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Abstract
Ceramides are a class of sphingolipid that is the backbone structure for all sphingolipids, such as glycosphingolipids and 
phosphosphingolipids. While being a minor constituent of cellular membranes, ceramides are the major lipid component 
(along with cholesterol, free fatty acid, and other minor components) of the intercellular spaces of stratum corneum that 
forms the epidermal permeability barrier. These stratum corneum ceramides consist of unique heterogenous molecular spe-
cies that have only been identified in terrestrial mammals. Alterations of ceramide molecular profiles are characterized in 
skin diseases associated with compromised permeability barrier functions, such as atopic dermatitis, psoriasis and xerosis. 
In addition, hereditary abnormalities of some ichthyoses are associated with an epidermal unique ceramide species, omega-
O-acylceramide. Ceramides also serve as lipid modulators to regulate cellular functions, including cell cycle arrest, dif-
ferentiation, and apoptosis, and it has been demonstrated that changes in ceramide metabolism also cause certain diseases. 
In addition, ceramide metabolites, sphingoid bases, sphingoid base-1-phosphate and ceramide-1-phosphate are also lipid 
mediators that regulate cellular functions. In this review article, we describe diverse physiological and pathological roles of 
ceramides and their metabolites in epidermal permeability barrier function, epidermal cell proliferation and differentiation, 
immunity, and cutaneous diseases. Finally, we summarize the utilization of ceramides as therapy to treat cutaneous disease.

Key Points 

Ceramides are a class of sphingolipid that are key 
constituents in the formation of a competent epidermal 
permeability barrier in the skin, and they play both 
physiological and pathological roles in skin cells.

We discuss diverse functions of ceramides and their 
metabolites in barrier function, epidermal cell prolif-
eration and differentiation, immunity, and cutaneous 
diseases, and summarize the utilization of ceramides to 
treat cutaneous disease.

We also discuss the limitations of current knowledge 
and the available experimental data on ceramides to help 
guide future studies.
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1 Introduction

In the 1880s, Johann Ludwig Wilhelm Thudichum, a Ger-
man physician who conducted biochemical research in Lon-
don, discovered a previously unidentified lipid species in 
brain tissues. His isolated lipids had a previously unseen 
amphipathic feature, with unknown biological roles and 
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structures. Faced with these mysterious lipids, and because 
the legendary Sphinx is said to have guarded the entrance to 
the Greek city of Thebes, asking a riddle to travelers to allow 
them passage, Thudichum named these lipids ‘sphingolip-
ids’ [1]. Sphingolipids are a class of lipid that contain a long-
chain (C16-20) amino alcohol (so-called sphingol or sphin-
goid base). The spingoid base’s amino residue is acylated to 
become ceramides, which are the backbone structure of all 
sphingolipids (i.e., glycosphingolipids and phosphosphin-
golipids). Ceramides are also a minor constituent of both 
plasma and cellular organellar membranes, while changes in 
cellular ceramide levels on the plasma membrane generate 
a signal to modulate cellular function; that is, to suppress 
cellular proliferation, or promote differentiation and apop-
tosis (see review articles [2–4]). Ceramides also create pores 
on mitochondrial membranes, causing cell death through 
increased membrane permeability [5]. Ceramide metabo-
lites, such as the sphingoid bases, sphingosine-1-phosphate 
and ceramide-1-phosphate, also serve as modulator lipids to 
regulate cellular function [2, 6, 7]. Additionally, ceramides 
have a unique role in terrestrial animals’ stratum corneum 

[8–11]. A heterogenous ceramide molecular species is a key 
lipid component that combines with cholesterol and free 
fatty acid in the extracellular domain of the stratum corneum 
to form optimal barrier permeability [8–11]. Moreover, some 
ceramide species, that is, ω-O-acylceramide (acylceramide) 
and 6-hydroxysphingoid base-containing ceramide species, 
and cornified envelope-bound ω-hydroxy ceramide, are only 
found in terrestrial mammals [8]. Heterogenous ceramide 
species are abbreviated as previously reported [12, 13] with 
modification (Fig. 1).

