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Abstract
Genetic material derived from tumours is constantly shed into the circulation of cancer patients both in the form of circulat-
ing free nucleic acids and within circulating cells or extracellular vesicles. Monitoring cancer-specific genomic alterations, 
particularly mutant allele frequencies, in circulating nucleic acids allows for a non-invasive liquid biopsy for detecting 
residual disease and response to therapy. The advent of molecular targeted treatments and immunotherapies with increasing 
effectiveness requires corresponding effective molecular biology methods for the detection of biomarkers such as circulat-
ing nucleic acid to monitor and ultimately personalise therapy. The use of polymerase chain reaction (PCR)-based methods, 
such as droplet digital PCR, allows for a very sensitive analysis of circulating tumour DNA, but typically only a limited 
number of gene mutations can be detected in parallel. In contrast, next-generation sequencing allows for parallel analysis of 
multiple mutations in many genes. The development of targeted next-generation sequencing cancer gene panels optimised 
for the detection of circulating free DNA now provides both the flexibility of multiple mutation analysis coupled with a 
sensitivity that approaches or even matches droplet digital PCR. In this review, we discuss the advantages and disadvantages 
of these current molecular technologies in conjunction with how this field is evolving in the context of melanoma diagnosis, 
prognosis, and monitoring of response to therapy.

Key Points 

Circulating free DNA can provide non-invasive, real-
time information about a patient’s tumour burden and 
subsequent response to therapy.

Development of sensitive, targeted, next-generation 
sequencing technologies that detect tumour mutations in 
circulating free DNA is revolutionising the monitoring 
of cancer patients.

1 Introduction

Liquid biopsy involves the extraction, detection, and analy-
sis of DNA, RNA, proteins, vesicles, or cells derived from 
biofluids such as blood, urine, saliva, pleural effusions, 
and cerebrospinal fluid (CSF). The development of liquid 
biopsies for genomic profiling of solid tumours as a means 
of detecting actionable mutations, monitoring cancer pro-
gression/evolution, and predicting response to therapy in a 
non-invasive manner is a rapidly growing field (reviewed 
in [1–6]).

A major biomarker of tumour-related genetic changes 
is circulating free DNA (cfDNA), specifically, the tumour-
derived circulating tumour DNA (ctDNA) fraction (reviewed 
in [7–11]). cfDNA is highly fragmented DNA with a size 
distribution of ~ 130–170 bp [12–14], which is equivalent 
to the size of nuclease-cleaved nucleosomes, and may arise 
from multiple mechanisms, including apoptosis, necrosis, 
and active secretion (reviewed in [15–17]). cfDNA can 
be found in many biofluids, including blood, urine, CSF, 
saliva, and stool. Levels of ctDNA, which often increase 
with tumour volume, can predict response to targeted and 
immunotherapies, can be used to monitor residual disease 
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and tumour heterogeneity, and can reveal expanding therapy-
resistant tumour clones (reviewed in [18–21]).

One major challenge associated with the clinical applica-
tion of ctDNA arises from the variability in patient ctDNA 
levels that is associated with cancer stage, tumour burden 
and location, response to therapy, vascularity and cellular 
turnover. Thus, levels of ctDNA relative to the total cfDNA 
pool of an individual can vary from < 0.01 to > 50% [22]. 
Coupled with the fact that cfDNA is not abundant and has 
a short half-life of only a few hours, the reliable and sen-
sitive detection of ctDNA remains challenging, especially 
in patients with early-stage cancer (reviewed in [23]). For 
blood-derived cfDNA, a number of studies have sought to 
optimise the yield and stability of cfDNA by comparing a 
range of collection tubes and other factors during blood col-
lection [24–30] and a range of commercial cfDNA purifica-
tion kits [31–37].

The methodology used to detect and analyse the genomic 
alterations in cfDNA, along with the strengths and weak-
nesses of these various approaches are the subject of a num-
ber of recent reviews [4, 10, 20, 38–40]. Cancer-associated 
alterations in cfDNA include single nucleotide variations 
(SNVs), rearrangement of genomic sequences, copy num-
ber variations (CNVs), microsatellite instability, loss of het-
erozygosity and DNA methylation (reviewed in [11]). The 
most common methods used to detect cfDNA can be classi-
fied into standard polymerase chain reaction (PCR)-based, 
digital PCR, whole-exome or targeted deep sequencing. The 

primary focus of this review is the application of digital PCR 
and targeted next-generation sequencing (NGS) gene panels 
to identify and monitor tumour-associated genetic changes 
in cfDNA isolated from cancer patients with an emphasis on 
cutaneous melanoma (Fig. 1). Other sources of circulating 
nucleic acids that have the potential to complement detection 
of cfDNA are also highlighted.

