

Rational Design of Nanostructured MnO₂ Cathode for High-performance Aqueous Zinc Ion Batteries

LI Qi¹, ZHAO Yajun¹, WANG Yueyang¹, Abdalla Kovan KHASRAW¹, ZHAO Yi^{1,2 \boxtimes} and SUN Xiaoming^{1 \boxtimes}

Received May 16, 2023 Accepted July 5, 2023 © Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

queous Zn-MnO₂ batteries hold a promising potential for grid-scale energy storage applications due to their intrinsic safety, low fabrication cost, environmental friendliness and high theoretical energy densities. Developing novel nanostructured cathode materials with high discharge voltage, large capacity and excellent structural stability is one of the critical ways to achieve the high-performance aqueous Zn batteries. Enlighten by that, comprehending principles of materials design and identifying the challenges faced by the state-of-the-art MnO₂ hosts are vital preconditions. Rather than a simple comparison, this review mainly focuses on design strategies regarding to MnO₂-based materials, including defect engineering, interfacial engineering, and preintercalation engineering. In addition, the energy storage mechanisms of MnO₂-based cathodes are discussed to clarify the complicated chemical reactions during battery cycling. Challenges and perspectives are outlined to guide the further development of advanced Zn-MnO₂ batteries.

Keywords Aqueous Zn battery; Nanostructured MnO₂ cathode; Energy storage mechanism; Material design strategy

1 Introduction

In recent years, aqueous zinc ion batteries(AZIBs) have gained tremendous attention due to their advantageous properties, such as non-flammability, non-toxicity, and high ionic conductivity^[1,2]. In addition, the fabrication process of AZIBs is relatively simple and economically feasible, meeting the present strategic demands for sustainable development. However, conventional alkaline Zn batteries, such as Zn-Mn, Zn-Ni, and Zn-air batteries generally suffer from severe side reactions associated with dendrites formation, corrosion, and hydrogen evolution, leading to unsatisfactory performance. To mitigate these issues, massive research efforts have been devoted to developing AZIBs with novel electrode materials and mild aqueous electrolytes have been studied for Zn batteries. Manganese-based oxides, vanadium-based oxides,

Prussian blue analogs and organic compounds have been developed as cathodes for aqueous Zn batteries. Among them, MnO₂-based cathode materials have attracted much attention due to their promising electrochemical performance with high energy density and multi-electron transfer reactions^[3–5]. Yet, their development and practical application have been hindered by the critical problems of low intrinsic electronic conductivity as well as unwanted irreversible phase transformation, causing inferior rate capability and fast capacity decay^[6–8]. Considering escalating energy demand and growing interest in AZIBs, it is urgent to break the bottleneck of Mn-based cathode with high capacity, fast redox kinetics, and long cycling life.

Researchers have employed various modification strategies to develop the electrochemical performance of Mnbased hosts, such as defect engineering, interfacial engineering, and pre-intercalation engineering, as displayed in Fig.1^[9]. These strategies significantly contribute toward the enhancement in electrochemical performance of Zn-MnO2 batteries. Defect engineering, involving heteroatoms doping and creating defects, is the most commonly used strategy in tailoring the electronic properties and structural stability of MnO₂, leading to improved rate/cycling performance^[10,11]. Moreover, interfacial engineering serves as an alternative strategy to enhance the structural stability of MnO2, in a way of prohibiting serious side reactions and Mn dissolution problems^[12]. Furthermore, pre-intercalation engineering has emerged as an effective approach to improving the battery performance by increasing the interlayer spacing of MnO₂. Generally, guest species, including water molecules, metal/non-metal ions, as well as inorganic/organic molecules, can intercalate into the host framework and decrease the electrostatic interactions with inserted Zn ions, resulting in stabilized inherent structure of MnO2[13]. Besides, researchers have developed size-dependent and morphology-controlled approaches to manipulating charge distribution and electrode kinetics in MnO2 hosts. By shortening the ion diffusion path and increasing the surface area of the electrode, Zn-MnO2 batteries exhibit good rate capability and high energy storage performance^[9].

To date, considerable progress has been made on the

[🖂] SUN Xiaoming

sunxm@mail.buct.edu.cn

[🖂] ZHAO Yi

zybattery@buct.edu.cn

^{1.} State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China;

^{2.} Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, P. R. China

Determined in the second of th

Fig.1 Rational design strategies to enhance the electrochemical performance of nanostructured MnO₂ cathode *via* defect engineering, interfacial engineering and pre-intercalation engineering

modification strategies for promoting the development of MnO₂ cathode and discovering related energy storage mechanisms. As a result, an up-to-date review is necessary to systematically summarize the latest achievement of modification strategies for MnO₂ cathode. By examining the recent progresses of theoretical and experimental investigations, this review provides a systematic and thorough survey aiming at optimizing crystal structure and clarifying energy storage mechanisms of MnO₂ cathode. Finally, the review concludes with prospects for future research and development of high-performance MnO₂ cathodes based on a novel chemical reaction design for next-generation batteries.

2 Crystal Phases of Nanostructured MnO₂

MnO2 hosts exhibit available rich redox chemistry(Mn2+, Mn3+, Mn4+) and form a large variety of tunnel or layered polymorphs(α -, β -, γ -, δ -, λ -, R- and T-)^[14–21], which depend on sharing vertices/edges of basic building unit[MnO6] octahedra^[22-24]. To better understand MnO₂ materials applied in AZIBs, we summarize different crystal structures of MnO2 as described below(Fig.2). Specifically, a-MnO2(hollanditetype) has a typical (2×2) tunnels structure, which is composed of double chains in the plane by corner-sharing of [MnO₆] octahedra. Different predominant cations existing in its tunnel structure, such as Ba, Na, K and Pb enable α -MnO₂ with a large tunnel size(*ca*. 4.6 Å, 1 Å=0.1 nm)^[25]. β-MnO₂ (pyrolusite-type) has (1×1) tunnel along the *c* axis composed of single chains by vertical-sharing of [MnO₆] octahedral. Hence, β -MnO₂ has the narrowest tunnel size(ca. 1.89 Å) compared with other types polymorphs MnO₂, which is difficult for ions diffusion(Li⁺,

Fig.2 Crystal structures of various MnO_2 cathodes including α -MnO₂, β -MnO₂, γ -MnO₂, δ -MnO₂, λ -MnO₂, T-MnO₂(Todorokite-type) and R-MnO₂(Ramsdellite-type) for aqueous Zn-MnO₂ batteries

Zn²⁺) into its structure^[16]. In contrast, R-MnO₂ (ramsdellite-type) contains (1×2) tunnels, formed by sharing corners of one double chains in parallel direction and another in vertical direction. The structure of γ -MnO₂(nsutite-type) is randomly comprised of tunnels with (1×1) and (1×2), normally regarded as an intergrowth of β -MnO₂ and R-MnO₂. λ -MnO₂ is composed of [MnO6] octahedra connected with [MnO4] tetrahedral. The Mn²⁺ and Mn³⁺ occupy the tetrahedral and octahedral sites, respectively^[26]. T-type(todorokite-type) MnO₂ has (3×3) tunnel structures, which are made of large edgesharing [MnO₆] octahedra panel cross sections since it is constructed of triple chains composed of [MnO₆] octahedra. δ -MnO₂(layered-type) is constructed by sheets of edge sharing [MnO₆] octahedra. Unlike tunneled MnO₂, cations and/or water molecules can act as "pilar" to maintain layered structure of MnO2, which can boost the ion diffusion and cycling performance of Zn-Mn batteries.

