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Abstract  Chlorinated paraffins(CPs) are potential persistent organic pollutants(POPs), which threat the safety of 
environment and organisms. However, the analysis of CPs is a difficult task due to their complex composition con-
taining thousands of congeners. In the present work, quantitative structure retention relationship(QSRR) of CPs was 
studied. A total of 470 molecular descriptors were generated, for describing the structures of 28 CPs and 12 descrip-
tors relevant to retention time of the CPs were selected by stepwise regression. Then, QSRR models between reten-
tion time on the one hand and the selected descriptors on the other hand were established by multiple linear regres-
sion(MLR), partial least squares(PLS) and least square support vector regression(LS-SVR). The result shows that 
PLS model is better than MLR and LS-SVR, obtaining a squared correlation coefficient(r2) of 0.9996 and a root mean 
squared error(RMSE) of 0.015. The PLS model was then used to predict the retention time of 49 C10-CPs. Three of 
them were investigated by gas chromatography coupled with mass spectrometry(GC-MS). A well-defined correlation 
was found between the measured retention time and the predicted value. 
Keywords  Chlorinated paraffin; Multivariate calibration; Retention time; Quantitative structure retention relationship 

 
1  Introduction 

Chlorinated paraffins(CPs) have been extensively used as 
additives in cutting fluids and high-temperature lubricants in 
the metal working industry, as well as for plastics, paints and 
sealants due to their high chemical stability and viscosity, flame 
resistance, and low vapor pressure[1,2]. It is estimated that the 
annual production of CPs in USA is 68 kilotons, while the total 
production of CPs in 2007 in China was ca. 600 kilotons[3―5]. 
With their massive production and extensive application, CPs 
have been found in all the compartments of environment, aqua-
tic and terrestrial food webs[2], as well as in human breast 
milk[6―8]. CPs are produced by chlorination of n-alkane feed 
stocks. According to the carbon chain length of CPs, they can 
be categorized into short(C10—C13), medium(C14—C17) and 
long(more than C17) chains, and given the names of SCCPs, 
MCCPs and LCCPs, respectively. SCCPs are most worthy to be 
concerned because they have the chance to produce higher 
adverse effects on environment and human tissue than MCCPs 
and LCCPs, thus posing a significant threat to public health[9]. 
Furthermore, SCCPs have been under review in the Stockholm 
Convention as potential persistent organic pollutants(POPs) 
candidate since 2009[10]. Consequently, the analysis of SCCPs 
is an important and urgent task. 

Currently, the most commonly used method for the  

analysis of CPs is gas chromatography coupled with mass 
spectrometry(GC-MS)[11―14]. For example, Zencak et al.[11] 
described a GC-MS method for the determination of total po-
lychlorinated n-alkane concentration in biota. Coelhan et al.[12] 
developed a method for determinating total SCCPs in fish sam-
ples by GC-MS without clean-up procedures. Castells et al.[13] 
and Zencak et al.[14] proposed a quantification procedure for the 
analysis of CPs in paint samples by means of GC-MS. How- 
ever, a major problem associated with the methods is the low 
resolution of the chromatograms, and thus only a total content 
of SCCPs can be determined. So it is still a very hard task to 
separate the thousands of congeners by chromatographic and 
mass spectrometric technique. Even only one chlorine atom 
binds to a carbon atom, there will be more than 7600 constitu-
tional isomers of SCCPs[1]. Only humpy peaks caused by a 
large number of co-eluting components are observed in the 
measured GC-MS signals. It is almost impossible to analyze 
and quantify the congeners in CPs[15].  

Quantitative structure-retention relationship(QSRR) is a 
technique for relating the variations in retention time to the 
changes of molecular structure described by descriptors with 
predictive or explanatory purpose. Numerous investigators 
have reported the high correlation between experimental   
retention time and molecular descriptor[16,17]. For instances, a 
QSRR study was performed for the retention behavior of  
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environmentally important POPs polybrominated diphenyl 
ethers(PBDEs)[18], and the QSRR model developed with 46 
PBDEs was used to deduce the retention of the remaining 163 
congeners[19]. The QSRR method can predict the retention time 
of PBDE congeners for which the standards are not currently 
available. The application of neural networks to the prediction 
of chromatographic retention time of sports doping was pre-
sented by Miller et al.[20]. Creek et al.[21] proposed a retention 
time prediction model for improving metabolite identification, 
providing opportunities for the future studies of metabolism 
from a global system biology perspective. More examples of 
QSRR studies can be found in the comprehensive review by 
Heberger [22].  