2  Biomarkers and Genetics of Melanoma

The high tumour mutation burden (TMB; i.e. the number of 
somatic mutations found in the genome of a single tumour) 
of cutaneous melanoma has been well documented, with 
the most significant driver mutations in BRAF, NRAS, NF1, 
and KIT genes [41–50]. Prior to 2010, the typical 1-year 
survival for stage IV melanoma patients was only 25% [51]. 
With the introduction of tyrosine kinase inhibitors targeting 
the mitogen-activated protein kinase (MAPK) pathway in 
patients with  BRAFV600-mutated melanoma, and antibod-
ies against immune checkpoints such as programmed cell 
death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4), the 1-year survival for patients receiv-
ing combination dabrafenib and trametinib, combination 
encorafenib and binimetinib, combination vemurafenib and 
cobimetinib, single-agent PD-1 antibodies, and a combina-
tion of PD-1 and CTLA-4 antibodies has improved to 72%, 
75%, 75%, 73%, and 73%, respectively [52–56]. However, 
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major limitations exist for both MAPK and immune check-
point inhibitors, including the emergence of drug resistance 
in the majority of patients within 12 months for MAPK 
inhibitors and low but durable response rates for single-agent 
immune checkpoint inhibitors at 10–40% [5, 57–63]. Thus, 
the identification of biomarkers that can predict and monitor 
patient responses remains a critical unmet need, and the use 
of liquid biopsies and specifically cfDNA to inform patient 
selection and monitor patient response to treatment is a rap-
idly evolving area of research (reviewed in [4, 5, 10, 64, 65]).

3  PCR‑Based Methods to Detect ctDNA 
in Melanoma

The use of PCR-based methods, particularly droplet digital 
(dd) PCR and BEAMing (beads, emulsion, amplification 
and magnetics), for the detection of ctDNA as a biomarker 
in metastatic melanoma and other cancers has been well 
documented (reviewed in [10, 66]). The potential clinical 
applications of PCR-based analysis of ctDNA in melanoma 
as a predictive biomarker, measuring tumour heterogene-
ity/dynamics, identifying resistance driver mutations for 
targeted therapy, evaluating early response to therapy, and 
monitoring the development of resistance to therapy, have 
been highlighted in many studies (reviewed in [64]). These 
allele-specific PCR-based methods mainly detect single 
driver mutations in key genes such as BRAF and NRAS. 
They require prior knowledge of the driver mutation, which 
typically comes from sequencing of the primary solid tissue 
biopsy using targeted pan-cancer panels that analyse muta-
tions in genes such as BRAF and NRAS [48].

The use of ddPCR-based detection of BRAF or NRAS 
mutations in ctDNA from metastatic melanoma patients 
has illustrated an inverse correlation between ctDNA copy 
number and response to either targeted or immunotherapy 
[67–76]. A direct correlation between ctDNA levels, based 
on ddPCR-detection, and tumour burden has also been 
reported [77, 78]. The potential for ddPCR-based detection 
of ctDNA to replace tumour genotyping of melanomas has 
been postulated both for detecting major driver mutations in 
BRAF and NRAS [79] as well as other mutations, such as in 
the TERT promoter [80], which can be found in up to 70% 
of all melanomas [81].

The majority of studies involving ddPCR-based detection 
of ctDNA have been based on the isolation of ctDNA from 
plasma. One of the major limitations is tracking patients with 
brain metastases, which occur in 50–75% of all stage IV mela-
noma patients [82–84]. The low detectability of ctDNA seen 
in patients with predominant brain metastases suggests that 
the blood–brain barrier may significantly impact the release 
of ctDNA into the circulation (reviewed in [10]), and in fact, 
plasma ctDNA has been shown not to be a reliable indicator of 

melanoma brain metastases [71]. There are two studies which 
were able to successfully detect ctDNA using ddPCR in the 
CSF of melanoma patients with metastasis to the central nerv-
ous system [85, 86]. Detection of CSF ctDNA may provide 
greater sensitivity than conventional cytology and appears to 
reflect central nervous system-tumour burden and is an indica-
tor of response to therapy [85, 86].

