Solid-liquid Equilibria in the Quaternary System Na⁺ , K⁺ //Br[−] , B4O7 2− -H2O at 298 K

CUI Ruizhi^{1,2}, SANG Shihua^{1,2*}, LIU Qingzhu^{1,2} and WANG Pan^{1,2}

1. College of Materials and Chemistry & Chemical Engineering, *Chengdu University of Technology*, *Chengdu 610059*, *P. R. China; 2. Mineral Resources Chemistry Key Laboratory of*

Sichuan Higher Education Institutions, *Chengdu 610059*, *P. R. China*

Abstract According to the compositions of the underground gasfield brines in the west of Sichuan Basin, the solubilities and densities of the solid-liquid equilibria in the quaternary system Na⁺, K⁺//Br⁻, B₄O₇²-H₂O at 298 K were determined by the method of isothermal solution saturation. From the experimental data, the phase diagram, water content diagram and density-composition diagram were obtained. This quaternary system is of simple eutectic type, without double salt and solid solution. There are two invariant points, five univariant curves, four fields of crystallization in the system. The equilibrium solid phases are $Na_2BaO_7·10H_2O$, $K_2Ba_2O_7·4H_2O$, $NaBr·2H_2O$ and KBr. Na₂B₄O₇·10H₂O has a larger crystallization field, and NaBr·2H₂O has a smaller crystallization field. It is also found that bromide has the salting-out effect on borate in the quaternary system Na⁺, K⁺//Br⁻, B₄O₇²--H₂O at 298 K. **Keywords** Underground brine; Phase equilibrium; Solubility; Potassium salt; Borate; Bromide

1 Introduction

The underground brine resources are rare liquid mineral resource in the world, which are distributed widely in Sichuan Basin. People have paid more and more attention to them due to their unusual element abundance and excellent quality and because of the solid mineral resource exhausting. The brine recently found in the west of Sichuan Basin has high potassium, boron contents and high concentrations of minerals. Besides NaCl, it also contains many other useful elements, which all meet or exceed their corresponding industrial grades. Especially, the potassium and boron contents of the brines are unusually high, up to 53.3 g/L and 4994 mg/L, respectively. These rare liquid mineral resources have very good exploitation and utilization prospects $[1-3]$.

In view of the abundant borate resources, a series of studies has been conducted on the K⁺-bearing and $B_4O_7^2$ -bearing metastable and stable phase equilibria in underground brines, salt lake brines and seawater system, such as the phase equilibria in the ternary systems $Mg_2B_4O_7-Mg_2SO_4-H_2O$ at 298 K and K₂SO₄-K₂B₄O₇-H₂O at 288 K^[4,5], quinary systems K-Mg-Cl-SO₄-NO₃-H₂O at 298 K^[6], Li-Na-K-CO₃-B₄O₇-H₂O at 288 and 298 K^[7,8], and the metastable phase equilibria in the quaternary systems $Na_2CO_3-Na_2SO_4-Na_2B_4O_7-H_2O$ and Na-K- $CO_3-B_4O_7-H_2O$ at 273.15 K^[9,10], Li₂SO₄+K₂SO₄+Li₂CO₃+ $K_2CO_3+H_2O$ and $Li_2SO_4-Li_2CO_3-Li_2B_4O_7-H_2O$ at 288 $K^{[11,12]}$.

Recently, a systematic study on the underground brine in

———————————

The main components in the underground brines in Western Sichuan Basin can be approximately described with the Na-K-Cl-Br-SO₄-B₄O₇-H₂O system. The quaternary system Na⁺, K⁺//Br⁻, B₄O₇²-H₂O is a subsystem of the brine. There has been no research report about the phase equilibria of this quaternary subsystem at 298 K, which is just the object of this work. Two ternary subsystems $KBr-K_2B_4O_7-H_2O$ and NaBr- $Na₂B₄O₇$ -H₂O at 298 K have already been reported in our previous researches^[20,21], and it will be useful to provide the foundation for this work.

2 Experimental

2.1 Reagents and Instruments

The chemicals used in this work were all analytically pure(Chengdu Kekong Chemical Reagent Factory). They were NaBr(99.0%), KBr(99.0%), Na₂B₄O₇·10H₂O(99.0%) and

^{*}Corresponding author. E-mail: sangsh@cdut.edu.cn

Received January 20, 2014; accepted April 1, 2014.