Although there are several recently published review 
articles about skin ceramide, most of them are related to 
permeability barrier and skin diseases associated with a bar-
rier abnormality (190 review articles appeared in a PubMed 
search with ‘ceramide’ and ‘skin’ as key words on March 13, 
2021; article subjects were barrier [70%], lipid modulator 
[5%], sphingolipidosis [5%], and other [melanoma, lipid-
omics, general skin health; 20%]). Ceramides have multiple 
functions in cells, and here we discuss diverse physiologi-
cal and pathological roles of ceramides and their metabo-
lites in epidermal permeability barrier function, epidermal 

Fig. 1  Ceramide structures and heterogeneous ceramide species. Het-
erogenous ceramide species are abbreviated as previously reported 
[12, 13]. ADS N-2-OH dihydrosphingosine, AH N-2-OH-acyl-6-OH 
sphingosine, AP N-2-OH acyl-4-OH dihydrosphingosine, AS N-2-OH 
acylsphingosine, EODS ω-O-N-acyldihydrosphingosine, EOH ω-O-

N-6-OH sphingosine, EOP ω-O-N-phytosphingosine, EOS ω-O-N-
acylsphingosine, NDS N-acyldihydrosphingosine, NH N-acyl-6-OH 
sphingosine, NP N-acyl-4-OH dihydrosphingosine, NS N-acylsphin-
gosine
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cell proliferation and differentiation, immunity, and cuta-
neous diseases. Finally, we summarize the utilization of 
ceramides as medicine to treat cutaneous disease. Further 
details regarding the specific roles of ceramides and their 
metabolites can be learned from prior publications cited in 
each section of this review.

2  Role of Ceramide in Skin Barrier

The skin of terrestrial mammals deploys multiple protective 
barriers: (1) a permeability barrier that suppresses excess 
evaporation of water and loss of small molecules from skin, 
while also quelling penetration of exogenous molecules, 
allergens and microorganisms into skin [14]; (2) an oxida-
tive stress barrier, made up of antioxidant molecules such 
as glutathione and ascorbic acid [15]; (3) an ultraviolet irra-
diation (UV) barrier (urocanic acid is endogenous and UV-
absorbent) [16]; (4) a mechanical stress barrier [17]; (5) an 
antimicrobial barrier [18]; and (6) a thermal barrier [19, 
20]. The permeability barrier also serves as an antimicro-
bial barrier (preventing invasion of microbes into the skin 
and their colonization) and a thermal barrier (excess water 
evaporation decreases body temperature) in the stratum cor-
neum [19, 20]. Both tight junctions in nucleated layers of 
epidermis and extracellular lipid lamellar structures in the 
stratum corneum are responsible for permeability barrier 
functions [21], while the permeability barrier in the stratum 

corneum serves as its ‘first line of defense’ and its ‘last line 
for preserving life’.

Unique heterogeneous ceramides are the key constitu-
ent of the epidermal permeability barrier in the stratum 
corneum (note: cholesterol and certain chain lengths of 
fatty acid, as well as ceramides, are also required to form 
a secure lamellar membrane structure in the stratum cor-
neum [22, 23]). These ceramides are synthesized in late 
stages of differentiated keratinocytes. The majority of cer-
amide species are N-non-hydroxy acylsphingosine (NS) 
(carbon chain lengths of acyl residue are 16–24) in prolif-
erated and early stages of differentiated keratinocytes [24]. 
As a major ceramide species, NS is universally present in 

Fig. 2  De novo pathway of ceramide synthesis [122–129]. A α-hydroxy fatty acid, DS dihydrosphingosine (sphinganine), H 6-hydroxysphingo-
sine, N non-hydroxy fatty acid, P 4-hydroxy-dihydrosphingosine (phytosphingosine), S sphingosine

Fig. 3  Salvage (recycle) pathway of ceramide synthesis [24, 129]
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cells of mammalian tissues. Heterogenous ceramides with 
appropriate ratios and amide-linked fatty acids (carbon 
chain length and saturation) are required for generation of 
a competent, vital barrier (the synthetic pathway of these 
ceramides is summarized in Figs. 2, 3, 4 and 5; see also 
reviews [25–32]). Decreases in acylceramide and N-acyl 
4-hydroxydihydrosphingosine (N-non-hydroxy acylphyto-
sphingosine [NP]), and changes in a ceramide’s fatty acid 
chain length affect the lamellar structure periodicity and 
lipid packing in the stratum corneum, conditions that 
are seen in the common skin disease, atopic dermatitis 

(Sect. 5.1). Amongst ceramide species, acylceramides 
are essential for a vital epidermal permeability barrier 
[9, 33–35], and certain amounts and molecular species 
of acylceramide are important to form stable lamellar 
membrane structures [36, 37]. Research using X-ray and 
Fourier-transform infrared spectroscopy (FTIR) analyses 
of lipid lamellar structures has successfully characterized 
lamellar structures and also proposed several models of 
lamellar membrane structures in the stratum corneum (see 
review articles [8, 11, 38, 39]). Moreover, neutron scat-
tering analysis has also characterized the contribution of 

Fig. 4  Acylceramide synthesis 
[25–28, 30–32, 130–134]. It is 
still not completely understood 
if ω-O-acylation occurs before 
or after ceramide synthesis. 
This figure tentatively shows 
ω-O-acylation occurring after 
omega-OH ceramide production

Fig. 5  Synthesis of ceramide 
metabolites [68, 69, 135, 136]
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lipids in forming lamellar nanostructures in the stratum 
corneum [40, 41]. Yet, the structure and organization of 
lamellar membranes in in vivo skin still need to be eluci-
dated (see Sect. 2.1).