The limitations of only being able to detect one to two 
mutations simultaneously and the need for specialised equip-
ment encountered with ddPCR and more traditional fluores-
cence-based PCR have been addressed in a recent report [87]. 
Alternative approaches to ddPCR have also been investigated. 
The combination of surface-enhanced Raman spectroscopy 
(SERS) nanotags combined with PCR was shown to provide 
similar sensitivity to ddPCR in simultaneously detecting 
BRAF, NRAS, and KIT mutations in ctDNA from melanoma 
patients [87]. The potential of nanoparticle-based sensing of 
mutations in ctDNA, without the need for PCR amplification, 
has also been highlighted [88]. Whether these approaches truly 
approach the same sensitivity, specificity, reproducibility, and 
accuracy in ctDNA quantification as ddPCR requires further 
validation.

A fully automated integrated platform from Biocartis (Bel-
gium), designated Idylla, for multiplex real-time PCR-based 
detection of major NRAS, BRAF, KRAS, or EGFR mutations 
in either ctDNA from blood or genomic DNA from tissue has 
been developed. This platform has been validated using mainly 
tissue from melanoma patients, and showed > 95% concord-
ance with other methods of detection, and as such, represents a 
feasible diagnostic platform given the ease of use, automation, 
and fast 1-day turnaround [89–93].

These targeted ctDNA mutation detection methods, which 
rely on screening previously identified tumour mutations, 
can be used for the real-time monitoring of patient response 
to therapy. However, they provide no information on tumour 
evolution and cannot identify newly acquired somatic muta-
tions that may confer resistance to therapy and which may be 
targetable with alternative therapies. Furthermore, 20–30% 
of melanoma patients who have rare mutations or no iden-
tifiable mutations on standard tissue mutation testing plat-
forms provide additional challenges regarding ctDNA muta-
tion detection. The identification of a broader number of 
mutations with the detection of acquired resistance markers 
requires the use of NGS approaches, as discussed in the next 
section.

4  NGS‑Based Methods to Detect ctDNA 
in Melanoma

The use of NGS in the context of melanoma and other can-
cers, whether in the form of whole-genome, whole-exome, or 
targeted gene panels, is well documented for tissue-derived 
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samples [38, 49, 94–100]. These NGS approaches are able to 
interrogate mutations in many genes and provide increasing 
sensitivity as the sequencing becomes more targeted. The 
drive to complement or replace tissue-based sequencing with 
sequencing of ctDNA for both initial diagnosis and longi-
tudinal assessment of cancer patients on therapy is now a 
major focus in the field. The less invasive sampling required 
for ctDNA has obvious advantages over the more invasive 
tissue collection, with which serial sampling may not be 
possible in many cases.

The use of fragmented and low copy number ctDNA as a 
template for NGS, compared with the more abundant higher 
molecular weight genomic DNA used in tissue-based NGS, 
has been a major limiting factor, and this has been largely 
overcome with advancements in sequencing technology 
(reviewed in [40]). All of these advancements have aimed 
to improve the detection sensitivity and detection specificity 
of monitoring rare ctDNA mutations within the larger pool 
of total cfDNA. However, there are continuing limitations 
due to varying cfDNA quality and quantity arising from non-
standardised pre-analytical workflows used for both blood 
collection and subsequent extraction of cfDNA (reviewed 
in [40]).

The feasibility of whole-genome and whole-exome 
sequencing using ctDNA as a template to identify somatic 
mutations, which can subsequently be used to guide choice 
and response to therapy, has been demonstrated in a number 
of cancers, including melanoma [76, 101–109]. The value 
of using whole-genome and whole-exome sequencing, given 
their turnaround time, cost, and the actual need for such 
a broad approach, has come into question with the advent 
of more targeted NGS gene panels compatible with cfDNA 
(Table 1). The whole-genome or whole-exome sequencing 
approach can still be used initially to design patient-specific 
targeted NGS gene panels for longitudinal monitoring of 
therapy (reviewed in [19]).