In view of the complexity of SCCPs and the difficulties in 
separation, the retention time of SCCP congeners has not been 
studied. The aim of this work is to explore a QSRR model for 
predicting the retention time of SCCP congeners. Descriptors 
relevant to the retention time of SCCP congeners were selected 
by stepwise regression, and QSRR models between the reten-
tion time on the one hand and the selected descriptors on the 

other hand were studied by multiple linear regression(MLR), 
partial least squares(PLS) and least square support vector re-
gression(LS-SVR). Furthermore, the PLS model was used to 
predict the retention time of 49 C10-CPs and three of them were 
validated with experimental results.  

2  Data and Methodology 

2.1  Data Set 

The retention time data used in this study were obtained 
from ref.[23], in which chlorinated compounds with a chain 
length of C10, C11 and C12 were synthesized and the retention 
time of each of 28 synthesized molecules was obtained on a 
DB-5 nonpolar GC capillary column. Table 1 summarizes the 
retention time of each of the 28 molecules. By Kennard- 
Stone(KS) method[24], 18 of the molecules were selected as the 
training sets and the other 10 molecules, marked with the aste-
risk in Table 1, were used as the test sets to test the practicabi- 
lity of the models.  

Table 1  Experimental retention time for the training and test sets 
No. Compound Rentention time/min No. Compound Rentention time/min
1* 5,6-Dichloro-1,9-decadiene  9.90 15 1,2,5,6,9,10-Hexachloro-5-decene 29.18 
2 5,6-Dichloro-1,9-decadiene 10.20 16* 9,11,11,11-Tetrachloro-1,5-decene 19.51 
3 5,6,9,10-Tetrachloro-1-decene 21.05 17 9,11,11,11-Tetrachloro-1,5-decene 19.73 
4* 5,6,9,10-Tetrachloro-1-decene 21.27 18* 1,1,1,3,10,12,12,12-Octachloro-6-dodecene 35.48 
5 1,2,5,6,9,10-Hexachlorodecane 30.98 19 1,1,1,3,10,12,12,12-Octachloro-6-dodecene 35.74 
6 1,2,5,6,9,10-Hexachlorodecane 31.10 20 1,1,1,3,6,7,10,11-Octachloroundecane 36.73 
7* 2,5,6,9-Tetrachlorodecane 21.40 21 1,1,1,3,10,12,12,12-Octachlorododecane 36.45 
8* 2,5,6,9-Tetrachlorodecane 21.53 22 1,1,1,3,6,7,10,12,12,12-Decachlorododecane 44.71 
9 1,2,5,6,9-Pentachlorodecane 26.32 23 1,1,1,3,8,10,10,10-Octachlorodecane 32.47 

 10* 1,2,5,6,9-Pentachlorodecane 26.42 24* 8,10,10,10-Tetrachloro-1-decen 17.76 
 11* 1,2,5,6-Tetrachlorodecane 21.41 25 1,1,1,3,9,11,11,11-Octachloroundecane 34.51 
 12* 1,2,5,6-Tetrachlorodecane 21.60 26 1,1,1,3,9,10-Hexachlorodecane 28.33 
 13 1,2,5,9,10-Pentachloro-5-decene 26.75 27 9,11,11,11-Tetrachloro-1-undecene 20.30 
 14 1,2,9,10-Tetrachlorodecane 23.81 28 1,1,1,3,10,11-Hexachloroundecane 30.49 

 
* Test sets.  