2.1  What We Do Not Know

The following areas need more clarification: (1) the 
acceptable ranges of changes in ceramide composition to 
maintain a vital permeability barrier function; (2) why 
deficiency of specific ceramide species and changes in 
fatty acid composition occur in certain skin diseases; (3) 
how changes in pH, enzyme activities (proteases, lipases, 
ceramidases), temperature, and humidity are involved in 
dynamic (from moment to moment) alteration of lamel-
lar membrane structure and function in the limited part 
of the stratum corneum in in vivo skin; (4) why, despite 
humans and other mammals (albeit characterization of the 
ceramide profile is limited to a small number of animals, 
such as mouse, guinea pig, dog, and pig) having different 
ceramide species profiles, these mammals when healthy 
have competent permeability barrier function [42–45]; (5) 
identification of the enzyme that synthesizes 6-hydroxy 
sphingoid base; (6) why although the corneocyte lipid 
envelope is thought to be a scaffold of lamellae in the stra-
tum corneum [46, 47], there is no experimental evidence 
about its function; and (7) the regulatory mechanism that 
forms vital lamellar membrane structures in the stratum 
corneum.

3  Roles of Ceramides in the Modulation 
of Epidermal Proliferation 
and Differentiation

Ceramides and their metabolites (sphingoid base, sphin-
goid base-1-phosphate and ceramide-1-phosphate) are lipid 
mediators that modulate cellular function. Ceramide and 
ceramide metabolite-mediated modulations of cell function 
are very apparent in cells. NS, present in all mammalian 
tissue cells as a major ceramide species, has been shown 
to be a modulator ceramide [2, 48, 49]. Phytosphingosine 
and phytosphingosine-1-phosphate have been investigated 
as pharmacological modulators [50], while recent stud-
ies demonstrated that phytosphingosine-1-phosphate does 
not have the ability to modulate cellular function [51, 52]. 
Interestingly, prior studies have demonstrated that acylglu-
cosylceramide promotes keratinocyte differentiation through 
increasing cellular  Ca2+ concentration and protein kinase 
C activation [53, 54], but it has not been proven that other 
ceramide species identified in the epidermis (in vivo) have 
the ability to modulate cellular function.

Ceramides and sphingosine can add anti-mitotic and 
pro-cell death features to cells, including in keratinocytes. 
Sphingomyelin (N-acyl-sphingonyl-1-phosphocholine) 
located on plasma membranes produces ceramide by acti-
vation of acidic or neutral sphingomyelinase in response to 
extracellular stimuli such as inflammatory cytokines [55, 
56]. Increased ceramide creates a platform that can mediate 
a death-inducing signaling complex [57]. Ceramide that is 
generated on plasma membranes can be changed back to 
sphingomyelin by plasma membrane residential sphingo-
myelin synthase (SMS) 2, an isoform of SMS [48, 58, 59]. 
SMS2 is partly involved in the maintenance or regulation of 
cell proliferation, differentiation and cell death [48, 58, 59].

An increase in intracellular ceramide induces apoptosis 
and mitosis, and it modulates insulin signaling through bind-
ing to certain proteins (ceramide-binding proteins) [3, 49], 
such as ceramide-activated protein phosphatases (protein 
phosphatase [PP]1 and PP2A) [60], protein kinase C zeta 
[61], and cathepsin D [62]. Ceramides also affect membrane 
fluidity that alters mitochondrial function, including elec-
tron transport via suppression of the respiratory chain [63] 
and mitophasy via interaction with LC3BII (microtubule-
associated proteins 1A/1B light chain 3B) [64].