4.1  Targeted NGS Gene Panels to Guide 
and Monitor Response to Therapy

Targeted NGS gene panels are typically based on propri-
etary technology for sequencing library preparation and 
are compatible with one of the three current NGS plat-
forms: Thermofisher Ion Torrent (USA); Illumina (USA); 
or Roche (Switzerland). Whether pan cancer (covering 
major solid tumour cancers, including lung, breast, pros-
tate, colorectal and melanoma) or cancer specific, NGS 
cancer panels generally include common somatic driver 
mutations such as those in EGFR, BRAF, NRAS, KRAS, 
PDGFRA, and KIT. In the case of melanoma, this can 
guide the choice of initial targeted MAPK inhibitor ther-
apy, i.e. patients with  BRAFV600-mutant melanoma can be 
effectively treated with combination inhibitors targeting 

mutant BRAF and its downstream effector MEK [110]. 
Further inclusion of known somatic resistance mutations 
plus oncogenic targets in downstream signalling path-
ways [63] can identify pathways of resistance to first-line 
therapy and guide the choice of alternative therapies. A 
practical application of NGS targeted gene panels for the 
parallel analysis of several genes in genotyping primary 
melanoma patients has been documented using genomic 
DNA [111]. Such a targeted panel could also be applied 
in the analysis of ctDNA, to provide diagnostic/prognostic 
information and monitor resistance during treatment of 
patients with stage III/IV melanoma.

4.1.1  Targeted NGS Gene Panels Developed for Genomic 
DNA and Applied to cfDNA

The application of targeted NGS gene panels in the analy-
sis of ctDNA can identify dominant and therapeutically 
targetable genetic mutations. Initially, targeted NGS gene 
panels based on library preparation and sequencing tech-
nology developed for tissue-derived genomic DNA tem-
plates were used in studies employing ctDNA as a tem-
plate (Table 1, rows 1–5). These consisted of off-the-shelf 
and custom-designed pan-cancer panels [86, 112–115] as 
well as a custom-designed melanoma panel [109].

In one study, a custom melanoma-specific NGS gene 
panel was designed based on whole-genome sequencing 
analysis of cfDNA (and tissue) from pre- and post-treat-
ment (targeted or immune checkpoint inhibition) samples 
to identify a signature of SNVs in non-coding and coding 
regions associated with progression on therapy (Table 1, 
row 2) [109]. The targeted NGS gene panel was then 
used to monitor response to therapy based on increases 
in mutant allele frequency of the signature SNVs within 
cfDNA over several time points post-therapy. Interestingly, 
a TERT promoter mutation identified by whole-exome 
sequencing could not be incorporated into the targeted 
NGS gene panel based on the repetitive sequence of this 
region [109].

For one of the custom pan-cancer NGS gene panels 
used for melanoma (Table 1, row 4) [114], the panel design 
attempted to incorporate known melanoma driver and BRAF 
inhibitor resistance mutations, including mutations in BRAF, 
NRAS, KRAS, MAP2K1, and CDKN2A [63]. The feasibil-
ity of this panel was then highlighted using ctDNA from 
melanoma patients, who had previously received (or were 
still receiving) targeted or immune checkpoint therapy, to 
measure mutant allele frequency of the targeted genes. This 
showed a high concordance with tissue samples even though 
the tissue samples had been collected earlier than the plasma 
and during this interval patients had received one or more 
therapies [114].
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4.1.2  Targeted NGS Gene Panels Developed for cfDNA

The subsequent development of cfDNA-optimised targeted 
NGS gene panels for deep sequencing of ctDNA looks to 
revolutionise the use of liquid biopsies as a diagnostic tool 
in cancer therapy (Table 1, rows 6–13). Many of these panels 
have the reported ability to detect mutant allele frequen-
cies as low as 0.01%. All recommend around 20–30 ng of 
starting cfDNA for high-quality library preparation, and this 
amount of cfDNA can be commonly obtained from 10 ml of 

blood (4–5 ml of plasma). Less cfDNA can be used as the 
input, but will result in a subsequent decrease in the limit 
of detection. For instance, if the limit of mutation detection 
was a 0.01% frequency in 100 ng input cfDNA, 10 ng input 
cfDNA would only allow for detection of mutations occur-
ring at a 0.1% frequency.