2.2  Molecular Descriptors 

A total of 470 molecular descriptors were generated for 
developing the QSRR model. ChemDraw Ultra 8.0 program[25] 
was used for generating the structures, and the optimization 
was performed by MM+ and AM1 method successively with 
the program of HYPERCHEM[26]. Then, the molecular de-
scriptors were generated via software DRAGON 5.4. Descrip-
tion of the software and the meaning of the descriptors can be 
found in the literature of DRAGON package[27]. To only keep 
the statistically significant descriptors in QSRR models, step-
wise regression[28] was used for variable selection. In order to 
eliminate the effect of numerical value difference between de-
scriptors and make each descriptor have a comparable contri-
bution to the classification, normalized data were used in the 
calculations.  

2.3  Multivariate Calibration 

QSRR models were built by multivariate calibration me-
thods including MLR, PLS and LS-SVR from the selected 

molecular descriptors. MLR is the most frequently applied 
technique in building QSRR models. However, the method is 
limited when the number of the variables is less than the num-
ber of the samples. In this case, PLS is commonly used for 
building the model. After the establishment of the linear model 
by MLR and PLS, a nonlinear model was also studied by 
LS-SVR. These multivariate calibration methods were com-
pared with each other to obtain a better performance in the 
prediction.  

The performance of the built models is evaluated by 
leave-one-out cross-validation(LOOCV) approach. The proce-
dure involves removing one sample from the training set, con-
structing the model based on the remaining samples, and then 
testing on the removed sample.  

Then, the samples in training set are tested and model 
performance is evaluated by the parameters including squared 
correlation coefficient(r2) and root mean squared error(RMSE). 
r2 can be interpreted mathematically as the proportionate re-
duction of the total variation associated with the independent 
variable.  
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2.4  Experimental 

Three CP standards were measured by GC-MS for vali-
dating the predicted retention time. The standards were 
2,5,6,9-tetrachlorodecane(CP-1), 1,2,9,10-tetrachlorodecane 
(CP-2) and 1,2,5,6,9-pentachlorodecane(CP-3), which were 
purchased from Ehrenstorfer(Augsburg, Germany) as 10 ng/μL 
solutions in cyclohexane. A GC-MS-QP2010 Ultra system 
(Shimadzu, Japan) consisted of a GC-2010 Plus gas chromato-
graph and a twin line MS system with an electron impact ioni-
zation(EI) source was employed in the experiments. A 30-m 
Rxi-5 weak polarity capillary column(0.25 mm i.d. and 0.25 
μm film thickness, Restek, Bellefonte, USA) was used, and the 
oven temperature was set at 100 °C for the first 2 min, in-
creased to 250 °C at a rate of 20 °C/min, next increased to  
280 °C at a rate of 3 °C/min, then held for 11 min. Helium was 
used as a carrier gas at a flow rate of 1.0 mL/min. Splitless 
injection was used and the temperature of the GC injector was 
controlled at 250 °C. The mass spectrometer was operated at a 
transfer line temperature of 250 °C and an ion source tempera-
ture of 200 °C. The electron impact ionization was tuned at 70 

eV, the mass range for the MS detector was from 10 amu to 650 
amu, and the scan event time was 0.20 s. The retention time 
values of CP-1, CP-2 and CP-3 are 8.78, 9.36 and 9.98 min, 
respectively.  

3  Results and Discussion 

3.1  Descriptor Selection 

To select the descriptors which are most relevant to the 
retention time of the congener molecules, stepwise regression 
method was employed. The 470 descriptors were used as the 
input of the calculation. Forward selection was adopted, and in 
each step of the calculation, the descriptor is added or removed 
in accordance with the criterion of probability of P=0.05 for 
inclusion and P=0.1 for exclusion. The result shows that 12 
descriptors, including TI1, S2K, PW4, EEig10r, RDF100u, 
RDF110m, RDF145m, RDF120v, R3V+, H-052, Q2 and Hy, 
were selected, and the meanings of them are listed in Table 2. It 
can be seen that the P values of all the selected descriptors are 
less than 0.05, indicating the rationality of the selected de-
scriptors.  

