectivity, efficiency, 

precision, and scalability, AI could potentially overcome 
the limitations of current clinical assessment scores.

3.4  Treatment Selection and Response

Predicting treatment response and personalizing drug selec-
tion has great potential to improve the quality of life of pso-
riasis patients and optimize long-term outcomes. Currently, 
clinical treatment strategy is based on disease severity, sub-
type, location, presence of psoriasis arthritis and other co-
morbidities, as well as patient preference and satisfaction 
[8].

Several AI applications have been developed that attempt 
to identify potential biomarkers and predict individual short- 
and long-term response to biologics [1, 51]. For example, 
the quantification of systemic inflammatory proteins meas-
ured before and four weeks after initiation of systemic treat-
ment with tofacitinib and etanercept was used to develop 
an ML model that accurately predicted long-term response 
[52]. Unsupervised cluster analysis has been used to catego-
rize psoriasis patients into three subgroups based on their 
lesional and non-lesional skin transcriptome to predict treat-
ment effects of methotrexate and various biologicals using 
an ML algorithm [53].

Since AI has the capacity to analyze extensive datasets 
including patient records, clinical photographs, and molecu-
lar characteristics, personalized treatment plans may very 
well be our near future as new patterns continue to be dis-
covered. ML approaches have already been used to show 
which patients with psoriatic arthritis would benefit from a 
higher starting dose of secukinumab [54]. We anticipate that 
image-based AI will also play a central role in the develop-
ment of automated treatment decision algorithms for psoria-
sis patients. By integrating imaging data with clinical and 
genetic information, AI models could identify optimal treat-
ment regimens tailored to individual patient characteristics, 
improving therapeutic efficacy and reducing potential side 
effects. Features such as the clinical phenotype, lesion dis-
tribution, and severity could be extracted from photographs 
using CNNs to serve as input for such treatment recommen-
dation models. In addition, potentially influential variables 
for treatment success, such as patient age, gender, ethnicity, 
comorbidities, co-medication, or previous treatments, as 
well as molecular profiles, could be considered to optimize 
treatment choice once further research has been conducted.

4  Remaining Challenges

While integration of image-based AI into routine manage-
ment of psoriasis and clinical trials yields great potential, 
many hurdles must still be overcome.
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First, the achievable levels of sensitivity and specificity 
of ML algorithms are highly dependent on the quantity and 
quality of the input data [55]. With the widespread imple-
mentation of electronic medical records and routine pho-
tographic documentation of dermatological diseases, the 
exponential amount of training data has greatly enhanced 
the ability of ML algorithms to learn and perform complex 
tasks [2]. In terms of quality, this feat is somewhat hindered 
by the current lack of standardized conditions, as images 
are captured by physicians and patients in various settings 
using different photographic devices, lighting, backgrounds, 
color calibration, and angles [2, 56]. The routine use of 
standardized total body photography systems such as the 
VECTRA ® WB360 (Canfield Scientific) or the ATBM sys-
tem (FotoFinder) partially addresses this problem, but these 
systems are expensive, require additional staff and spatial 
resources, and are therefore often only available in special-
ized centers. Because complex algorithms such as CNNs 
require extensive datasets to achieve generalizable outcomes, 
current training and validation image sets remain heteroge-
neous, making it more difficult for algorithms to distinguish 
between real and artificial discrepancies. In addition, cur-
rently available training sets lack healthy patient images that 
allow algorithms to distinguish lesions from intact skin with-
out potentially introducing biases from other features such 
as anatomical localization. With the many algorithms and 
methods currently published, there is currently no accepted 
psoriasis-specific open-source dataset that can be used to 
compare performance.

Failure to train a model with the appropriate input data 
would result in incorrect diagnostic classification and 
severity scoring. The diversity of the training set data is 
additionally critical in the development of a generalizable 
algorithm. However, patients with skin of color, elderly 
patients, children, and women are often underrepresented 
in training image repositories, leading to potentially erro-
neous results when models are applied to these patient 
populations [57–59]. For example, psoriasis in the pedi-
atric population is more prevalent on the face and flexures 
than in adults, and plaques are often smaller and thin-
ner, potentially leading to misclassification of the diag-
nosis [60]. Additionally, psoriasis manifests differently 
in various ethnicities and populations. For example, in 
skin of color (Fitzpatrick scale IV–VI), erythema may be 
less apparent and appear violaceous or hyperpigmented, 
potentially leading to severity underscoring or incorrect 
image segmentation if a model was trained with only 
lighter skin types on the Fitzpatrick scale (I–III) [61]. In 
general, the Fitzpatrick scale is widely criticized for its 
subjectivity and development with only White patients, as 
its reliance on terms such as ‘burn’ or ‘tan’ inadequately 
describe the effects of UV radiation on darker skin tones, 
calling for the use of more objective measures such as 