Several targeted NGS gene panels developed for cfDNA 
are now available for research and include those from Ther-
mofisher, Roche, and ArcherDX (USA) (Table 1). Ther-
mofisher is the only company which currently provides the 

Table 1  Targeted next-generation sequencing cancer gene panels compatible with cfDNA

cfDNA circulating free DNA, cfRNA circulating free RNA, ctDNA circulating tumour DNA, CNV copy number variation, gDNA genomic DNA, 
indel insertion or deletion, MAF mutant allele frequency, pan cancer covers major solid tumour cancers, SNV single nucleotide variation, vari-
able can design gene panel of choice

Gene panel Design Developed for Panel type Number of 
genes

Mutation type Sensitivity 
(MAF %)

Reported Cancer tested

Thermofisher 
Ion AmpliSeq 
cancer hotspot 
panel v2

Off-the-shelf gDNA Pan cancer 50 SNV, indel 5 [86, 112] Melanoma, 
lung

Thermofisher Ion 
AmpliSeq

Custom gDNA Melanoma 91 SNV 5 [109] Melanoma

Thermofisher Ion 
AmpliSeq

Custom gDNA Pan cancer 6 SNV, indel 5 [113] Lung, colorec-
tal, melanoma

Illumina TruSeq Custom gDNA Pan cancer 61 SNV, indel 1 [114] Melanoma
KAPA Biosystems Custom gDNA Pan cancer 398 SNV, indel, 

fusion, CNV
Not reported [115] Gastrointestinal

Thermofisher 
Oncomine pan-
cancer cell-free 
assay

Off-the-shelf cfDNA (and 
cfRNA)

Pan cancer 52 SNV, indel, 
fusion, CNV

0.1 None Covers 18 can-
cers including 
melanoma

Thermofisher Ion 
AmpliSeq HD

Custom cfDNA Variable Variable SNV, indel, 
fusion, CNV

0.1 None

ArcherDX Archer 
RevealctDNA28

Off-the-shelf cfDNA Pan cancer 28 SNV 1 None

Roche Avenio 
ctDNA targeted, 
expanded and 
surveillance kits

Off-the-shelf cfDNA Pan cancer 17, 77, 197 SNV, indel, 
fusion, CNV

0.1 [140] Lung

Guardant Health 
Guardant360

Off-the-shelf cfDNA Pan cancer 73 SNV, indel, 
fusion, CNV

0.1 [116, 
141–149]

Urinary 
bladder, 
lung, breast, 
melanoma, 
colorectal, 
gastrointes-
tinal

Foundation Medi-
cine Foundation-
ACT 

Off-the-shelf cfDNA Pan cancer 62 SNV, indel, 
fusion, CNV

0.5 [147, 150] Breast, lung, 
gastrointesti-
nal, colorec-
tal, prostate

Natera Inc
Signatera

Custom cfDNA Variable Variable 
(minimum 
16)

SNV, CNV 0.01 [151–153] Lung, breast

CellMax Life
LBx Liquid 

Biopsy

Off-the-shelf cfDNA Pan cancer 73 SNV, indel, 
fusion, CNV

0.1 None
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option of custom-designing cfDNA-optimised NGS gene 
panels in the form of their new AmpliSeq HD technology 
(Table 1). The AmpliSeq HD technology can also be used 
for genomic DNA from tissue sources. Thermofisher also 
offer cancer-type–specific off-the-shelf cfDNA panels for 
breast, colorectal, and lung cancer in their Oncomine range. 
To date, no melanoma-specific cfDNA-optimised NGS 
gene panels are available, though the off-the-shelf panels 
do include a subset of melanoma somatic driver and resist-
ance mutations.

The potential of targeted ctDNA sequencing is evident 
from a growing number of clinically focused companies who 
have embraced this approach, including Guardant Health 
(USA), CellMax Life (USA), and Foundation Medicine 
(USA), who have all developed off-the-shelf pan-cancer 
cfDNA-optimised NGS gene panels (Table 1). Of particu-
lar note is the use of the Guardant360 platform (Table 1) to 
analyse ctDNA from a cohort of > 20,000 cancer patients 
across several cancers, including melanoma, illustrating the 
ability of this platform to distinguish primary driver from 
secondary emerging clonal resistance mutations [116]. 
Another clinically focused company, Natera (USA), offers 
an individualised NGS panel, known as Signatera, which 
is custom-designed after whole-exome sequencing of can-
cer tissue (Table 1). The additional tissue sequencing step 
of Signatera adds significantly to the turnaround time and 
diagnostic cost, but provides patient specificity.

NGS of cfDNA can detect low frequency variants, but 
the clinical relevance of these variants, which may reflect 
clonal hematopoiesis, remains unclear [117]. In addition, 
detection of low frequency variants in NGS of cfDNA can 
lead to discordance when comparing different NGS plat-
forms [118]. Therefore, although the concept of identifying 
multiple actionable mutations in the circulation to guide 
therapeutic decisions is an attractive concept, the results 
from these tests must be used with caution and comparison 
of NGS tests across large numbers of patients with cancer 
needs to be done to improve clinical utility.