Furthermore, much effort has been devoted to the preparation of low-dimensional MnO2 nanostructures with diverse polymorphs. For example, α -, β - and γ -MnO₂ have been synthesized into various shapes(such as nanowires, tubes, sheets, etc.) through different synthesis methods and controlled reaction conditions. And the properties and performances of MnO2 are generally influenced by their morphology and dimensions. Therefore, most MnO2 cathodes with various crystal types are generally modified with nanostructured morphologies to enhance the reactive sites and improve the redox kinetics^[27]. Currently, there are four main types of nanostructured MnO2: zero-dimensional(0D), one-dimensional(1D), two-dimensional(2D) and threedimensional(3D) nanomaterials. As for 0D nanomaterial (such as nanodots), Zhu et al.^[6] reported the high capacity and ultra-stable Zn-Mn batteries by using &-MnO2 nanodots as the cathode, as shown in Fig.3(A). As for 1D nanomaterials (such as nanorods, nanowires, nanofibers and nanotubes), Chen et al.^[28-32] employed γ -MnO₂ nanowires and nanotubes

Review

as the cathode for significantly improving the battery performance of AZIBs, as displayed in Fig.3(B)–(G). A regular nanosheet structure of Co-doped MnO₂ was synthesized by our group, by which the ion diffusion rate was greatly increased in Fig.3(H). To further increase the specific surface of MnO₂, Dong *et al.*^[33] fabricated δ -MnO₂ nanosheets for enhancing the redox kinetics and zinc storage capacity of Zn-Mn devices, as displayed in Fig.3(I). Besides, flower-shaped MnO₂ nanosheets have been used as high-performance cathodes to greatly improve the capacity and stability of Zn-Mn devices^[32]. Therefore, both the crystal structure and morphology of MnO₂ have an impact on enhancing the performance of aqueous Zn batteries.

3 Design Strategies on MnO₂ Cathode

Various crystal structures and multiple valence states can endow MnO₂ electrodes with sufficient theoretical specific capacity and high working voltage. However, MnO₂ cathodes are still challenged by poor rate performance, inferior rate capability, and fast capacity decay caused by their poor electronic conductivity, inevitable Mn dissolution, and dramatic volume changes^[34–36]. It is of significance to improve the electrochemical performance of MnO₂ cathodes by reasonable design strategies for AZIBs. The modification strategies are described in detail in the following three sections.

3.1 Defect Engineering

Defect engineering has been recognized as a common strategy to manipulate the physical and chemical properties of the hosts. Specifically, defect engineering has been extensively applied in manipulating MnO₂ cathode for significantly improved capacity, cycle stability and rate performance^[37]. As the most acknowledged defect engineering, vacancies and doping have been utilized to enhance the electrochemical performance of Mn-based materials^[38–40]. This section summarizes the latest discussions on defect engineering for MnO₂ cathode materials, including anionic and cationic vacancies and doping.

3.1.1 Vacancy Defects

Oxygen vacancies, as the most common defects, can tune the surface property and electronic distribution of Mn-based materials without introducing impurities and affecting the geometrical structure, resulting in improved adsorption energy of Zn2+ and electronic conductivity of MnO2 materials[as shown in Fig.4(A)]^[41]. Nevertheless, pristine MnO2 exhibits more thermodynamical stability for inserted Zn ions due to the strong chemical bond between Zn and O, hindering the reversible insertion/extraction of zinc ions^[42,43]. To boost the diffusion kinetics of Zn ions, Xue et al.[10] synthesized an oxygen-deficient δ -MnO₂ cathode with a large specific capacity of 345 mA·h·g⁻¹ at 0.2 A/g and a superior rate performance. It is attributed that the oxygen vacancies in MnO₂ provide more surface capacitive contribution by increasing the active surface and processing more electrons for delocalizing into the electrode^[15]. Besides, Kang et al.^[44] prepared oxygen defect-rich MnO₂(O-MnO₂) nanosheets for enhancing the electrical conductivity and Zn ion storage capacity. Mai et al.[21] rationally designed Ti-doped a-MnO2 nanowires with oxygen vacancies. Moreover, the oxygen vacancies can open [MnO₆] octahedral walls and generate a local electric field, accelerating ion/electron migration kinetics for high-rate Zn ion storage.

In addition to anionic vacancy, it has been recognized that cationic vacancies also can effectively tune the electronic structure of MnO₂ to reduce the charge transfer resistance and enhance electrode kinetics. Also, such vacancies can be used as extra active sites to store more cation ions, increasing energy storage capability for electrode materials^[45]. Chao *et al.*^[46] have successfully prepared Mn vacancy containing MnO₂(V_{Mn}-MnO₂) for an electrolytic Zn-MnO₂ system in Fig.4(C). According to theoretical calculations, the increased surface electron density on the Mn vacancies can promote the zinc ion storage performance with a lower energy barrier in V_{Mn}-MnO₂.

To better unveil the positive effect of oxygen vacancies, experimental analyses and theoretical calculations can be combined to investigate the vacancies structure-function relationship^[29].

3.1.2 Anionic Doping

Due to the strong electrostatic interaction between the electronegative of O atom and inserted Zn^{2+} , pristine MnO₂ shows a thermodynamically favorable attraction to Zn ions. Hence, the substitution of O atoms with a lower electronegative element can reduce the strong interaction of Zn–O bonds and improve Zn diffusion kinetics in MnO₂ cathode. Anionic doping is one of the most widely adopted strategies to introduce many interesting properties to cathode materials^[11]. Specifically, the oxygen anion sites in MnO₂ could be partially replaced by non-metal elements, such as S^{2–[42]}, N^{3–[47]}or F^{–[48]}, which could change the intrinsic electronic structure and improve its electrochemical performance. Herein, we summarize the latest anion doping approaches, revealing the intrinsic mechanisms of doped anion.

Recently, Sun and co-workers^[42] reported that the S doped MnO₂(S-MnO₂) cathode displayed large Zn storage capacity, high rate performance, and long cycling life. Combined with

Review

experiment results and theoretical studies, doped S anions can effectively enhance the intrinsic electronic conductivity of MnO2 by narrowing its band gap, and accelerate reaction kinetics by weakening the electrostatic interactions between host and Zn²⁺ cations, as displayed in Fig.4(B). Besides, amorphous surfaces with rich oxygen defects on S-MnO2 are formed during the preparation process, which provides extra active sites for more Zn ions storage with pseudocapacitive behavior^[42]. Huang et al.^[47] prepared a N-doped E-MnO2 (MnO2@N) cathode and found the greatly improved conductivity and stability for MnO2@N based Zn batteries. The improved electrochemical performance can be attributed to the formed Mn-N bonds for elongating the Mn-O bond and promoting the insertion of Zn²⁺/H⁺. Furthermore, N-doped MnO₂ can effectively reduce the electrostatic repulsion between the cathode and the inserted cations, such as Zn²⁺/H⁺ ions, and improve the electrode kinetics^[48].

Moreover, Kim *et al.*^[49] reported fluorine doped β -MnO₂ (F-MnO₂) cathode with a hierarchical structure *via* efficient defect engineering for improved ion insertion and transport kinetics of Zn-MnO₂ battery. On account of its similar ionic radii, O^{2–} can be efficiently replaced by F[–] in F-MnO₂ for the enhanced electrical conductivity and energy-storing performance. Despite anionic doping has been proven as an

Fig.4 Structural schematics and reaction mechanisms of modified MnO₂ via defect engineering

(A) Mechanisms of oxygen-deficient δ-MnO₂ for Zn ions storage, and the calculated adsorption energies; (B) charge density difference distribution for Zn²⁺ inserted S-MnO₂; (C) electron density difference comparison of vacancy-free and Mn vacancy MnO₂; (D) the atomic structure of Mo-doped MnO₂; (E) phase change products of Co-doped MnO₂ after few cycles.

(A) Reprinted with permission form Ref.[41], Copyright 2019, Wiley-VCH; (B) reprinted with permission form Ref.[42], Copyright 2022, Elsevier; (C) reprinted with permission from Ref.[46], Copyright 2019, Wiley-VCH; (D) reprinted with permission from Ref.[55], Copyright 2022, Springer Nature; (E) reprinted with permission from Ref.[54], Copyright 2020, Wiley-VCH.

effective strategy for adjusting intrinsic electronic structures of MnO₂ cathodes, the battery performance is still unsatisfactory for superb AZIBs. More importantly, the anion doping effect regarding the structural change and energy storage performance of MnO₂ cathodes lacks in-depth exploration. Therefore, an anionic doping strategy can offer the direction for further exploration in cathode materials modification.