In keratinocytes, inhibition of ceramide hydrolysis by a 
specific inhibitor of alkaline ceramidase, 4-(dimethylamino)-
pyridine (DMAP), and by conversion of ceramide to glu-
cosylceramide by a specific glucosylceramide synthase 
inhibitor, d-threo-1-phenyl-2-hexadecanoylamino-3-mor-
pholino-1-propanol (d-PPMP) increases caspase-14 expres-
sion at the transcriptional levels [65]. Caspase-14 hydrolyzes 
filaggrin to generate natural moisturizing factor (NMF) [66]. 
Sphingoid bases also modulate cellular functions. Prior stud-
ies demonstrate that (1) phytosphingosine increases trans-
activation of peroxisome proliferator-activated receptors 
(PPARs) [50]; (2) topical phytosphingosine suppresses phor-
bol ester-mediated inflammation (other sphingoid bases were 
not examined) [50]; and (3) lipidomic and transcriptomic 
analyses show that among sphingoid bases, dihydrosphin-
gosine (sphinganine) is potent in promoting differentiation 
and ceramide production in keratinocytes [67].

Sphingosine-1-phosphate (S1P), which is synthesized 
from sphingosine by sphingosine kinase (SPHK) 1 [68] 
and SPHK2 [69], modulates cellular function by S1P 
receptor-dependent and -independent pathways. Five S1P 
receptors (all class G protein coupled receptors) have been 
identified, and keratinocytes express all of them [70]. S1P 
is secreted from cells via an ATP-binding cassette (ABC) 
transporter, spinster homolog 2 (SPNS2), that is a mem-
ber of the large family of non-ATP-dependent organic 
ion transporters and of the major facilitator superfamily 
domain containing 2A (Mfsd2a) [71]. S1P modulates cel-
lular function in an autocrine and a paracrine fashion in 
S1P receptor-dependent pathways. S1P is a pro-mitogenic 
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lipid mediator in cells and suppresses proliferation of cer-
tain cells, including KC (i.e., S1P stimulates KC differen-
tiation) [72]. S1P also modulates cellular function via a 
receptor-independent pathway. S1P generated by SPHK2 
in the nucleus inhibits histone deacetylase (HDAC) 1 and 2 
[73]. In addition, S1P synthesized by sphingosine kinase 1 
(but not SPHK2) activates cathelicidin antimicrobial pep-
tides (CAMP/LL-37) in cells, including human keratino-
cytes (KC) [52, 74] (see Sect. 4) (Fig. 6). S1P also binds 
to two heat shock proteins, (HSP) 90 and HSP90α, and 
endoplasmic reticulum residential GRP94, leading to for-
mation of a signaling complex with TRAF2, TRADD, and 
RIP1, followed by activation of NF-κB and then C/EBPα 
[74]. Yet, the S1P-independent pathway is not completely 
characterized as compared with the S1P receptor-depend-
ent mechanism.

3.1  What We Do Not Know

These studies suggest that pharmacological modulation 
of ceramide and sphingoid base amounts in skin should 
be useful for treatment of skin diseases associated with 
abnormal epidermal proliferation and differentiation, and 
inflammation. However, the physiological roles of ceramide, 
ceramide-1-phosphate, sphingoid base, and sphingoid base-
1-phosphate mediated regulation in epidermal proliferation 
and differentiation in vivo still need to be determined.

4  Roles of Ceramides and Their Metabolites 
in Modulation of Skin Immunity

Sphingomyelin (whose backbone ceramide structure is 
NS) is a major lipid species in plasma membranes. Sphin-
gomyelinase hydrolyzes sphingomyelin to generate cera-
mides. Five isoforms of sphingomyelinase (one acidic, 
three neutral and one alkaline sphingomyelinase) are iden-
tified in mammals [75, 76]. Both the acidic and neutral 
sphingomyelinase 2 are involved in immunity. Sphingo-
myelinase in T cells is activated to generate ceramide in 
response to stimuli, such as cytokines and clustering of 
receptors, including CD95, CD40 and tumor necrosis fac-
tor (TNF) receptor 1. Generated ceramide promotes T-cell 
migration through cytoskeletal polarization and interacts 
with endothelial cells, contributing to homing CD4+ T 
cells [77]. CD3/CD28 stimulation-mediated  CD4+ T-cell 
activation is required for acidic sphingomyelinase [78]. 
However, exogenous ceramide does not rescue regulation 
of CD3/CD28 stimulation-mediated  CD4+ T-cell activa-
tion [78]. These studies elucidated that acidic sphingo-
myelinase interacts with CD3/CD28, blocks the down-
stream signaling pathway of CD3/CD28, and results in 

suppressing differentiation of  CD4+ T cells to Th17 cells 
[78].

Neutral sphingomyelinase 2 is localized at the cyto-
solic leaflet of the plasma membrane, and its activity helps 
maintain mitochondrial function and energy production 
in stimulated  CD4+ T cells [79]. Lack of neutral sphingo-
myelinase 2 activity causes hyper-responsiveness to CD3/
CD28 co-stimulation by excessive elevation of mitochon-
drial function (i.e., accumulation of ATP and increases 
in glycolytic activity) [79]. These studies suggest that 
ceramide produced from sphingomyelin regulates  CD4+ 
T-cell functions through governing mitochondrial energy 
metabolism.