Table 2  Meanings of the molecular descriptors selected by stepwise regression 
Descriptor Meaning of descriptor Regression coefficient P value 

TI1 First Mohar index from Laplace matrix –0.23 6.8×10–9 
S2K 2-Path Kier alpha-modified shape index  0.25  1.7×10–16 
PW4 Path/walk 4-Randic shape index  0.01 2.0×10–2 
EEig10r Eigenvalue n. 10 from edge adjacency matrix  0.09 1.6×10–6 
RDF100u Radial distribution function-100/unweighted  0.02 4.1×10–4 
RDF110m Radial distribution function-110/weighted by mass  0.04 3.6×10–8 
RDF145m Radial distribution dunction-145/weighted by mass –0.11  1.0×10–14 
RDF120v Radial distribution function-120/weighted by van der Waals volume  0.05 2.6×10–7 
R3V+ R maximal autocorrelation of lag 3/weighted by van der Waals volume  0.02 2.9×10–5 
H-052 H attached to C0(sp3) with 1X attached to next C  0.07 9.6×10–7 
Q2 Total squared charge  0.05 2.9×10–6 
Hy Hydrophilic factor  0.51  1.2×10–16 

 
The rationality can also be explained by the structural in-

formation described by the selected descriptors. Molecular 2D 
and 3D information, topology information, distance informa-
tion between atoms, molar volume, charge distribution and 
hydrophilic feature are included in the 12 descriptors. For  
examples, TI1 and R3V+, belonging to the 2D matrix-based 
descriptor and Getaway descriptor, respectively, characterize 
the 2D(the number, location and adjacency information of car-
bon and chlorine atoms) and 3D information of SCCP conge- 
ners. S2K and PW4 belong to topological indices to describe 
the topology of SCCP congeners. RDF100u, RDF110m, 
RDF145m and RDF120v, belonging to radial distribution func-
tion(RDF) descriptors, are reflections of the distance informa-
tion between the atoms in SCCP congeners. H-052, EEig10r, 
Q2 and Hy belong to atom-centred fragment descriptor, edge 
adjacency indices descriptor, charge descriptor and molecular 
properties descriptor, respectively, which give descriptions of 
the neighboring atom, molar volume, charge distribution and 
hydrophilic properties. The information or properties obviously 
have an influence on the retention nature of SCCP congeners. 

The relative importance of the descriptors can be reflected 

by the coefficients in the model optimized by the stepwise re-
gression. P-Level associated to a descriptor measures its   
significance. On the other hand, from the coefficients listed in 
Table 2, it can be seen that the molecular hydrophilic factor(Hy) 
is the most important descriptor and plays a leading role in 
affecting the retention time of SCCP congeners. The result may 
be explained by the fact that the retention time of SCCP con-
geners in a nonpolar separation column depends on their dis-
persion force. The topological index S2K, representing 2-path 
Kier alpha-modified shape index, is the secondly important 
descriptor. The result may be demonstrated by the fact that 
SCCP congeners take more time to be eluted with the increase 
of chlorine atoms and the S2K value is correlated with the 
chlorine atoms. Thus the retention time of SCCP congeners 
may increase with the S2K value. EEig10r, H-052, Q2, 
RDF120v, RDF110m, R3V+, RDF100u and PW4 also play 
positive effects on the retention time but the importance of 
them is in a descending order with the decrease of the coeffi-
cients. Contrarily, TI1 and RDF145m perform negative effect 
on the retention time. The result can be accounted for by the 
fact that TI1 and RDF145m provide the information about the 
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number of graph vertices, bond distances, planar and 
non-planar systems and atom types, which play a negative  
influence on retention time of the congeners. Thus the retention 
time of congeners decrease with the increased values.  

3.2  QSRR Models 

QSRR models between retention time on the one hand and 
the selected descriptors on the other hand were established by 
MLR, PLS and LS-SVR, respectively. The models were eva-
luated by LOOCV approach with the results summarized in 
Table 3. From r2 of the training set, it can be seen that all    
the models are acceptable with r2>0.999. The result of the 
RMSE obtained by LOOCV also shows the rationality of the 
models.  