Western Sichuan Basin has been carried out by our research group, such as the measurement and calculation of the phase equilibria of the quaternary system KCl-K₂SO₄-K₂B₄O₇-H₂O at 298 K $^{[13,14]}$, the measurement of the solid-liquid equilibria in the quinary system Na-K-Cl-SO₄-B₄O₇-H₂O at 298 and 323 $K^{[15,16]}$, as well as the quaternary systems $Na₂B₄O₇$ -NaBr- $Na_2SO_4-H_2O$ and NaCl-NaBr-Na₂B₄O₇-H₂O at 348 K^[17,18]. And the mean activity coefficients of KCl in the KCl-K₂B₄O₇-H₂O ternary system at 308.15 K have also been studied^[19] in the different ranges of the concentrations.

Supported by the National Natural Science Foundation of China(No.41373062), the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20125122110015), the Fund of Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, China(No.kzh201101) and the Fund of Key Laboratory of Salt Lake Resources and Chemistry, China(No.KLSLRC-KF-13-DX-1).

[©] Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

 $K_2B_4O_7.5H_2O(99.0\%)$. Distilled water, with a conductivity of less than 1.2×10^{-4} S/m and a pH value of 6.60 at 298.15 K, was used for preparing synthesized brines and chemical analysis.

A standard analytical balance with a capacity of 110 g and a resolution of 0.0001 g(AL104, the Mettler Toledo Instruments Co., Ltd.) was used to determine the solution densities.

An HZS-H type of thermostated vibrator made by Harbin Donglian Electronic Technology Co., Ltd. with an uncertainty of 0.1 K after secondary calibration by precise thermometer was used for the equilibria experiments.

2.2 Experimental Methods

The solid-liquid equilibrium experiments for quaternary system Na^+ , $\text{K}^{\dagger}/\text{Br}^-$, B_4O_7^2 - H_2O at 298 K in this work were investigated by the isothermal dissolution equilibrium method. The system samples of the quaternary system were prepared by adding the third salt component to the invariant samples of relevant ternary subsystems at 298 K. The prepared mixtures were respectively put in sealed glass bottles that were placed in the thermostated vibrator(HZS-H). The sample temperature was maintained at (298.2 ± 0.1) K. The solutions were taken out periodically for chemical analysis. The criterion for judging the equilibrium state of the system was the unchanging concentration of the solution. After equilibrium, the solution and wet crystals can be taken out for physicochemical analysis. The liquid phases were analyzed quantitatively by chemical

methods, while the wet crystals were analyzed by X-ray diffraction to ascertain their crystalloid form^[22]. The densities of the saturated solutions were determined *via* the pycnometer method (with a precision of 0.0002 g/cm³).

2.3 Analytical Methods

Potassium $ion(K^+)$ concentration was determined with sodium tetraphenyl borate-hexadecyltrimethyl ammonium bromide titration(with a precision of 0.5%, mass fraction). Bromide ion(Br–) concentrations were determined by Mohr's method *via* a silver nitrate standard solution(with a precision of 0.3%, mass fraction). Borate ion($B_4O_7^{2-}$) was determined by basic titration in the presence of mannitol with phenolphthalein solution as indicator(with a precision of 0.3%, mass fraction). Sodium ion($Na⁺$) concentration was evaluated according to the ion charge balance.

3 Results and Discussion

The measured values of salt solubilities and solution densities of quaternary system Na⁺, K⁺//Br⁻, B₄O₇²⁻-H₂O at 298 K are presented in Table 1, where ion concentrations are expressed in mass fraction *w*, *J* is the Jäneacke index, with $J(2Na^{+}) + J(2K^{+}) = 100$ mol, and ρ is the density in g/cm³. Based on the data in Table 1, a stable equilibrium phase diagram of the system at 298 K is given in Fig.1.