3.1.3 Cationic Doping

In addition to anionic doping, the effect of cationic doping for MnO2 design is extraordinarily effective at enhancing the energy storage of MnO2 cathode. The cathodes of AZIBs can show high electronic conductivity and better electrochemical behaviors by cationic doping to release the electrochemical activity potential of MnO2. At present, many studies on cationic doping have been reported. The doping cations(such as V, K, Co, Ag, La, Na, Zn, Cu and H) not only show the common advantages, but also exhibit its particularity of each element^[50-53]. Ji et al.^[54] reported a MnO₂ cathode doped with multivalent cobalt ion for high-performance Zn-MnO₂ batteries. Specifically, doped Co2+, Co3+ and Co4+ can act as a "interlay pillars" and "structural stabilizers", respectively, for the high capacity and stable MnO₂ cathodes, as shown in Fig.4(E)^[54]. Recently, our group^[55] studied the doping effect of high-value element in Mo5+ doped MnO2, as displayed in Fig.4(D). It is worth noting that doped Mo⁵⁺ can not only improve the electronic conductivity, but also promote Jahn-Teller distortion of the octahedron [MnO₆] in ZnMn₂O₄, which further realizes the two-electron transfer of Mn^{2+}/MnO_2 to achieve an excellent performance of Zn-MnO₂ battery. Besides, dual cation doping enables to improve the capacity and rate performance of MnO₂ cathodes simultaneously. Hu et al.^[56] reported co-doped of Ti/Ni-MnO2 host for high-performance Zn batteries. Specifically, multivalent Ti ions could allow valence variation for a higher specific capacity and doped-Ni ions could regulate the proton transfer behavior in MnO2 cathode. Thus, Mn-based cathodes doped with multivalent and hypervalent ions will provide a fillip for developing superb AZIBs.

3.2 Interfacial Engineering

Besides the doping effect, interfacial modification of MnO₂ composited with carbon materials and conductive polymers is being studied in depth for inhibiting the Jahn-Teller effect and inducing additional active sites, respectively. Two main strategies of hybridization and organic protection have been summarized in detail.

3.2.1 Hybridization Strategy

Low intrinsic electronic conductivity is the key issue for the development and practical application of Mn-based cathodes. Beyond defect engineering, hybridizing with conducting materials to construct composites is an effective way to improve the rate performance and stability of Zn-MnO² devices^[57]. Currently, carbon materials modified by MnO² includes carbon cloth, carbon nanotubes(CNTs), super P, graphene nano flakes(CNFs), porous carbon and carbon boll, which have been reported as cathodes for AZIBs in Fig.5(B)^[58–62]. Previously reported hybridization strategy is only a simple physical contact between the active MnO² and the carbon material, which increases contact resistance and results in unsatisfactory electrochemical performance^[63]. Hence, it is urgent to explore MnO² hybrids with both enhanced conductivity and ion diffusion kinetics^[64–67].

Recently, Tong et al.^[68] prepared oxygen vacancy MnO₂ loaded on the carbon nanotubes(Vo-MnO2/CNTs) as the cathode, in which CNTs with good electrical conductivity can greatly reduce charge transfer resistance of MnO2, benefiting for superior rate capacity in Zn-MnO2 devices^[69]. Besides, carbon materials can prevent structural degradation and improve the cycling stability of MnO2^[70,71]. Zhao et al.^[72] reported that the hybrid formation of Mn-O-C bonds between nanoporous carbon matrix and MnO₂ can efficiently inhibit Mn dissolution to strengthen the structural integrity of the composite cathode materials, as shown in Fig.5(A). In addition, carbon cloth is also a common carbon substrate, which can effectively facilitate the deposition process by providing nucleation sites to boost in-situ growth and conductivity of MnO2 as illustrated in Fig.5(C)[73]. Hence, hybridization strategy can endow better electrochemical performance if new carbon materials are found.

3.2.2 Interfacial Protecting

Additionally, MnO₂, which is prone to structural collapsibility can be interfacial protected by organics to form stable organicinorganic hybrids for advanced Zn batteries. Electrode materials have been coated with organics to prevent structural collapse, thus improving the stability and durability of lithium-ion batteries^[74,75]. Similarly, it has been applied in organic/MnO₂ cathodes for AZIBs in recent years^[7,8,12,76,77]. Very recently, Zhao *et al.*^[72] reported a novel carbon-based poly(4,4'oxybisbenzenamine)/MnO₂(denoted as PODA/MnO₂) hybrid cathode, in which MnO₂ was half-coated by PODA nanosheets to provide additional active sites and boost reaction kinetics. More importantly, Mn—N bonds formed between the interface of PODA and MnO₂ can greatly inhibit the

(A) MnO₂ nanospheres half-wrapped by PODA nanosheets onto nanoporous carbon; (B) MnO₂ hybridized with carbon materials for enhanced structural integrity; (C) schematic diagram of *in-situ* growth Ni-doped MnO₂ onto carbon cloth; (D) energy barrier of Mn atom removed from the C@PODA/MnO₂; (E) interfacial protect mechanism of PODA/MnO₂ *in anely* formed Mn-N bond; (F) schematic illustration of the interfacial engineering of PANI-MnO₂/CC to form PANI protective/active layers with 3D network-like interfaces onto MnO₂.

(A, D, E) Reprinted with permission form Ref.[72], Copyright 2022, Wiley-VCH; (C) reprinted with permission form Ref.[73], Copyright 2022, Wiley-VCH; (F) reprinted with permission from Ref.[78], Copyright 2021, Elsevier.

dissolution of Mn atoms and inhibit the Jahn-Teller effect, improving the stability of PODA/MnO₂ hybrid in Fig.5(D). Hence, the energy storage capacity and structural integrity of MnO₂ can be enhanced by interfacial protection as displayed in Fig.5(E)^[72].

Furthermore, polyaniline(PANI), poly(3,4-ethylenedioxy thiophene)(PEDOT), and polypyrrole(PPy), with flexible framework, also have been used for protecting the stability of MnO₂ cathodes. Ruan *et al.*^[78] reasonably designed the three-dimensional networks of MnO₂-PANI hybrid *in-situ* deposited on carbon cloth(PANI-MnO₂/CC) for Zn ion storage in Fig.5(F). The hybrid cathode exhibits rapid ion diffusion ability and relatively stable structure due to the tight 3D mesh interfaces formed between the MnO₂, PANI and carbon cloth. Although organic protection provides a new idea for the structural integrity of MnO₂, it is worth noting that organic interfacial strategy is relatively rare in the design of high-performance of Zn-MnO₂ devices.

3.3 Pre-intercalation Strategy

In addition to defect engineering and interfacial engineering,

the pre-intercalation strategy can also effectively improve the electrochemical performance of MnO₂ hosts^[13]. Preintercalation strategy mainly aims at nanostructured MnO₂ by inserting a small amount of "guest materials" with activity or non-activity for enhanced electrochemical performance. Currently, guest materials mainly include metal ions, lattice water molecules and organic molecules. The influence of preintercalation effect on the chemical properties and energy storage mechanisms will be analyzed in this section.

3.3.1 Ion Pre-intercalation

Currently, inorganic cation intercalation has been widely used to expand the interlayer spacing and keep the crystal structural stability of MnO₂ electrodes^[79]. Up to now, Na^{+[38,80,81]}, Ag^{+[82]}, Cu^{2+[83,84]}, K^{+[85,86]} and Zn^{2+[87]} have been intercalated into MnO₂ hosts for speeding the commercialization of AZIBs. Yu *et al.*^[88] reported a Na⁺/crystal water co-intercalated layered MnO₂ cathode of Na_{0.55}Mn₂O₄·0.57H₂O(NMOH) for highperformance AZIBs in Fig.6(B). Besides, the effect of enlarged interlayer spacing, pre-intercalated Na⁺ can be substituted

Fig.6(A)^[92].

with Zn²⁺ in the first cycle to further stabilize the layered MnO₂, resulting in exceptional specific capacity and satisfactory cycling lifespan of NMOH cathodes. Besides, intercalated K⁺ acts as pillars, which have been reported in modified δ -MnO₂(denoted as KMO) to speed the sluggish ion diffusion in Fig.6(C)^[89], resulting in high power capability of KMO cathode. It is worth noting that excessive pre-intercalated cations may lead to a phase transition from a two-dimensional layered structure to a one-dimensional tunnel structure, which can slow ion diffusion in the layered channel of MnO₂^[90]. Parkin *et al.*^[91] systematically revealed the threshold K/Mn ratio of 0.26 through DFT simulations for inhibiting the structural transition by stabilizing δ -MnO₂[Fig.6(D)]. In addition to alkali metals, Al³⁺ intercalated α -MnO₂(AMO) with stable cycling performance and superior rate capability was illustrated in

Therefore, the ion pre-intercalation strategy plays an obvious role in improving the diffusion kinetics and cycling life of Mn-based cathodes^[79]. Yet, the pre-intercalation content of ions should attract the attention of researchers for obtaining advanced Zn-Mn batteries. Specifically, a low ratio of intercalated ion cannot effectively increase the electrochemical performance of MnO₂ cathodes. Whereas, excessive cations

Review

can greatly reduce the specific capacity and even change the intrinsic structure MnO₂. Thus, it is particularly essential to select a suitable ratio of cation content for pre-intercalation strategy^[93,94]. Moreover, pre-intercalation chemistry should be explored in-depth for the rational design of superb cathodes.