Table 3  Statistical parameters for QSRR models 
built by MLR, PLS and LS-SVR, respec-
tively 

Parameter 
Training set Test set 

r2 RMSE r2 RMSE 
MLR 0.9994 0.024 0.9991 0.023 
PLS 0.9992 0.028 0.9996 0.015 
LS-SVR 0.9994 0.024 0.9989 0.025  

In order to test the practicability of the models, external 
validation was done with the test set. The models of MLR, PLS 
and LS-SVR were used for the prediction with the results also 
summarized in Table 3. From the values of r2 and RMSE of the 
test set, it can be found that all the models are acceptable, and 
PLS can produce a slightly better prediction than MLR and 
LS-SVM. The result may be explained by the fact that PLS 
reduces the disturbance of randomness in data.  

Fig.1(A) shows the relationship between the predicted  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

Fig.1  Plots of predicted retention time(A) and devia-
tion between the predicted and experimental 
retention time(B) vs. experimental retention 
time for training and test sets 

retention time by PLS model and experimental value in the   
training and test sets, respectively. It can be seen that the line 
obtained by least squares fitting is very close to the diagonal 
and all the points are reasonably distributed along the straight 
line. The slope and intercept are 1.008 and –0.28 for the trai- 
ning set and the slope and intercept are 1.008 and –0.28 for the 
test set. It is obviously indicated that the predicted retention 
time and the experimental retention time are in a good linearity. 
Fig.1(B) shows the deviations between the predicted retention 
time and experimental retention time in the training and test 
sets. It can be found that the deviations are randomly distri-
buted around 0, and generally fa- lling within ±0.4, and the 
deviations are less than the most differences in retention time 
among the SCCP congeners. 

3.3  Prediction 

QSRR model was then used to predict the retention time 
of 49 C10-CPs congeners. The 49 C10-CPs congeners included 
ten molecular formulas with different chlorine atom numbers 
and a carbon atom bound one chlorine atom at the most. For 
each formula, one to six positional isomers were selected to 
cover diverse molecular structures. Table 4 lists the names and 
the predicted retention time of each of the C10-CPs congeners. 
It is found that the retention time of C10-congeners shows an 
increase with the increasing of chlorine atom number. For   
example, C10-CPs congeners with one chlorine atom are eluted 
faster than C10-CPs congeners with two chlorine atoms. For the 
congeners with the same chlorine atom number, it can be seen 
that the retention time of C10-CPs congeners is correlated with 
the location of chlorine atom. For example, the retention time 
of 5,6-dichlorodecane is shorter than that of 1,10-di-     
chlorodecane.  

To visually show the relative retention time of 49 C10-CPs, 
a series of Gaussian functions was used to simulate the chro-
matogram, as shown in Fig.2. The peak centers are the pre-
dicted retention time, the intensity of each peak is generated 
randomly, and the standard deviation of peaks is 0.03. From 
Fig.2, it can be found that the most congeners have a good se-
paration and the most variances in retention time among con-
geners are more than deviations. 

To further validate predicted results, three C10-CPs con-
geners(CP-1, CP-2 and CP-3) were measured with GC-MS. 
Experiment retention time values were 8.78, 9.36 and 9.98 min, 
respectively, and the predicted retention time values were 24.57, 
25.99 and 28.86 min, respectively. By comparison, the experi-
mental retention time values are shorter than the predicted ones. 
The difference in retention time may be caused by different 
chromatographic conditions. Experiment data were measured 
on a weak polarity column with a quick temperature program 
introduced in Section 2.4, but predicted data were measured on 
a nonpolar column with a slow temperature program. By cal-
culation of correlation between the experimental retention time 
and predicted retention time, however, there is a good relativity 
with r of 0.992. Therefore, the predicted retention time values 
of the C10-CPs congeners are rational by the mean of QSRR 
model proposed in the work. QSRR model may be useful for        
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Table 4  Retention time of C10 SCCP congeners predicted by PLS 

