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Abstract  Carbon-covered tungsten carbide nanoparticles(cc-WCNPs) were prepared via a one-step solid-state  

reaction between W(CO)6 and triphenylamine at 850 °C under a sealed Ar atmosphere. As novel electrocatalysts for 

the hydrogen evolution reaction(HER), cc-WCNPs exhibit an onset potential of –0.14 V vs. reversible hydrogen  

electrode(RHE) and a Tafel slope of 64.6 mV/dec in a 0.5 mol/L H2SO4 solution. Additionally, these cc-WCNPs  

catalysts also show excellent electrocatalytic stability after 1000 cycles. 
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1  Introduction 

The worldwide energy crisis has forced people to focus on 

the expansion of renewable resources[1]. Hydrogen-based ener-

gy sources are potential alternatives to petroleum feedstocks 

because of their high energy and the lack of carbon[2,3]. Elec-

trochemical hydrolysis is a theoretically efficient method of 

hydrogen production because hydrogen evolution reaction 

(HER) will dominate over the electrochemical process.  

However, overpotentials need to be overcome, and advanced 

catalysts are imperative[4]. Despite having the best catalytic 

performance for the HER, Pt is quite expensive, which hinders 

its large-scale utilization[5]. 

Tungsten carbides have been considered as potential   

alternative catalysts to Pt for the HER. W2C and WC have a 

similar band structure to that of Pt[6,7]. Although tungsten  

carbides show relatively low HER activity, they have always 

been used as support materials for Pt[8―10]. For example, Liu 

and Mustain[9] reported that the Pt/WC exhibited significantly 

better stability than the commercial Pt/C. However, the use of 

tungsten carbides/carbon nanostructures as electrocatalysts for 

the HER has not yet been reported.  

In this study, carbon-covered tungsten carbides nanopar-

ticles(cc-WCNPs) were prepared via a one-step solid-state 

reaction under a sealed Ar atmosphere using W(CO)6 and tri-

phenylamine as precursors. The HER properties of the products 

were investigated in a 0.5 mol/L H2SO4 solution without any 

active processes, demonstrating an onset potential of –0.14 V 

and a small Tafel slope of 64.6 mV/dec. Additionally, 

cc-WCNPs exhibited excellent electrocatalytic stability. 

2  Experimental  

2.1  Synthesis of Carbon-covered Tungsten Car-

bides Nanoparticles(cc-WCNPs) 

To prepare cc-WCNPs, 0.50 g of W(CO)6 and 0.83 g of 

triphenylamine were ground to form a homogeneous powder. 

The solid mixture was degassed and sealed under an Ar atmos-

phere in a glove box and subsequently heated at 850 °C for 3 h. 

After cooling to room temperature, the products were washed 

with deionized water three times and then collected via centri-

fugation. 

2.2  Characterization 

Scanning electron microscopy(SEM) measurements were 

carried out on an XL30 ESEM FEG microscope. Transmission 

electron microscopy(TEM) measurements were performed 

using a Hitachi H-8100 electron microscope(Hitachi, Japan). 

X-Ray diffraction(XRD) data were recorded on a RigakuD/ 

MAX 2550 diffractometer. The energy-dispersive spectroscopy 

(EDS) measurements were performed on an IE250X-Max50 

(Oxford, Britain). 

2.3  Electrochemical Measurements 

Electrochemical measurements were performed on a 

CHI614D electrochemical analyzer(CH Instruments, Inc., 

Shanghai, China) in a three-electrode cell. A glassy carbon 

electrode(GCE) with a 0.07 cm2 geometric area, an Ag/AgCl 

electrode and a platinum wire were used as the working   
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electrode, the reference electrode and the counter electrode, 

respectively. All the potentials reported in this work were vs. 

the reversible hydrogen electrode(RHE). In a 0.5 mol/L H2SO4 

solution, E(RHE)=E(Ag/AgCl)+0.059pH+0.21 and the pH of 

the 0.5 mol/L H2SO4 solution is 0.16. The working electrode 

was prepared as follows: 1 mg of as-prepared catalyst and   

10 μL of 5%(mass fraction) Nafion solution were dispersed in a  

1 mL of water/ethanol(1:1, volume ratio) mixed solvent,   

followed by ultrasonic treatment for at least 30 min. Then, 5 μL 

of the ink was added dropwise onto the glassy carbon electrode. 

Linear sweep voltammetry(LSV) with a scan rate of 2 mV/s in 

a range from 0 V to –0.8 V(vs. RHE) was performed in the  

0.5 mol/L H2SO4 solution. A stability test was then carried out 

using cyclic voltammetry(CV) within the same potential range 

for 1000 cycles at a scan rate of 100 mV/s.  

3  Results and Discussion 

Fig.1(A) shows the XRD pattern of cc-WCNPs. The   

obvious diffraction peaks at 34.7°, 38.3°, 39.7°, 52.4°, 61.8°, 

69.7°, 75.1° and 75.9° can be assigned to the (110), (002), 

(1 1 1), (1 1 2), (3,0,0), (1 1 3), (3,0,2) and ( 2 2 1) faces of 

W2C(JCPDS No. 65-3896), respectively. The other three peaks 

at 31.5°, 35.6° and 48.3° correspond to the (001), (100) and 

(101) faces of WC(JCPDS No. 51-0939), respectively. The 

XRD results reveal the well-formed crystallographic structure 

of tungsten carbides in cc-WCNPs. The EDS of the cc-WCNPs 

reveals the abundant existence of W and C elements[Fig.1(B)]. 