3.3.2 Molecule Pre-intercalation

Metal ions and water molecules can easily escape from the interlayer of MnO₂, leading to serious capacity decaying during the charging/discharging process^[92]. To solve these issues, organic molecules with stable conjugated structures have acted as interlayer pillars of layered MnO₂. Guest materials of organics can not only stabilize the layered structure of MnO₂, but also endow extra redox groups for storing more Zn ions. Currently, organic molecules of aniline monomer^[95], PANI^[96], PEDOT^[97] and PPy^[98] have been reported for the modified MnO₂.

In 2015, Wang *et al.*^[95] verified that aniline monomers could be intercalated into MnO₂ layers through experiments and DFT calculations. Based on this discovery, Wang *et al.*^[96]

(A) A^{13+} pre-intercalated MnO₂ cathode for high cycling stability; (B) crystal structure of Na⁺ pre-intercalated MnO₂ cathode with fast redox kinetics; (C) the fabrication process of K⁺ pre-intercalated MnO₂; (D) the relative stability of delta phase to alpha phase as a function of K/Mn ratio *via* DFT simulation.

(A) Reprinted with permission form Ref.[92], Copyright 2021, Elsevier; (B) reprinted with permission form Ref.[88], Copyright 2020, Springer Nature; (C) reprinted with permission from Ref.[91], Copyright 2020, Royal Society of Chemistry.

Review

prepared PANI-intercalated MnO₂ hybrids for the highperformance AZIBs through inorganic/organic interfacial reaction, as illustrated in Fig.7(B). Specifically, the chemical oxidative polymerization of aniline and the reduction reaction of MnO₄²⁻ facilitated the layered assembly of PANI-MnO₂. Due to the pre-intercalation effect, PANI-MnO₂ cathode displayed high capacity retention and a long lifespan even at high current density and deep discharge tests, respectively. On the basis of traditional organic molecules intercalation, quinones have attracted much attention due to their structural diversity and resource sustainability^[99–102]. The intermolecular forces(such as van der Waals forces, π - π forces, etc.) can provide an elastic matrix for the reversible insertion/extraction of Zn²⁺. Besides, inserted quinones can also facilitate the ion diffusion process in the adjustable interlayers of MnO₂^[103–107]. Hence, the coupling inorganic MnO₂ and poly(1,5-diaminoanthraquinone)(MnO₂@PDAAQ) cathode exhibited a significantly enhanced capacity and cycling stability compared to the original MnO₂ and PDAAQ cathodes in Fig.7(A)^[108]. Very recently, PEDOT pre-intercalated MnO₂ with regulated interlayer structure has been reported for constructing AZIBs[Fig.7(C)]^[97]. In conclusion, organic molecule intercalation can significantly improve the energy storage performance of MnO₂. Moreover, more novel intercalated organics with redox groups and stable structure can be developed for superb cathodes.

Fig.7 Schematic illustration of organic pre-intercalated MnO₂ cathodes

(A) PDAAQ pre-intercalated MnO₂ cathode for boosting the mechanisms of Zn²⁺/H⁺ co-insertion and dissolution/deposition reaction; (B) PANI pre-intercalated MnO₂ cathode for building high-capacity and long-lifespan Zn-MnO₂ battery; (C) PEDOT pre-intercalated MnO₂ cathode for speeding the ion diffusion.
 (A) Reprinted with permission form Ref.[108], Copyright 2022, Elsevier; (B) reprinted with permission from Ref.[96], Copyright 2018, Springer Nature; (C) reprinted with permission from Ref.[97], Copyright 2023, Elsevier.

4 Energy Storage Mechanism of Mn-based Oxides

Although significant progress on MnO₂ cathode materials has been made in enhancing their electrochemical performance, the energy storage mechanism of MnO₂ cathode is more complex than that of other materials. According to the experimental experiences and theoretical calculations, energy storage mechanisms may be related to the polycrystalline types(α -, β -, γ -, δ -, λ -, R- and T-) and particle size of MnO₂ itself, as well as the acid-base variation of electrolyte^[9,109,110]. So far, there are three mainstream energy storage mechanisms for MnO₂-based AZIBs: reversible ion insertion mechanism, conversion reaction mechanism and dissolution-deposition mechanism. This section provides detailed and deep discussions on energy storage mechanisms for the future investigation and construction of high-performance Zn-MnO₂ systems.

4.1 Reversible Ion Insertion Mechanism

The ionic radius of hydrated $Zn^{2+}(4.12 \text{ Å})$ is comparable with that of hydrated Li⁺(3.40 Å), which is favorable for Zn^{2+} intercalation/extraction into the host structure of MnO₂-based cathode materials. Kang *et al.*^[111] suggested reversible

storage/release of Zn ions into tunnels of *a*-MnO₂ cathode in ZnSO4 electrolyte with the reversible formation of ZnMn2O4, confirming Zn intercalation/extraction energy storage mechanism for MnO2-based cathodes. However, the storage mechanism of other types MnO2-based cathode materials in neutral or mild acidic aqueous electrolytes remains controversial^[20,112-114]. Although a similar zinc ions extraction behavior can be observed in ε -MnO₂ cathode, the insertion of Zn²⁺ cannot be completely reversible in the electrolyte of ZnSO₄ and MnSO4^[24]. Wang et al.^[110] carried out electroanalytical technology to disclose the different mechanisms for electrodeposited *ε*-MnO₂ cathode. By using a combination of galvanostatic intermittent titration technique(GITT) and electrochemical impedance spectroscopy(EIS), it has been confirmed that H⁺ ions are inserted into MnO₂ host structure at the higher voltage platform of 1.4 V, while Zn ions are inserted at the lower voltage platform of 0.6 V. Meanwhile, the continuously emerged equilibrium phases of MnOOH and ZnMn2O4 were obtained by electrochemical tests and ex-situ XRD analyses, which further supports the mechanism that MnO_2 cathode first underwent $H^{\scriptscriptstyle +}$ insertion and then $Zn^{2\scriptscriptstyle +}$ insertion[Fig.8(A)][73].

Based on insertion-type mechanism, MnO₂ cathodes face structural instability issues of crystal collapse and Mn dissociation caused by the strong interaction between inserted ions and hosts. Therefore, rational structural design of constructing high stable host and fast ion diffusion is vital for Mn-based cathodes, especially for maintaining structural integrity and boosting redox kinetics during cycling tests.

4.2 Conversion Reaction Mechanism

Except for the Zn2+ intercalation chemistry, various conversion-type mechanisms based on reversible phase transformation of Mn-based cathodes have been reported during the energy storage process[113,115]. As reported, the polymorphs of α -MnO₂, β -MnO₂ and γ -MnO₂ usually undergo a phase transformation from tunneled into layered Zn-buserite after the first discharge process^[109,116]. To confirm that, Chen et al.^[19] constructed Zn-MnO₂ cells based on β -MnO₂ cathode, Zn anode and Zn(CF3SO3)2 electrolyte with Mn(CF3SO3)2 addictive. It was found that β -MnO₂ exhibited an irreversible phase transformation into Zn-buserite-Zn_xMnO₂·nH₂O during the initial discharging process. After following the cycling processes, Zn2+ was reversibly (de)intercalated into the H2Ocontaining Zn-buserite framework^[116]. In addition, conversion reaction based on the formation of the intermediate product of MnOOH, triggered by H insertion into cathode lattice during discharge/charge process, has been proposed, as shown in Fig.8(B)^[117]. In most cases, the conversion reaction is usually

accompanied with reversible (de)intercalation of Zn and H ions. Hence, the well-utilization of both conversion and intercalation mechanisms holds significant promise for the development of high-performance AZIBs.