No. Compound Rentention time/min No. Compound Rentention time/min 
1 2-Chlordecane 11.74 26 2,3,4,5,6,7,8-Heptachlorodecane 27.64 
2 5-Chlorodecane 11.92 27 1,3,5,7,9-Pentachlorodecane 27.88 
3 3-Chlorodecane 11.94 28c 1,2,5,6,9-Pentachlorodecane 28.86 
4 4-Chlorodecane 11.94 29 1,2,3,4,5,6,7-Heptachlorodecane 28.92 
5 1-Chlorodecane 14.54 30 1,2,7,8,10-Pentachlorodecane 29.81 
6 5,6-Dichlorodecane 15.22 31 1,2,3,4,9,10-Hexachlorodecane 30.63 
7 1,10-Dichlorodecane 15.34 32 1,2,3,4,5,6,7,8-Octachlorodecane 31.48 
8 4,5-Dichlorodecane 15.49 33 1,2,4,6,8,10-Hexachlorodecane 31.54 
9 1,5-Dichlorodecane 16.86 34 2,3,4,5,6,7,8,9-Octachlorodecane 31.88 
10 4,5,6-Trichlorodecane 17.44 35 1,2,5,9,10-Pentachlorodecane 32.44 
11 1,3-Dichlorodecane 17.55 36 1,2,3,4,5,9,10-Heptachlorodecane 32.76 
12 1,2-Dichlorodecane 17.77 37 1,3,4,5,6,7,10-Heptachlorodecane 32.83 
13 3,5,7-Trichlorodecane 17.78 38 1,2,5,5,6,9,10-Heptachlorodecane 33.44 
14 1,3,5-Trichlorodecane 19.86 39 1,2,4,5,6,9,10-Heptachlorodecane 33.45 
15 4,5,6,7-Tetrachlorodecane 20.19 40 1,2,5,6,9,10-Hexachlorodecane 33.92 
16 3,4,5,6-Tetrachlorodecane 20.46 41 1,2,3,4,5,6,9,10-Octachlorodecane 34.69 
17 1,5,6-Trichlorodecane 21.23 42 1,2,3,4,5,6,7,8,9-Nonachlorodecane 34.91 
18 1,2,3,4-Tetrachlorodecane 22.09 43 1,2,3,4,7,8,9,10-Octachlorodecane 35.05 
19 3,4,5,6,7-Pentachlorodecane 22.25 44 1,2,3,6,7,9,10-Heptachlorodecane 35.06 
20a 2,5,6,9-Tetrachlorodecane 24.57 45 1,2,3,4,6,7,9,10-Octachlorodecane 35.11 
21 1,2,5,6-Tetrachlorodecane 24.63 46 1,2,3,4,5,6,8,9,10-Nonachlorodecane 36.52 
22 1,2,3,4,5-Pentachlorodecane 24.64 47 1,2,3,4,5,7,8,9,10-Nonachlorodecane 36.63 
23 3,4,5,6,7,8-Hexachlorodecane 25.36 48 1,2,3,4,5,6,7,8,10-Nonachlorodecane 37.54 
24b 1,2,9,10-Tetrachlorodecane 25.99 49 1,2,3,4,5,6,7,8,9,10-Decachlorodecane 38.81 
25 1,2,3,4,5,6-Hexachlorodecane 26.39    

 
a—c. CP-1, CP-2 and CP-3, respectively. 

 
 
 
 
 
 
 
 
 

Fig.2  Simulated chromatogram of C10-CPs conge- 
ners according to the retention time predicted 
by PLS 

the qualitative analysis of CP congeners while their separa-
tion is difficult by experimental methods.  

4  Conclusions 
The relationship between retention time of SCCP conge- 

ners on the one hand and molecular descriptors on the other 
hand was quantitatively studied. Twelve descriptors relevant to 
the retention time of congener molecules were selected by 
stepwise regression method. QSRR models were built by mul-
tivariate calibration methods including PLS, MLR and LS-SVR. 
And PLS can produce a slightly better result. QSRR models 
can be applied to the prediction of retention time of the abun-
dant SCCP congeners. Reasonable results were obtained, and a 
well-defined correlation was found between the measured re-
tention time and the predicted retention time of three CP con-
geners, although the values were significantly different due to 
the different experimental conditions. Therefore, the proposed 

method has a great potential in the identification of CP conge- 
ners when experimental data were unavailable. Because only 
28 retention time data are used to develop the QSRR model, 
further validation of the results is still needed to obtain more 
retention time data of CPs.  
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