spectrophotometric assessments when labelling image sets 
[62]. AI models that were only trained on images from 
one population are therefore at risk of bias and inaccuracy 
when being generalized. In addition, the performance of 
algorithms regarding postinflammatory hypo- or hyperpig-
mentation after successful treatment should be assessed 
in clinical application, since residual discolorations may 
affect results if this aspect has not been considered in the 
training process.

In order to interpret outputs, physicians need to under-
stand the capability and limitations of AI models, which 
is especially critical for applications involving treatment 
decisions. In addition, especially for neural network-based 
models that often make ‘black box’ decisions, the lack of 
explainability can be detrimental to medical applications, 
as physicians need transparency to trust and integrate AI 
assessments into their clinical decisions. For medical 
image analysis tasks, several interpretability methods have 
been developed and recently reviewed, including attribu-
tion maps that highlight the important regions of an input 
image, language descriptions that provide written justifica-
tions, or internal network representations that depict dif-
ferent features learned by filters in the CNN [63]. A truly 
comprehensive algorithm, which has not been developed 
to date, needs to be transparent to clinicians and validated 
in a broad real-world setting to ensure applicability across 
all skin types, ages, genders, and clinical phenotypes.

Many of the image-based AI algorithms developed to 
date have not yet been studied in a clinical setting, so their 
real-world accuracy and utility remain uncertain. Clini-
cal trials with sufficient statistical power and validation 
studies are needed to evaluate true performance in clini-
cal practice. Psoriasis lesions vary significantly in size, 
appearance, and anatomical location, so AI models must 
prove their ability to handle this variability and complexity 
in real-world applications. Furthermore, it remains to be 
determined how real-world image transformations (e.g., 
due to slight movement of the patient or changes in light-
ing) affect consistency. For melanoma risk scoring of digi-
tal dermoscopic images using CNNs, it has already been 
shown that slight user-induced image changes can signifi-
cantly alter classification results during repeated imaging 
[64]. Therefore, additional evaluation of the robustness 
of psoriasis AI models should not be overlooked in future 
clinical trial design.

Finally, patient and physician acceptance of new technol-
ogies must be considered for successful implementation. It is 
critical to seamlessly integrate image-based AI applications 
into the clinical workflow without adding complexity to the 
patient care process, which could negatively impact percep-
tions. Compliance with regulatory standards and ethical con-
siderations regarding patient privacy, patient consent, and 
image data protection must be ensured for the responsible 
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use of image-based AI in healthcare. Overcoming these chal-
lenges and optimizing clinical workflows will require close 
collaboration between deep learning engineers, physicians, 
and researchers. We believe that interdisciplinary communi-
cation is essential to the development and implementation of 
accurate, robust, reliable, and ethical algorithms with maxi-
mum clinical utility.

As a future outlook, CNNs may soon be replaced by a 
new state-of-the-art technology for medical image clas-
sification tasks. Compared with CNNs, the use of Vision 
Transformer (ViT) algorithms has already shown promising 
results and requires a simplified training process with much 
smaller data sets [49, 65].

5  Conclusions

Dermatology is undergoing a paradigm shift with the rapid 
development of image-based AI. When applied to psoriasis, 
there is great potential to facilitate diagnosis, standardize 
and streamline management, and optimize treatment of the 
disease. Despite the promising outlook, many challenges 
remain, including validation of current models, integration 
into clinical workflows, current lack of diversity in training 
set data, and the need for standardized imaging protocols. 
However, given the current pace of technological develop-
ment, a revolution in the field has already begun, as exempli-
fied by the commercial availability of two semi-automated 
PASI score calculators based on total body photography. 
Based on previous efforts to use AI to identify potential bio-
markers and predict treatment response to biologics, it is 
anticipated that augmented intelligence will soon become 
an integral part of treatment and disease management. We 
expect to see a new diagnostic era in the care of psoriasis 
patients in the coming years due to the unprecedented capa-
bilities of AI. As research and innovation in this area contin-
ues, patient outcomes are expected to improve substantially 
while reducing the burden on healthcare systems.
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