4.3 Dissolution-deposition Mechanism

Besides the above-mentioned energy storage mechanisms, the dissolution-deposition mechanism has been proposed and considered as a novel redox chemistry based on a two-electron transfer reaction. The specific mechanism has been demonstrated by producing Mn2+ via the reaction between α -MnO₂ and water in the initial discharge process^[118]. Then, the resultant OH- reacted with SO₄²⁻ and Zn²⁺ in ZnSO₄ electrolyte, forming the flaky zinc sulfate hydroxide(ZSH) on the cathode surface. Upon recharging, the ZSH phase reacted with the dissolved Mn²⁺ in an electrolyte to form birnessite-MnO₂. During the following cycles, reversible electrolytic reactions involving dissolution and deposition took place with the birnessite-MnO₂ rather than the initial phase of α -MnO₂. In order to explore the dissolution-deposition mechanism, Bao et al.[119] synthesized ZSH as a cathode material to directly verify the phase transition of MnO₂ during the cycling tests. As a result, the synthesized ZSH exhibited similar electrochemical reaction behavior with α -MnO₂ and δ -MnO₂. Moreover, a series of electrochemical characterizations confirmed that the two-electron solid-liquid reaction of MnO₂/Mn²⁺ can be accompanied by reversible dissolution-deposition of the ZSH flakes in Fig.8(C).

Fig.8 Schematic diagrams of energy storage mechanism in MnO_2 cathodes

(A) Mechanism of Zn²⁺ and H⁺ co-insertion in MnO₂ electrodes; (B) MnO₂/CNT foam cathode features chemical conversion reaction mechanism; (C) ZSH-assisted deposition-dissolution mechanism for two-electron transfer reaction.
(A) Reprinted with permission form Ref.[73], Copyright 2022, Wiley-VCH;
(B) reprinted with permission from Ref.[117], Copyright 2021, Wiley-VCH;
(C) reprinted with permission from Ref.[119], Copyright 2022, Wiley-VCH.

Recently, Zhou et al.[120] introduced acetate into the electrolyte to enhance the stability of MnO₂, in which Ac⁻ can indirectly increase the redox potential of Zn-MnO₂ batteries through adjustment of the coordination environment, as shown in Fig.9(A). Besides, the Cr^{3+}/Cr^{2+} redox couple was introduced into battery system to catalyze the Mn4+/Mn2+ redox reaction based on dissolution-deposition mechanism, eliminating extra electrochemical "dead" MnO_2 and contributing to a long lifespan. Similarly, the Fe³⁺/Fe²⁺ redox species have been proven as a redox mediator to accelerate dissolution-deposition reaction of MnO₂/Mn^{2+[121]}. During the discharge process, Fe³⁺ underwent electrochemical reduction to form Fe²⁺. Furthermore, the resulting Fe²⁺ species promoted the conversion of Mn3+ and MnO2 into Mn2+, while Fe2+ was re-oxidized back to Fe3+. Finally, two electron transfer of MnO₂/Mn²⁺ can eventually be realized accompanied by the redox couple of Fe³⁺/Fe²⁺, as shown in Fig.9(B). Recently, Chao et al.[122] proposed that the pH environment or proton reactivity could tune the occurrence of energy storage mechanisms, which typically coexist and evolve alternately. So another way to benefit the dissolution/deposition of MnO2 cathode is by lowering the pH value of the electrolyte, in other words, to achieve two-electron transfer system. Therefore, a continuous and in-depth investigation into the dissolution-deposition

Fig.9 Electrolyte modification for boosting depositiondissolution mechanism

(A) Schematic of acetate-based Zn-MnO₂ battery through coordination reaction adsorbing Mn³⁺; (B) schematic of the formation of "dead" MnO₂ and the working mechanisms of Fe³⁺/Fe²⁺ redox couple for inhibiting the reaction of disproportionation of Mn³⁺.

(A) Reprinted with permission from Ref.[120], Copyright 2022, Elsevier;
 (B) reprinted with permission from Ref.[121], Copyright 2023, Royal Society of Chemistry.

mechanism can open an avenue for constructing highperformance Zn-Mn batteries based on multi electron transfer reactions.

5 Challenges and Prospects

High performance aqueous Zn-MnO₂ batteries have significant potential for large-scale energy storage applications. However, Zn batteries still face the main pitfalls of unsatisfying energy density and cycling stability. Although great progress has been achieved in recent years, many issues still need to be addressed for the commercialization of advanced Zn-MnO₂ batteries. Holistic improvement of the electrodes and electrolytes can achieve the overall high-performance Zn devices. Hence, continuous optimization of the electrochemical performance of AZIBs is the exploration target. Herein, we conclude some challenges and prospects based on these issues, as shown in Fig.10.

(1) Rational design of nanostructured MnO₂. Structural engineering is effective for the conductivity, zinc ion storage, and stability of MnO₂ cathodes. Nevertheless, an in-depth study of the mechanisms in the enhanced performance is still unclear. So, the *in-situ* characterizations can be used for the comprehensive study. Except for a simple strategy of ion doping or pre-intercalation, introducing multiple redox couples can effectively increase the electron transfer number for high-capacity Mn-based cathodes. Furthermore, novel organics with flexible molecular chains and functional groups might act as "guest materials" to enhance organic-inorganic cathodes integrity and reaction kinetics.

(2) Systematic study of energy storage mechanism. The redox chemistry of Zn-MnO² devices still lacks recognized mechanism. Hence, advanced technologies and DFT

Fig.10 Future challenges and prospects of advanced Zn-MnO₂ batteries for large-scale energy storage applications

calculation are utilized to explore the reaction process prediction of Mn-based Zn batteries. For example, the application of advanced *in-situ* characterizations and DFT calculation are employed for the structure-function relationship of the modified cathodes and various electrochemical properties. Furthermore, high throughput DFT simulation can predict reliable Mn-based hosts according to the relevant database and clear redox chemistry.

(3) Composition optimization of electrolyte. Dissolutiondeposition mechanism of MnO₂/Mn²⁺ features excellent theoretical specific capacity(616 mA·h·g⁻¹) and high discharge working voltage, which has been implemented for superb Zn devices. To avoid the strong corrosions of Zn anodes in acid electrolytes, introducing new redox couples, such as Fe³⁺/Fe²⁺, Cr^{3+}/Cr^{2+} and $I^{-}/I_{3^{-}}$ into the weak acid electrolyte is a good choice for increasing ion storage sites. In addition, replacing the traditional sulfate electrolyte with an acetate electrolyte can effectively catalyze the reversible dissolution-deposition reaction. Moreover, rate performance and stability of the battery effectively can be improved through the complexation of Ac- and the inhibited disproportionation of Mn^{3+[120]}. Besides, eutectic mixtures have been developed quickly, in last years, as a green, safe, cheap-cost and electrochemically stable electrolyte for AZIBs, which can stable the electrochemical window and electrode/electrolyte interfaces to boost charge transfer kinetics^[123,124]. Therefore, attentions should be focused on improving the dynamics and reversibility of the relevant multi-electron reactions via electrolyte optimization, which offers significant benefits for future Zn-Mn industries^[125,126].

(4) Protection strategies of Zn anodes. Besides reasonable modification of MnO2 materials and electrolytes, the protection of zinc anodes should also be considered. Zn anodes mainly face the issues of dendrite growth, hydrogen evolution, and enhanced internal pressure of a sealed cell, which seriously hinder the development of AZIBs for largescale energy storage systems^[127]. Tailoring structures and adjusting compositions of Zn anodes are all effective methods for improving the reversibility and stability of AZIBs. Additionally, in situ modification process that forms the solid electrolyte interface(SEI) on the metallic Zn deserves close attention^[128]. Specifically, coating functionalized layers of active carbon, porous TiO2 and polymers can effectively decrease the polarization and dendrite growth, and enhance the interfacial stability, simultaneously. Hence, more efforts are required to overcome the issues faced by Zn anodes.

(5) Flexible devices in practical application. AZIBs show promise for using as flexible batteries with the advantages of intrinsic safety and low cost. Solid or gel electrolytes might be matched with a modified MnO₂ cathode and a Zn anode for the flexible Zn batteries. Due to the characteristics of high mechanical strength, good ductility and good machinability,

Review

solid/gel polymer electrolyte has broad application prospects in future intelligent, flexible and wear-resistant fields. The application of Mn-based Zn devices is prevented by the inferior conductivity and low areal capacity of deposited MnO₂, which can be regulated by adjusting the deposited temperature and polymorph tuning method^[129]. For the largescale energy storage, the overall integration of cathode/anode ratio, electrolyte usage and cost considerations must be studied. Therefore, the development of simple methods for high energy density and long lifespan of Zn-MnO₂ batteries is very necessary for its commercialization.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22209006, 21935001), the Natural Science Foundation of Shandong Province, China(No.ZR2022QE009), the Fundamental Research Funds for the Central Universities of China(No.buctrc202307) and the Key Beijing Natural Science Foundation, China(No.Z210016).