4.2  Analysis of ctDNA as a Predictor of Response 
to Immunotherapy

The use of ctDNA as a predictor of response to immuno-
therapy has largely relied on detection using ddPCR. Several 
studies involving metastatic melanoma patients, based on 
ddPCR detection of a single mutation in BRAF or NRAS, 
have shown that elevated ctDNA levels at baseline and on 
immunotherapy correlate with a poor prognosis [71, 78]. 
Lee et al. used a combination of baseline and early on treat-
ment ctDNA levels to predict response to immunotherapy, 
where undetectable ctDNA early during treatment was 
associated with improved objective response and overall 
survival. Furthermore, ctDNA was able to accurately and 

rapidly differentiate between melanoma patients receiving 
immune checkpoint inhibitors displaying pseudoprogres-
sion, defined as initial growth followed by eventual tumour 
response, and true disease progression [72].

An alternative to ddPCR-based approaches is the measure 
of TMB based on targeted NGS gene panels. High TMB 
within a particular tumour often correlates with a greater 
number of neoepitopes, leading to greater immunogenicity 
and a likely greater chance of responding to immunotherapy 
(reviewed in [119, 120]). The use of whole-exome sequenc-
ing and targeted NGS gene panels, such as the Guardant360 
panel (Table 1), have shown promising results for a range 
of cancers, including melanoma, in assessing response to 
immunotherapies based on measuring TMB [121, 122]. 
A recent retrospective analysis of two large clinical trials 
in non-small cell lung cancer demonstrated concordance 
between tumour and blood TMB, with high mutation bur-
den in plasma associated with clinically significant improve-
ment in progression-free survival from anti-PD-L1 [123]. 
However, the assays used in matching tumour and plasma, 
despite overlap, identified non-identical variants, which 
likely originated from the samples themselves as opposed 
to technical variation.

Therefore, several factors in the use of cfDNA and tar-
geted NGS gene panels in quantifying TMB still need to be 
addressed in more detail. Such factors include whether the 
depth of sequencing coverage of targeted NGS gene panels 
is sufficient for an accurate determination of TMB especially 
for mutations of low allelic frequency present in the tumour, 
and whether the cfDNA reflects the TMB of an individual 
or a number of tumours.

4.3  Factors to Consider when Choosing 
Allele‑Specific PCR or NGS

One important consideration when selecting a molecular 
test is the cost effectiveness and turnaround time. In one 
study, the detection of  BRAFV600E in melanoma using allele-
specific PCR-based monitoring of ctDNA was compared 
to NGS targeted gene panel-based monitoring of genomic 
DNA [124]. The turnaround time was reported to be faster 
at 2.9 ± 1.1 days for PCR compared to 4.7 ± 1.6 days for 
NGS [124]. The cost was also significantly higher for NGS, 
at US$270 per sample compared to US$40 per sample for 
allele-specific PCR [124]. The advantage of NGS lies in 
the ability to capture much greater mutational information 
compared to allele-specific PCR techniques such as ddPCR 
(Fig. 1). Thus, although NGS can provide significant addi-
tional mutation data, the value of this data, which may con-
stitute non-clinically relevant mutations, to the clinical man-
agement of cancer patients needs to be considered relative 
to the increase in cost and extensive bioinformatic resources 
needed for NGS analysis.
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Allele-specific PCR, such as ddPCR, is a quantitative tech-
nique, whereas NGS is only semiquantitative (Fig. 1). Quan-
titating ctDNA can be influenced by multiple factors which 
are likely to induce an increased release of non-tumour DNA 
into the plasma. These factors include physiopathological fac-
tors, such as inflammation, autoimmune diseases, pregnancy 
and physical exercise (reviewed in [125]), or preanalytical 
factors primarily during blood collection (reviewed in [126]). 
This needs to be taken into consideration when using NGS or 
ddPCR to measure mutant allele frequency, since it depends 
on the number of wild-type cfDNA copies derived from nor-
mal cells.

5  Other Sources of Circulating Nucleic Acid

In an effort to increase both the sensitivity of detection and 
to capture the evolution of cancer-related genomic changes 
in the circulation, other sources of nucleic acid, both DNA 
and RNA, are being investigated. These alternative sources 
of DNA and RNA include circulating free RNA (cfRNA), 
extrachromosomal circular DNA, circulating tumour cells 
(CTCs), circulating endothelial cells, tumour educated plate-
lets and extracellular vesicles such as exosomes (reviewed 
in [8, 127–132]).