The observed Au peak originates from the sputtered Au   

conductive coating. The atom ratio of W/C was measured to be 

56.16/24.73[10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     
Fig.1  XRD pattern(A) and EDS spectrum(B) of 

cc-WCNPs 

The morphology of cc-WCNPs was determined by SEM 

and TEM. Fig.2(A) and (B) display the low- and 

high-magnification SEM images of cc-WCNPs, showing the 

morphology of microspheres with different diameters ranging 

from 500 nm to 1 μm. Fig.2(C) and (D) are TEM images of 

cc-WCNPs. The surface is clearly coated by a thin layer of 

carbon. Fig.2(E) illustrates a high-resolution TEM(HRTEM) 

image of the surface of one sphere. The observed lattice fringes 

with an interplanar distance of 0.23 nm correspond to the (1 1 1) 

plane of W2C. Fig.2(F) shows the magnified image of the  

selected area of Fig.2(E). The interface contrast between carbon 

and tungsten carbide can be readily observed[11]. Meanwhile, 

clear hexagonal atomic lattices in the W2C are also found in 

Fig.2(F). All these observations indicate the successful forma-

tion of tungsten carbide nanoparticles coated with carbon[12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

Fig.2  Low-(A) and high-magnification(B) SEM images, 

low-(C) and high-magnification(D) TEM images 

and low-(E) and high-magnification(F) HRTEM 

images of cc-WCNPs  

 To investigate the HER performance of cc-WCNPs, ink 

containing well-dispersed cc-WCNPs was added dropwise to 

GCE with a loading density of 0.36 mg/cm2. Without any ac-

tive process, the HER properties of cc-WCNPs were directly 

determined in a 0.5 mol/L H2SO4 solution. Fig.3(A) presents 

the polarization curves of cc-WCNPs, Pt/C and bare GCE 

measured by LSV at a rate of 2 mV/s. The cc-WCNPs catalyst 

exhibits an onset potential of –0.14 V. Typically, Pt/C exhibits 

the highest HER catalytic performance with a near zero over-

potential, while the bare GCE exhibits little HER activity[13]. 

An overpotential(η) of 0.15 V is required to achieve a current  

density(j) of 1 mA/cm2. When j=10 mA/cm2, η=0.31 V. HER 

activities of several metal carbide-based catalysts are listed in 

Table 1. The cc-WCNPs catalysts yield comparable current 

densities at the same overpotential even with a small loading. 
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Fig.3  Polarization curves of cc-WCNPs(a), bare GCE(b) and Pt/C(c) with a scan rate of 2 mV/s in a 0.5 mol/L 

H2SO4 solution(A), Tafel plots of the cc-WCNPs(a) and Pt/C(b) catalysts(B) and durability test for the 

cc-WCNPs by cyclic voltammograms for 1000 cycles at a scan rate of 100 mV/s in a 0.5 mol/L H2SO4     

solution(C) 

(C) a. Initial; b. 500 cycles; c. 1000 cycles. 

Table 1  Comparison of HER activity of several metal carbides-based catalysts 

Catalyst Loading/(mg·cm
–2

) Electrolyte 
j/(mA·cm

–2
) 

Ref. 
η= 200 mV(vs. RHE) η= 300 mV(vs. RHE) 

cc-WCNPs 0.36 0.5 mol/L H2SO4 2 6 This work 

Mo2C 2 0.1 mol/L HClO4 Less than 1 ca. 8 [14] 

WCN 0.4 H2SO4(pH=1) Less than 3 ca. 7.5 [15] 

TaC 0.5  0.05 mol/L H2SO4 
 
 Less than 0.1  

 
Less than 0.3 [16] 

WC ― 0.1 mol/L HClO4 Less than 2 Less than 2 [17] 
    

The Tafel slope is often utilized to indicate the dominant   

mechanism of the HER process. As shown in Fig.3(B), the 

Tafel slope of cc-WCNPs is 64.6 mV/dec, indicating that the 

electrochemical desorption step is the primary rate-determining 

step[18]. As expected, the commercial Pt/C catalyst yields a 

Tafel slope of 30.2 mV/dec. Fig.3(C) shows that after 1000 

cycles, the cc-WCNP catalyst retains a similar polarization 

curve, and negligible HER current has been lost, demonstrating 

its high cycling stability in an acidic electrolyte[19]. 

4  Conclusions 

 In this study, cc-WCNPs were successfully synthesized 

via a solid-state reaction at 850 °C under a sealed Ar atmos-

phere using W(CO)6 and triphenylamine as W and C sources, 

respectively. Tungsten carbides/carbon composites were   

studied as efficient and stable electrocatalysts for HER. The 

cc-WCNPs electrocatalysts exhibited an onset potential of 

–0.14 V and a Tafel slope of 64.6 mV/dec in a 0.5 mol/L H2SO4 

solution. Furthermore, the cc-WCNP catalysts demonstrated 

excellent electrocatalytic stability. This study provides a me-

thod for the preparation of transition-metal-carbide/carbon 

nanostructures for HER applications. 
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