We also thank the Ministry of Finance and the Ministry of Education of China for long-term subsidy mechanism.

Conflicts of Interest

The authors declare no conflicts of interest.

References

- Suo L. M., Borodin O., Sun W., Fan X. L., Yang C. Y., Wang F., Gao T., Ma Z. H., Schroeder M., Von Cresce A., Russell S. M., Armand M., Angell A., Xu K., Wang C. S., Angew. Chem. Int. Ed., 2016, 128(25), 7252
- [2] Wang F., Suo L. M., Liang Y. J., Yang C. Y., Han F. D., Gao T., Sun W., Wang C. S., Adv. Energy Mater., 2016, 7(8), 1600922
- [3] Fang G. Z., Zhou J., Pan A. Q., Liang S. Q., ACS Energy Lett., 2018, 3(10), 2480
- [4] Liu N., Wu X., Fan L., Gong S., Guo Z., Chen A., Zhao C., Mao Y., Zhang N., Sun K., Adv. Mater., 2020, 32(42), e1908420
- [5] Wang S., Yuan Z., Zhang X., Bi S. S., Zhou Z., Tian J. L., Zhang Q. C., Niu Z. Q., Angew. Chem. Int. Ed., 2021, 60(13), 7056
- [6] Tang H., Chen W. H., Li N., Hu Z. L., Xiao L., Xie Y. J., Xi L. J., Ni L., Zhu Y. R., *Energy Storage Mater.*, **2022**, *48*, 335
- [7] Shi X., Liu X. Y., Wang E. Z., Cao X. S., Yu Y. X., Cheng X. N., Lu X. H., Carbon Neutralization, 2022, 2(1), 28
- [8] Guo S., Liang S., Zhang B. S., Fang G. Z., Ma D., Zhou J., ACS Nano, 2019, 13(11), 13456
- [9] Zhang K., Han X., Hu Z., Zhang X. L., Tao Z. L., Chen J., Chem. Soc. Rev., 2015, 44(3), 699
- [10] Xiong T., Yu Z. G., Wu H. J., Du Y. H., Xie Q. D., Chen J. S., Zhang Y. W., Pennycook S. J., Lee W. S. V., Xue J. M., *Adv. Energy Mater.*, **2019**, *9*(14), 1803815
- [11] Xiong T., Zhang Y. X., Lee W. S. V., Xue J. M., Adv. Energy Mater., 2020, 10(34), 2001769
- [12] Huang J., Tang X., Liu K., Fang G., He Z., Li Z., Mater. Today Energy, 2020, 17, 100475
- [13] Zhao Q. H., Song A. Y., Ding S. X., Qin R. Z., Cui Y. H., Li S. N., Pan F., Adv. Mater., 2020, 32(50), 2002450
- [14] Zhang Y., Yuan C. L., Ye K., Jiang X., Yin J. L., Wang. G. L., Cao D. X., *Electrochim. Acta*, **2014**, *148*, 237
- [15] Zhang Y., Deng S., Luo M., Pan G., Zeng Y., Lu X., Ai C., Liu Q., Xiong Q., Wang X., Xia X., Tu J., Small, 2019, 15(47), e1905452
- [16] Wei C. G., Xu C. J., Li B. H., Du H. D., Kang F. Y., J. Phys. Chem. Solids, 2012, 73(12), 1487
- [17] Wang Y., Huo W. C., Yuan X. Y., Zhang Y. X., Acta Mech. Solida Sin., 2020, 36(2), 1904007
- [18] Tang Y. J., Zheng S. S., Xu Y. X., Xiao X., Xue H. G., Pang H., *Energy Storage Mater.*, 2018, 12, 284
- [19] Zhang N., Cheng F. Y., Liu J., Wang L., Long X., Liu X., Li F., Chen J., Nat. Commun., 2017, 8(1), 405
- [20] Lee B., Lee H. R., Kim H., Chung K. Y., Cho B. W., Oh S. H., Chem. Commun., 2015, 51(45), 9265
- [21] Lian S. T., Sun C. L., Xu W. N., Huo W. C., Luo Y. Z., Zhao K. N., Yao G.,

Xu W. W., Zhang Y. X., Li Z., Yu K. S., Zhao H. B., Cheng H. W., Zhang J. J., Mai L. Q., *Nano Energy*, **2019**, 62, 79

- [22] Song M., Tan H., Chao D. L., Fan H. J., Adv. Funct. Mater., 2018, 28(41), 1802564
- [23] Shi W., Lee W. S. V., Xue J., ChemSusChem, 2021, 14(7), 1634
- [24] Yuan C. L., Zhang Y., Pan Y., Liu X. W., Wang G. L., Cao D. X., *Electrochim. Acta*, **2014**, *116*, 404
 [25] Housel L. M., Wang L., Abraham A., Huang J., Renderos G. D., Quilty C.
- D., Brady A. B., Marschilok A. C., Takeuchi K. J., Takeuchi E. S., Acc. Chem. Res., 2018, 51(3), 575
 [26] Li X., Li Y., Xie S. Y., Zhou Y. J., Rong J. H., Dong L. B., Chem. Eng. J.,
- **2022**, 427, 131799
- [27] Sambandam B., Mathew V., Kim S., Lee S., Kim S., Hwang J. Y., Fan H. J., Kim J., Chem, 2022, 8(4), 924
- [28] Cheng F. Y., Zhao J. Z., Song W. E., Li C. S., Ma H., J H., Chen J., Shen P. W., *Inorganic Chemistry*, **2006**, *45*, 2038
- [29] Han M., Huang J., Liang S., Shan L., Xie X., Yi Z., Wang Y., Guo S., Zhou J., *iScience*, **2020**, 23(1), 100797
- [30] Cheng F. Y., Chen J., Gou X. L., Shen P. W., Adv. Mater., 2005, 17, 2753
- [31] Hu X., Han X., Hu Y., Cheng F., Chen J., Nanoscale, 2014, 6(7), 3522
- [32] Liu G. X., Huang H. W., Bi R., Xiao X., Ma T. Y., Zhang L., J. Mater. Chem. A, 2019, 7, 20806
- [33] Shang P., Liu Y. H., Mei Y. Y., Wu L. S., Dong Y. F., Mater. Chem. Front., 2021, 5(22), 8002
- [34] Zhao Y. L., Zhu Y. H., Zhang X. B., InfoMat., 2019, 2(2), 237
- [35] Wang X., Zhang Z. C. Y., Xi B. J., Chen W. H., Jia Y. X., Feng J. K., Xiong S. L., ACS Nano, 2021, 15(6), 9244
- [36] Chen D., Lu M. J., Cai D., Yang H., Han W., *J. Energy Chem.*, **2021**, *54*, 712
- [37] Grocker A. G., Experimental Mechanics Volume, 1996, 6, 266
- [38] Pinaud B. A., Chen Z. B., Abram D. N., Jaramillo T. F., J. Phys. Chem. C, 2011, 115(23), 11830
- [39] John R. E., Chandran A., Thomas M., Jose J., George K. C., Appl. Surf. Sci., 2016, 367, 43
- [40] Cheng F. Y., Zhang T. R., Zhang Y., Du J., Han X. P., Chen J., Angew. Chem. Int. Ed., 2013, 52(9), 2474
- [41] Xiong T., Yu Z. G., Wu H. J., Du Y. H., Xie Q. D., Chen J. S., Zhang Y. W., Pennycook S. J., Lee W. S. V., Xue J. M., *Adv. Energy Mater.*, **2019**, 9(14), 1803815
- [42] Zhao Y. J., Zhang P. J., Liang J. R., Xia X. Y., Ren L. T., Song L., Liu W., Sun X. M., *Energy Storage Mater.*, **2022**, 47, 424
- [43] Xie S., Li X., Li Y., Liang Q. H., Dong L. B., Chem. Rec., 2022, 22(10), e202200201
- [44] Li Y., Li X., Duan H., Xie S. Y., Dai R. Y., Rong J. H., Kang F. Y., Dong L. B., *Chem. Eng. J.*, **2022**, *441*, 136008
- [45] Gao P., Chen Z., Gong Y. X., Zhang R., Liu H., Tang P., Chen X. H., Passerini S., Liu J. L., *Adv. Energy Mater.*, **2020**, *10*(14), 1903780
- [46] Chao D., Zhou W., Ye C., Zhang Q., Chen Y., Gu L., Davey K., Qiao S. Z., Angew. Chem. Int. Ed., 2019, 58(23), 7823
- [47] Zhang Y. N., Liu Y. P., Liu Z. H., Wu X. G., Wen Y. X., Chen H. D., Ni X., Liu G. H., Huang J. J., Peng S. L., J. Energy Chem., 2022, 64, 23
- [48] Zhao M., Luo Y., Zhu L., Cai D., Zhuang Y., Chen Q., Zhan H., Alloy Compd., 2022, 913, 165124
- [49] Kim S., Koo B., Jo Y., An H., Lee Y., Huang C., An G., J. Mater. Chem. A, 2021, 9(32), 17211
- [50] Ge B. C., Sun Y., Guo J. X., Yan X. B., Fernandez C., Peng Q. M., Small, 2019, 15(34), 1902220
- [51] Yan L. J., Niu L. Y., Shen C., Zhang Z. K., Lin J. H., Shen F. Y., Gong Y. Y., Li C., Liu X. J., Q. X. S., *Electrochim. Acta*, **2019**, *306*, 529
- [52] Ye Z. G., Li T., Ma G., Dong Y. H., Zhou X. L., Adv. Funct. Mater., 2017, 27(44), 1704083
- [53] Zhao Y. F., Zhang J. Q., Wu W. J., Guo X., Xiong P., Liu H., Wang G. X., Nano Energy, 2018, 54, 129
- [54] Ji J., Wan H. Z., Zhang B., Wang C., Gan Y., Tan Q. Y., Wang N. Z., Yao J., Zheng Z. H., Liang P., Zhang J., Wang H. B., Tao L., Wang Y., Chao D. L., H. W., Adv. Energy Mater., 2020, 11, 2003203
- [55] Xia X. Y., Zhao Y. J., Zhao Y., Xu M. G., Liu W., Sun X. M., Nano Res., 2022, 16(2), 2511
- [56] Wang C. Z., Yang H., Wang B., Ding P. B., Wan Y., Bao W. J., Li Y. A., Ma S. Y., Liu Y., Lu Y. K., Hu H., *Nano Res.*, **2023**, doi:10.1007/s12274-023-5717-8
- [57] Selvakumaran D., Pan A. Q., Liang S. Q., Cao G. Z., J. Mater. Chem. A, 2019, 7(31), 18209
- [58] Bi S., Wu Y., Cao A., Tian J., Zhang S., Niu Z., *Mater. Today Energy*, 2020, 18, 100548
- [59] Li B., Chai J. W., Ge X. M., An T., Lim P., Liu Z. L., Zong Y., ChemNanoMat, 2017, 3(6), 401
- [60] Xu D. W., Li B. H., Wei C. G., He Y. B., Du H. D., Chu X. D., Qin X. Y.,