S1P levels are high in blood and lymph in the sub-
micromolar range and low in intracellular and intersti-
tial fluids, resulting in the creation of an S1P gradient. 
Because S1P has a chemotactic feature, this gradient medi-
ates the egress of lymphocytes between lymphoid tissues 
and general circulation. Topically, S1P and FTY720 sup-
press Langerhans cell migration from skin to the drain-
ing auricular lymph node in hapten-treated skin via S1P1 
receptor activation (keratinocytes expressed all five 
receptors, while immune cells express S1P1). In addition, 
migration of dendritic cells is reduced by S1P and FTY720 
[80]. S1P also attenuates the antigen uptake of epidermal 
dendritic cells [81], so pharmacological modulation of 
S1P metabolism can be translated into disease treatment.

S1P and ceramide-1-phosphate stimulate innate immu-
nity through antimicrobial peptides, namely, the cathelici-
din antimicrobial peptide (CAMP) and human ß-defensin 
2 and 3, respectively, in response to external stress, such 
as ultraviolet irradiation and other type of oxidative stress, 
and epidermal permeability barrier perturbation [74, 82, 
83]. S1P and ceramide-1-phosphate increase the produc-
tion of these antimicrobial peptides via external stress-
mediated endoplasmic reticulum (ER) stress independent 
from microbial infection [74, 82, 83].

4.1  What We Do Not Know

Still to be determined: (1) whether ceramide modulates an 
immune response in residential T cell function of skin; (2) 
although topical administered S1P suppresses Langerhans 
cell migration and antigen presentation, whether increases in 
S1P during inflammation serve as an endogenous regulator 
to suppress Langerhans cell migration and antigen presenta-
tion; and (3) whether increases in S1P occur during inflam-
mation, leading to directly suppressing inflammation, similar 
to pro-resolving lipid mediators, such as lipoxins, resolvins, 
protectins and maresins [84].
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5  Skin Disease and Abnormalities 
in Ceramides and Their Metabolites

Characterization of the unique ceramide profile in the stra-
tum corneum in the late 1970s and early 1980s led to sci-
entific exploration of ceramide in skin. Moreover, finding 
changes in ceramide profiles in the following cutaneous 
diseases facilitated utilization of ceramide as part of topical 
agents that treat barrier-compromised skin.

5.1  Atopic Dermatitis (AD)

In 1986, Melnik et al. reported bulk ceramide content in 
non-inflamed plantar skin collected by biopsy [85], and 
later (1991), two Japanese groups, Yamamoto et al. [86] and 
Imokawa et al. [87] independently reported changes in cera-
mide profiles in atopic dermatitis skin. Both Japanese labs 
showed decreases in ω-O-N-acylsphingosine (EOS) in AD 
lesional skin [86, 87]. However, Yamamoto’s group found 
no changes in bulk ceramide levels, while Imokawa’s group 
found decreases in total ceramide levels in both lesional and 
non-lesional stratum corneum [87]. The number of subjects 
used for studies were different between the two groups, and 
samples were obtained by ethanol extraction directly from 
skin surface in Yamamoto’s study and by extraction from 
cyanoacrylate-stripped stratum corneum by Imokawa et al. 
The methodological differences used may have generated 
these varying results. Decreases in (1) acylceramide and 
α-hydroxy acylsphingosine (AS); and (2) the ratio of bulk 
ceramide to cholesterol content in AD stratum corneum lipid 
(samples are collected by cyanoacrylate stripping); and a 
correlation between decreases in AS levels and increases 
in TEWL were demonstrated [88]. However, another study 
showed that NP, but not AS, are decreased in AD stratum 
corneum [89]. Since these earlier studies (including [88], 
but not [89]) did not separately quantitate AS and NP by 
thin-layer chromatography, such analytical limitations likely 
caused these differing results. Moreover, HPLC-mass spec-
trometry analysis characterizes an alteration of the amide-
linked fatty acid profile in ceramides in addition to confirm-
ing previous findings of decreases in acylceramide, NP, and 
N-non-hydroxy acyl 6-hydroxy sphingosine (NH) in atopic 
dermatitis stratum corneum [89]. Conversely, NS and AS 
are increased in the stratum corneum of atopic dermatitis 
subjects [89].