Given that there is a requirement for specialised work-
flows to isolate cells or vesicles prior to the extraction of 
DNA or RNA and the fact that isolation methods are yet 
to be standardised (reviewed in [132, 133]), these alter-
nate sources of tumour markers have not been thoroughly 
explored. The particular difficulty of isolating and assessing 
the genomic profile of melanoma-derived CTCs has been 
addressed [134, 135]. These issues stem from the apparent 
diversity of melanoma CTCs, which require further charac-
terisation of specific surface markers to enable immunoaf-
finity-based purification of these CTC subpopulations. A 
subsequent report appears to have overcome some of these 
issues in identifying an RNA signature from CTCs isolated 
from melanoma patients on immunotherapy which may be a 
predictor of early response [136]. A recent observation has 
highlighted that prostate tumour-derived large extracellular 
vesicles (oncosomes) contain significant levels of circulating 
tumour genomic DNA with identifiable genomic alterations 
[137]. Given the limitations of detecting ctDNA in early-
stage cancers, the search for other diagnostic/prognostic 
DNA/RNA-based biomarkers from these alternative sources 
is certainly worth further investigation.

6  Conclusions and Future Directions

Conventional tissue biopsy for genotyping in cancer diag-
nosis is still considered to be the gold standard. However, 
this approach has its limitations when faced with limited 

tumour tissue and often depends on sample tissue collected 
from a section of a single tumour and thus does not provide 
a true representation of the heterogeneous tumour burden. 
Furthermore, the availability of tissue for monitoring treat-
ment over time is an issue. Liquid biopsy-based genotyping 
makes it possible to assess both tumour heterogeneity and 
to provide an accurate assessment of TMB [123]. In par-
ticular, the use of cfDNA from biofluids in conjunction with 
molecular technologies such as ddPCR or targeted NGS can 
provide non-invasive real-time information about a patient’s 
tumour burden and subsequent response to therapy.

The increasing sensitivity (detecting as low as 0.01% 
mutant allele frequency) of targeted NGS gene panels for 
the detection of cfDNA in cancer patients is now comparable 
with the sensitivity of such common digital PCR approaches 
as ddPCR. Given the capacity for multiplexing, currently 
not possible with ddPCR, and for designing custom targeted 
NGS gene panels optimised for cfDNA (as offered by Ther-
mofisher’s new AmpliSeq HD technology), the likelihood is 
that targeted NGS gene panels will supersede ddPCR both 
in a research and diagnostic setting. This is now feasible 
in a diagnostic context given that a typical workflow for 
targeted NGS gene panels can be completed in 2–3 days. 
Importantly, the increasing availability of cfDNA standards 
for NGS (Seracare, USA, and Horizon Discovery, UK) con-
taining cancer-relevant somatic mutations of known allele 
frequencies allows validation and standardisation of targeted 
NGS gene panels.

One of the main issues which still needs to be resolved 
to fully incorporate NGS technology into ctDNA analysis 
is the need to address whether NGS methods are truly as 
specific as PCR-based methods such as ddPCR and BEAM-
ing. Applications such as upfront mutational profiling [80], 
prediction of early response [67, 70, 71], pseudoprogres-
sion [72] and early detection of relapse (during treatment 
and in stage III melanoma) [69, 73] have important clinical 
implications for the management of patients. To date, opti-
mised ctDNA-based NGS targeted gene panels for mela-
noma remain to be fully evaluated for their effectiveness for 
future use in the clinic.

Finally, several important considerations that need to be 
addressed with cfDNA analysis include: the limited ability 
to detect cfDNA in early-stage cancers, including melanoma; 
and the fact that ctDNA arising from a tumour may not be 
detectable in cfDNA because of the site of the tumour [138, 
139]. Therefore, analysis of other biofluids for cfDNA and 
new technologies that enrich for cfDNA is warranted. The 
rapid development of sensitive technologies that accurately 
detect tumour mutations in circulating nucleic acids is revo-
lutionising the monitoring of cancer patients, and although 
tissue biopsies still provide essential diagnostic information, 
new targeted and immune-based therapies require real-time, 
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longitudinal monitoring of tumour evolution via non-inva-
sive and serial liquid biopsies.
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