Yang Q. H., Kang F. Y., *Electrochim. Acta*, **2014**, *133*, 254 [61] Khamsanga S., Pornprasertsuk R., Yonezawa T., Mohamad A. A.,

- Kheawhom S., *Sci. Rep.*, **2019**, *9*(1), 8441 [62] Wang C., Zeng Y. X., Xiao X., Wu S. J., Zhong G. B., Xu K. Q., Wei Z. F.,
- Su W., Lu X. H., *J. Energy Chem.*, **2020**, 43, 182
- [63] Li C., Li M., Xu H., Zhao F., Gong S., Wang H., Qi J., Wang Z., Hu Y., Peng W., Fan X., Liu J., *J. Colloid Interface Sci.*, **2022**, 628(Pt A), 553
- [64] Jeong J., Park S. H., Park H. J., Jin S. B., Son S. G., Moon J., Suh H., Choi B. G., Adv. Funct. Mater., 2021, 31(17), 2009632
- [65] Jia H. N., Lin J. H., Liu Y. L., Chen S. L., Cai Y. F., Qi J. L., Feng J. C., Fei W. D., J. Mater. Chem. A, 2017, 5(21), 10678
- [66] Ataherian F., Wang Y. L., Tabet-Aoul A., Mohamedi M., ChemElectroChem, 2017, 4(8), 1924
- [67] Sheng L. Z., Jiang L. L., Wei T., Fan Z. J., Small, 2016, 12(37), 5217
- [68] Tong H., Li T., Liu J., Gong D., Xiao J., Shen L., Ding B., Zhang X., *Energy Technol.*, **2020**, *9*(2), 2000769
- [69] Chao D. L., Zhou W. H., Ye C., Zhang Q. H., Chen Y. G., Gu L., Davey K., Qiao S. Z., Angew. Chem. Int. Ed., 2019, 58(23), 7823
- [70] Huang C., Wang Q. F., Tian G. F., Zhang D. H., Mater. Today Phys., 2021, 21, 100518
- [71] Zhang J., Lin J., Zeng Y. B., Zhang Y., Guo H., ACS Appl. Energy Mater., 2019, 2(11), 8345
- [72] Zhao Y., Zhou R. K., Song Z. H., Zhang X. D., Zhang T., Zhou A. B., Wu F., Chen R. J., Li L., Angew. Chem. Int. Ed., 2022, 61(49), e202212231
- [73] Ji J., Yao J., Xu Y. C., Wan H. Z., Zhang B., Lv L., Li J. Y., Wang N. Z., Zheng Z. H., Zhang J., Ma G. K., Tao L., Wang H. B., Wang Y., Wang H., *Energy Environ. Sci.*, **2022**, 6(2), e12340
- [74] Sun Y. K., Lee M. J., Yoon C. S., Hassoun J., Amine K., Scrosati B., Adv. Mater., 2012, 24(9), 1192
- [75] Jung Y. S., Cavabagh A. S., Riley L. A., Kang S. H., Dillon A. C., Groner M. D., Groner S. M., Lee S. H., Adv. Mater., 2010, 22(19), 2172
- [76] Liu Y., Zhou X. M., Liu R., Li X. L., Bai Y., Xiao H. H., Wang, Y. M., Yuan G. H., ACS Appl. Mater. Interfaces, 2019, 11(21), 19191
- [77] Li H. Y., Yao H., Sun X. Y., Sheng C. C., Zhao W., Wu J. H., Chu S. Y., Liu Z. G., Guo S. H., Zhou H. S., Chem. Eng. J., 2022, 446, 137205
- [78] Ruan P. C., Xu X. L., Gao X. L., Feng J. X., Yu L. H., Cai Y. H., Gao X. B., Shi W. H., Wu F. F., Liu W. X., Zang X. X., Ma F. Y., Cao X. H., SM&T, 2021, 28, e00254
- [79] Yao X. H., Zhao Y. L., Castro F. A., Mai L. Q., ACS Energy Lett., 2019, 4(3), 771
- [80] Xia H., Zhu X. H., Liu J. Z., Liu Q., Lan S., Zhang Q. H., Liu X. Y., Seo J. K., Chen T. T., Gu L., Meng Y. S., Nat. Commun., 2018, 9(1), 5100
- [81] Ye Q. L., Dong R. T., Xia Z. H., Chen G. R., Wang H. L., Tan G. J., Jiang L., Wang F., *Electrochim. Acta*, **2014**, *141*, 286
- [82] Zhang K. Q., Chen H. D., Xiao B. Q., Chen J., Yan W., Liu Y. P., Hu C. F., Chen L., Huang J. J., Peng S. L., ACS Appl. Mater. Interfaces, 2023, 6(3), 1467
- [83] Yadav G. G., Gallaway J. W., Turney D. E., Nyce M., Huang J., Wei X., Banerjee S., Nat. Commun., 2017, 8, 14424
- [84] Long F., Xiang Y., Yang S., Li Y., Du H., Liu Y., Wu X., Wu X., J. Colloid Interface Sci., 2022, 616, 101
- [85] Poyraz A. S., Huang J. P., Pelliccione C. J., Tong X., Cheng S. B., Wu L. J., Zhu Y. M., Marschilok A. C., Takeuchi K. J., Takeuchi E. S., *J. Mater. Chem. A*, **2017**, *5*(32), 16914
- [86] Sada K., Senthilkumar B., Barpanda P., J. Mater. Chem. A, 2019, 7(41), 23981
- [87] Radhamani A. V., Krishna Surendra M., Ramachandra Rao M. S., Appl. Surf. Sci., 2018, 450, 209
- [88] Zhai X. Z., Qu J., Hao S. M., Jing Y. Q., Chang W., Wang J., Li W., Abdelkrim Y., Yuan H., Yu Z. Z., *Nano-Micro Lett.*, **2020**, *12*(1), 56
- [89] Liu L. Y., Wu Y., Huang L., Liu K. S., Duployer B., Rozier P., Taberna P., Simon P., Adv. Energy Mater., 2021, 11(31), 2101287
- [90] Liu Z. X., Sun H. M., Qin L. P., Cao X. X., Zhou J., Pan A. Q., Fang G. Z., Liang S. Q., ChemNanoMat, 2020, 6(11), 1553
- [91] Jiao Y. D., Kang L. Q., Berry-Gair J., McCol K., Li J. W., Dong H. B., Jiang H., Corà F., Brett D. J. L., He G. J., Parkin I. P., *J. Mater. Chem. A*, **2020**, 8(42), 22075
- [92] Chen C., Shi M. J., Zhao Y., Yang C., Zhao L. P., Yan C., Chem. Eng. J., 2021, 422, 130375
- [93] Zhao X., Mao L., Cheng Q. H., Liao F. F., Yang G. Y., Lu X. H., Chen L. Y., Energy Storage Mater., 2021, 38, 397
- [94] Lu Y. Y., Zhu T. Y., Bergh W. V. D., Stefik M., Huang K., Angew. Chem. Int. Ed., 2020, 59(39), 17004
- [95] Wei X., Peng Z., Mao X. H., Wang D. H., *J. Mater. Chem. A*, **2015**, *3*, 8676
 [96] Huang J. H., Wang Z., Hou M. Y., Dong X. L., Liu Y., Wang Y. G., Xia Y. Y.,
- Nat. Commun., **2018**, 9(1), 2906
- [97] Chen H., Ma W. B., Guo J. D., Xiong J. Y., Hou F., Si W. P., Sang Z. Y., Yang D., *J. Alloys Compd.*, **2023**, 932, 167688