In skin lesions, the content of saturated free fatty acids 
with very long carbon chains (≥C24) is significantly reduced, 
whereas short-chain free fatty acid  (C16:0 and  C18:0) levels 
are increased [11, 90]. In parallel to changes in fatty acid 
composition of ceramides in AD stratum corneum, free fatty 
acid composition also changes (i.e., increases in shorter and 
longer fatty acids and also increases in monounsaturated 

fatty acid species) [22]. Although loss-of-function muta-
tions in the filaggrin gene (FLG) are a risk factor for atopic 
dermatitis and ichthyosis vulgaris [91, 92], there is no cor-
relation between filaggrin mutations and a change in a cera-
mide’s fatty acid chain length [22].

Ultrastructural analysis shows extrusion of lamellar bod-
ies that is required for formation of lamellar membranes 
in the extracellular spaces of stratum corneum [93]. X-ray 
analysis and FTIR verified alterations in the formation of 
well compacted lamellar membrane structures in atopic 
dermatitis (i.e., increases in less compacted hexagonal lat-
eral packing and decreases in orthorhombic lateral packing 
[compacted]) [90, 94, 95].

How is the ceramide profile changed in atopic dermatitis 
skin? (See also review article [96]). Inflammatory cytokines, 
IL-4, interferon (IFN)-γ and TNF-α decreased the level of 
acidic sphingomyelinase and ß-glucocerebrosidases at 
mRNA levels and conversely increased acid-ceramidase in 
cultured human keratinocytes [97]. Another study shows 
that IFN-γ decreased mRNA expression of elongase in long-
chain fatty acids (ELOVLs) and in ceramide synthases in 
cultured human keratinocytes and epidermal sheets [98]. 
Ceramide production is also decreased by Th2 cytokines, 
IL-4 and IL-6, accompanied by decreases in mRNA expres-
sion of serine-palmitoyl transferase-2, acid sphingomyeli-
nase, and ß-glucocerebrosidase in reconstructed human epi-
dermal equivalents [99]. Moreover, sphingomyelin deacylase 
activity in lesional as well as nonlesional skin was reduced 
[100].

However, as described below, changes in inflammatory 
cytokine levels occur in not only atopic dermatitis, but also 
other inflammatory skin diseases. Inflammatory cytokines 
contribute to changing the ceramide profile in atopic derma-
titis, but this abnormality is not specific to atopic dermatitis.

Colonization of Staphylococcus aureus is often found 
in atopic dermatitis skin, while Pseudomonas aeruginosa 
(P. aeruginosa) is also found in AD patient skin. Neutral 
ceramidase is secreted from P. aeruginosa, increasing S1P 
production, which then increases inflammatory cytokines 
IL-8 and TNF-α through NF-κB [101].

5.2  Netherton Syndrome

Netherton syndrome is caused by mutations in the serine 
protease inhibitor Kazal-type 5 gene that encodes the lym-
pho-epithelial Kazal-type–related inhibitor, and patients 
with this disease have a severely compromised epidermal 
permeability barrier. Lipid analysis of the stratum corneum 
in Netherton syndrome patients reveals that total amounts 
of both free fatty acids and ceramides are decreased in the 
stratum corneum of patients, while longer chain free fatty 
acids and monounsaturated free fatty acids are decreased and 
increased, respectively [102]. This study further showed that 
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levels of short-chain ceramides and longer-chain ceramides 
are increased and decreased, respectively; and the ratio of 
acylceramide to acylglucosylceramide is increased [102]. 
As expected, lamellar membrane organization is changed 
[102]. Moreover, a recent study characterized decreases in 
ß-glucocerebrosidase, which converts glucosylceramide to 
ceramide, and increases in acidic sphingomyelinase, which 
converts sphingomyelin to ceramide [103]. This study sug-
gests that insufficient conversion from glucosylceramide to 
ceramide increases hydrophilic glucosylceramide, which 
affects the formation of lamellar membrane structures in 
the stratum corneum in Netherton syndrome patients [103].

5.3  Psoriasis

Levels of ceramide-containing phytosphingosine (NP and 
N-2-OH acyl-4-OH dihydrosphingosine [AP]) and EOS are 
lower in the scale of lesional areas of psoriatic skin (male 
subjects) than in normal human stratum, while NS and AS 
are higher in psoriatic skin compared with normal (derived 
from abdomen skin samples of six normal subjects of both 
sexes) [12]. Another recent study demonstrated that (1) the 
ratios of NP/NS, NH/NS, NP/AS, NH/NS, NDS/AS, cera-
mide AH/AS and ceramide EOP/AS are lower in psoriatic 
skin; and (2) these ratios are lower in lesional skin compared 
with non-lesional skin. However, (3) ceramide content of 
these species are not decreased in psoriatic skin compared 
with normal skin [104]. Since both studies reported no infor-
mation about any prior drug treatments (topical/systemic) 
when skin samples were obtained, it is difficult to assess 
the influence of drugs on ceramide metabolism. Bulk cera-
mide synthesis was assessed in psoriatic epidermis using 
radio-labeled serine incorporation. In this study, psoriasis 
patients were not treated (either systemically or topically) 
for at least 1 month prior to collecting their epidermal sam-
ples. Reduction of ceramide synthesis in the lesional epider-
mis compared with non-lesional epidermis (epidermis was 
obtained by biopsies) was correlated with psoriasis area and 
severity index (PASI) score [105]. Another study examined 
ceramide species (except acylceramide) in the stratum cor-
neum obtained from tape stripping and found that (1) the 
ratio of ceramides carrying long-chain fatty acids to total 
ceramide is lower in psoriasis patients than in healthy con-
trols; (2) an in vitro study using a reconstructed skin model 
further showed that IFN-γ decreases the mRNA expression 
of ELOVL 1, 4 and 7, and of ceramide synthase (CerS) 3, 4 
and 6 enzymes; and (3) ELOVL4 and CerS 3 expression was 
regulated by a transcriptional factor STAT1 [98]. The last 
study [98] partially characterized the mechanism responsible 
for changes in ceramide profile in psoriatic skin.

What we do not know Increases in NS occur in AD, 
Netherton syndrome, and psoriatic skin. Because NS is the 
dominant ceramide species in both undifferentiated and 

differentiated keratinocytes, and because heterogeneous 
species of ceramide and ceramide containing ultra-long-
chain fatty acids are synthesized in a late stage of differenti-
ated keratinocytes; and because bulk ceramide production 
is increased in late stages of differentiated keratinocytes, 
abnormal proliferation and differentiation change ceramide 
profiles in atopic dermatitis, psoriatic, and other inflamma-
tory epidermis. Hence, it is unknown whether the changing 
ceramide profiles are unique features of atopic dermatitis 
and psoriasis. Nevertheless, normalization of ceramide lev-
els in epidermis should be used as a therapeutic strategy to 
improve barrier integrity.

5.4  Autosomal Recessive Congenital Ichthyoses 
(ARCI)

Enzymes coded by CYP4F22, SLC27A4, CERS3, PNPLA1, 
and NIPAL4 are responsible for steps required for an essen-
tial ceramide species (acylceramide) to form a competent 
epidermal permeability barrier (Fig. 4). Mutation of these 
genes causing acylceramide deficiency is a pathogenesis of 
some autosomal recessive congenital ichthyoses (ARCI). 
ALOX12B and ALOXE3 are involved in the generation of 
the vital cornified envelope-bound ω-hydroxy ceramide. In 
addition, mutation of the triacylglyceride lipase activator 
coded by ABHD5 causes an ARCI, Chanarin-Dorfman syn-
drome (Note: the triacylglyceride lipase that provides lin-
oleic acid from triacylglyceride in epidermis is unidentified) 
[31]. Fatty acids up to carbon chain length (16) are elongated 
by ELOVLs. Ultra-long-chain fatty acids (C-26-C34) syn-
thesized by ELOVL4 are used for acylceramide synthesis 
[30]. The pathogenesis of the autosomal dominant disease 
Stargardt Macular Dystrophy involves an ELOVL4 muta-
tion. In rare cases, patients with mutations on both alleles of 
ELOVL4 demonstrate ichthyosis symptoms [106].

5.5  Cutaneous Cancer

Alterations in sphingolipid metabolism are reported in can-
cers, including melanoma and squamous cell carcinoma. 
Increases in acidic ceramidase and sphingosine kinase 1 
are shown in head and neck squamous cell carcinoma skin 
[107], and changes in sphingolipid levels contribute to tumo-
rigenesis [108].

5.6  Other Skin Diseases

Reduction in ceramide levels has been reported in the skin 
of patients (who carry mutations in 3-ketodihydrosphin-
gosine reductase [KDSR], which is required for sphingoid 
base synthesis) with inherited recessive forms of progressive 
symmetric erythrokeratoderma [109, 110]. Although alka-
line ceramidase-null mice show hair loss through reduction 
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of hair follicle stem cells and stemness, the importance of 
this ceramidase isoform in human hair follicles has not been 
demonstrated [111].