Chem. Res. Chinese Universities, 2023, 39(4), 599—611 https://doi.org/10.1007/s40242-023-3126-x Review

- [98] Liao X. B., Pan C. L., Pan Y. S., Yin C. J., J. Alloys Compd., 2021, 888, 161619
- [99] Zhao Q., Huang W., Luo Z., Liu L., Lu Y., Li Y., Li L., Hu J., Ma H., Chen J., Sci. Adv., 2018, 4(3), aao1761
- [100] Nam K. W., Kim H., Beldjoudi Y., Kwon T., Kim D. J., Stoddart J. F., J. Am. Chem. Soc., 2020, 142(5), 2541
- [101] Sun T., Li Z. J., Zhi Y. F., Huang Y. J., Fan H. J., Zhang Q. C., Adv. Funct. Mater., 2021, 31(16), 2010049
- [102] Lin Z., Shi H. Y., Lin L., Yang X., Wu W., Sun X., Nat. Commun., 2021, 12(1), 4424
- [103] Tie Z. W., Niu Z. Q., Angew. Chem. Int. Ed., 2020, 59(48), 21293
- [104] Gao Y. J., Li G. F., Wang F., Chu J., Yu P., Wang B. S., Zhan H., Song Z. P., *Energy Storage Mater.*, **2021**, *40*, 31
- [105] Wang Y., Wang C., Ni Z., Gu Y., Wang B., Guo Z., Wang Z., Bin D., Ma J., Wang Y., Adv. Mater., 2020, 32(16), e2000338
- [106] Wu X. Y., Hong J. J., Shin W., Ma L., Liu T. C., Bi X. X., Yuan Y. F., Qi Y. T., Surta T. W., Huang W. X., Neuefeind J., Wu T. P., Greaney P. A., Lu J., Ji X. L., *Nat. Energy*, **2019**, *4*(2), 123
- [107] Yang X., Zhao Y., Xu Q. J., Yuan X. C., Liu J. Z., Batteries & Supercaps, 2023, 6(3), e202200480
- [108] Ye F., Liu Q., Lu C. J., Meng F. Q., Lin T., Dong H. L., Gu L., Wu Y. P., Tang Z. L., Hu L. F., *Energy Storage Mater.*, **2022**, *52*, 675
- [109] Lee B., Yoon C. S., Lee H. R., Chung K. Y., Cho B. W., Oh S. H., Sci. Rep., 2014, 4, 6066
- [110] Sun W., Wang F., Hou S., Yang C., Fan X., Ma Z., Gao T., Han F., Hu R., Zhu M., Wang C., J. Am. Chem. Soc., 2017, 139(29), 9775
- [111] Xu C. J., Li B. H., Du H. D., Kang F. Y., Angew. Chem. Int. Ed., 2012, 51(4), 933
- [112] Lee J., Ju J. B., Cho W. I., Cho B. W., Oh S. H., *Electrochim. Acta*, 2013, 112, 138
- [113] Alfaruqi M. H., Gim J., Kim S., Song J. J., Jo J., Kim S., Mathew V., Kim J., *J. Power Sources*, **2015**, 288, 320
- [114] Zhang N., Cheng F. Y., Liu Y. C., Zhao Q., Lei K. X., Chen C. C., Liu X. S.,

Chen J., J. Am. Chem. Soc., 2016, 138(39), 12894

- [115] Islam S., Alfaruqi M. H., Mathew V., Song J. J., Kim S., Kim S., Jo J., Baboo J. P., Pham D. T., Putro D. Y., Sun Y. K., Kim J., *J. Mater. Chem. A*, **2017**, 5(44), 23299
- [116] Zeng Y., Zhang X., Meng Y., Yu M., Yi J., Wu Y., Lu X., Tong Y., Adv. Mater., 2017, 29(26), 1700274
- [117] Shen X. F., Wang X. N., Zhou Y. R., Shi Y. H., Zhao L. M., Jin H. H., Di J. T., Li Q. W., Adv. Funct. Mater., 2021, 31(27), 2101579
- [118] Guo X., Zhou J., Bai C. L., Li X. K., Fang G. Z., Liang S. Q., Mater. Today Energy, 2020, 16, 100369
- [119] Chen H., Dai C. L., Xiao F. Y., Yang Q. J., Cai S. N., Xu M. W., Fan H. J., Bao S. J., *Adv. Mater.*, **2022**, 34(15), 2109092
- [120] Liu Z. X., Yang Y. Q., Lu B. G., Liang S. Q., Fan H. J., Zhou J., *Energy Storage Mater.*, **2022**, 52, 104
- [121] Ye X. L., Han D. L., Jiang G. Y., Cui C. J., Guo Y., Wang Y. G., Zhang Z. C., Weng Z., Yang Q. H., *Energy Environ. Sci.*, **2023**, *16*(3), 1016
- [122] Yang H., Zhang T., Chen D., Tan Y., Zhou W., Li L., Li W., Li G., Han W., Fan H. J., Chao D., *Adv. Mater.*, **2023**, *35*(24), e2300053
- [123] Han M., Zhou J., Fan H. J., Trends in Chemistry, 2023, 5(3), 214
- [124] Li C., Kingsbury R., Thind A. S., Shyamsunder A., Fister T. T., Klie R. F., Persson K. A., Nazar L. F., *Nat. Commun.*, **2023**, *14*(1), 3067
- [125] Chen D., Lu M. J., Wang B., Cheng H. F., Yang H., Cai D., Han W., Fan H. J., Nano Energy, 2021, 83, 105835
- [126] Wang Y., Xie J. H., Luo J., Yu Y. X., Liu X. Q., Lu X. H., Small Methods, 2022, 6(8), e2200560
- [127] Zhang C., Holoubek J., Wu X., Daniyar A., Zhu L., Chen C., Leonard D. P., Rodriguez-Perez I. A., Jiang J. X., Fang C., Ji X., Chem. Commun. (Camb), 2018, 54(100), 14097
- [128] Zhang N., Chen X., Yu M., Niu Z., Cheng F., Chen J., Chem. Soc. Rev., 2020, 49(13), 4203
- [129] Xiao X., Zhang Z., Wu Y., Xu J., Gao X., Xu R., Huang W., Ye Y., Oyakhire S. T., Zhang P., Chen B., Cevik E., Asiri S. M., Bozkurt A., Amine K., Cui Y., Adv. Mater., 2023, e2211555, https://doi.org/10.1002/adma.202211555