6  Topical Application of Ceramides 
in the Treatment of Skin Disease

Several molecular species of ceramide and structural 
mimetic pseudoceramides (pseudoceramides have different 
physical and physiological properties compared with natural 
ceramides) have been formulated in topical skin care prod-
ucts and also in medicine to treat xerosis, psoriasis, and 
atopic dermatitis [112, 113]. Topically applied ceramides 
could improve barrier function in three different ways: (1) 
ceramides can form liquid crystalline structures, lamellar 
liquid crystalline, and gel structures with other chemicals 
formulated in the agent, forming a permeability barrier on 
the skin surface [114]; (2) ceramides can be incorporated 
into lamellar bilayer structures to enhance barrier integrity 
in the stratum corneum [115], and (3) topically applied 
ceramides can penetrate into nucleated layers of epidermis 

[116, 117]. The absorption rate is dependent upon a barrier’s 
integrity and formulation. Absorbed ceramides are hydro-
lyzed to a sphingoid base and fatty acid, which are utilized 
in endogenous ceramide synthesis. In (1) above (stable  liq-
uid crystalline structures, lamellar liquid crystalline, and 
gel structures), any ceramide species and structural mimetic 
pseudoceramides can be used for products, as long as the 
formulation makes stable liquid crystal structures on the 
skin surface. However, in (2) above (contribution to lamellar 
bilayer structure formation in the stratum corneum), because 
changes in ceramide species cause skin diseases, ceramide 
species used for topical agents must be considered carefully 
(i.e., NS and short chain length of ceramide are increased 
in atopic dermatitis skin). Acylceramide is a ceramide spe-
cies essential in forming a competent barrier. But as dem-
onstrated in recent studies, certain amounts of acylceramide 
can make more stable bilayer structures [36]. In addition, 
racemates of N-nonhydroxyacyldihydrosphingosine (NDS), 
which are mixtures of endogenous (2S,3R [D-erythro]dihy-
drosphingosine) and non-endogenous [(2S,3S and 2R,3R, 
and 2R3S [L-threo] dihydrosphingosine] ceramide, are 
sold by cosmetic companies. Lamellar membrane structure 

Fig. 6  A modulator role of ceramide metabolites, ceramide-1-phos-
phate and sphingosine-1-phosphate, in the regulation of innate 
immune response through antimicrobial peptide production in 
response to external stressors [51, 52, 74, 82, 83]. 1) cPLA2 cytosolic 
phospholipase A2; 2) 15d-PGJ2 15-Deoxy-Delta-12,14-prostaglandin 

J2; 3) PPARs peroxisome proliferator-activated receptors; 4) STAT  sig-
nal transducer and activator of transcription; 5) hBD human ß-defen-
sin; 6) NF-κB nuclear factor kappa-light-chain-enhancer of activated B 
cells; 7) c/EBP CCAAT-enhancer-binding protein α; 8) CAMP catheli-
cidin antimicrobial peptide
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packing is known to be attenuated in the lipid membranes 
containing L-threo ceramide, for example [118]. Thus, ade-
quate selection of ceramide molecular species is required for 
preparation of an effective topical formula.

Oral glycosylceramide and sphingomyelin from plants 
and milk are used (as nutraceuticals) to improve epidermal 
permeability barrier (see review articles [119–121]). In par-
ticular, these nutraceuticals have become popular in Japan. 
They are categorized into two types: (1) specified health use 
and (2) foods with function claim in Japan. These claims are 
required for approval by Japan’s Consumer Affairs Agency 
(https:// www. caa. go. jp/ en/). Some oral sphingolipids are 
hydrolyzed by digestive enzymes and enzymes derived from 
intestinal microbes, absorbed through the intestinal mem-
brane, and are transferred to the liver where they are further 
metabolized and circulated to peripheral tissues, including 
skin. During circulation, some sphingolipids are incorpo-
rated into lipoproteins, and sphingolipids may affect gut 
immunity. However, exactly how oral sphingolipids improve 
barrier function is still not completely understood [119].

7  Conclusion

Ceramides serve as structural and modulator lipids that 
maintain cellular functions (Fig. 7). In addition, unique to 
terrestrial mammals, ceramides are essential constituents in 
the formation of an epidermal permeability barrier in the 
stratum corneum, the outermost layer of skin, which serves 

as the ‘first line of defense’ and the ‘last line for preserving 
life’. Not only bulk, but also heterogenous species of cera-
mide are required for vital barrier generation. Alterations of 
ceramide molecular species occur in skin diseases that are 
associated with barrier abnormalities. Moreover, ceramide 
and its metabolites can modulate keratinocyte prolifera-
tion and differentiation, as well as modulate immunity in 
skin. Therefore, pharmacological manipulation of ceramide 
metabolism at an inter- and intra-cellular level can be a strat-
egy to prevent and to treat skin diseases.
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