No. ^a	Composition of solution, $w\binom{0}{0}$				Jänecke index, J(mol/100 mol)				Solution density,
					$J(2Na^{+})+J(2K^{+})=100$ mol			Equilibrium solid ϕ	ρ /(g·cm ⁻³)
	$Na+$	\mbox{K}^+	Br^-	$B_4O_7^{2-}$	$J(2K^+)$	J(2Br)	$J(H_2O)$		
1(A)	9.78	2.52	39.14	0.00	13.15	100.00	1100.02	$NBr + KBr$	1.5795
\overline{c}	9.84	2.47	39.05	0.18	12.87	99.52	1094.99	$NBr + KBr$	1.5801
3	9.78	2.47	38.70	0.33	12.92	99.14	1106.59	$NBr + KBr$	1.5818
4	9.91	2.48	38.99	0.50	12.82	98.69	1080.37	$NBr + KBr$	1.5843
5	9.93	2.49	39.00	0.59	12.85	98.47	1074.39	$NBr + KBr$	1.5864
6	9.95	2.50	39.10	0.57	12.86	98.52	1069.85	$NBr + KBr$	1.5874
7(B)	1.00	4.40	0.00	12.13	72.05	0.00	5854.34	$NB + KB$	1.1674
8	1.00	4.59	2.54	10.03	72.95	19.74	5641.59	$NB + KB$	1.1736
9	1.03	5.23	6.61	7.46	74.85	46.25	4943.25	$NB + KB$	1.1793
10	1.09	5.55	7.73	7.18	75.00	51.10	4600.59	$NB + KB$	1.1907
11	1.19	6.34	11.94	5.00	75.77	69.89	3920.13	$NB + KB$	1.2263
12	1.32	7.70	16.34	3.87	77.42	80.40	3088.64	$NB + KB$	1.2782
13	1.43	9.68	21.73	2.91	79.95	87.87	2303.36	$NB + KB$	1.3433
14	1.44	11.00	25.12	2.30	81.78	91.40	1940.30	$NB + KB$	1.3925
15(E)	1.29	12.03	27.19	1.81	84.63	93.58	1760.23	NB+KB+KBr	1.4215
16(C)	11.18	0.00	38.27	0.56	0.00	98.52	1141.49	$NB + NBr$	1.5497
17	10.62	0.76	37.89	0.55	4.03	98.53	1156.99	$NB + NBr$	1.5557
18	10.24	1.50	38.08	0.55	7.92	98.53	1139.01	$NB + NBr$	1.5701
19	9.88	2.51	38.88	0.55	12.99	98.56	1083.27	$NB + NBr$	1.5843
20	9.85	2.54	38.87	0.54	13.17	98.59	1084.29	$NB + NBr$	1.5869
21	9.88	2.56	39.02	0.55	13.23	98.58	1074.86	$NB + NBr$	1.5871
22(F)	9.93	2.52	39.11	0.55	13.00	98.58	1070.29	NB+NBr+KBr	1.5875
23	9.04	3.02	36.89	0.69	16.41	98.11	1187.97	$NB + KBr$	1.5674
24	8.23	3.81	35.55	0.81	21.42	97.72	1258.11	$NB + KBr$	1.5407
25	7.19	4.53	33.28	0.93	27.03	97.22	1401.08	$NB + KBr$	1.5121
26	5.38	6.90	31.55	1.22	42.98	96.16	1485.14	$NB + KBr$	1.4829
27	3.73	8.54	28.92	1.44	57.39	95.12	1673.71	$NB + KBr$	1.4549
28	2.28	10.25	27.23	1.59	72.53	94.32	1801.11	$NB + KBr$	1.4321

Table 1 Solubilities and densities of solution in the quaternary system Na+ , K+ //Br[−] , B4O7 2− -H2O at 298 K

To be continued on the next page.

846 Chem. Res. Chin. Univ. Vol.30

a. Points A, B, C and D are the invariant points of the ternary subsystems NaBr-KBr-H₂O, Na₂B₄O₇-H₂O, NaBr-Na₂B₄O₇-H₂O and KBr-K₂B₄O₇-H₂O at 298 K; points E and F are two invariant points of this quaternary system at 298 K; *b*. NB: Na₂B₄O₇¹0H₂O; KB: K₂B₄O₇²H₂O; NBr: NaBr^{-2H₂O.}

Fig.1 Dry-salt solubility diagram of quaternary system Na⁺ , K⁺ //Br[−] , B4O7 2− -H2O at 298 K

Quaternary system Na^+ , $\text{K}^{\dagger}/\text{Br}^-$, B_4O_7^2 ⁻-H₂O at 298 K has no complex salt and solid solution. There are two invariant points, five univariant curves and four regions of crystallization in this system. The four crystallization fields correspond to potassium borate tetrahydrate $(K_2B_4O_7.4H_2O)$, potassium bromide(KBr), sodium bromide dihydrate(NaBr·2H₂O), and borax(Na₂B₄O₇·10H₂O), respectively.

Five univariant curves are BE, DE, AF, CF and EF. The two invariant points of this quaternary system are respectively labeled as points E and F. Invariant point E is saturated with salts KBr+K₂B₄O₇·4H₂O+Na₂B₄O₇·10H₂O, and the X-ray

Fig.2 XRD patterns of quaternary system Na^+ , $\text{K}^{\dagger}/\text{Br}^-$, $B_4O_7^2$ ⁻ • H₂O at 298 K at eutectic points E(A) and **F(B)**

diffraction pattern of the invariant point E in the quaternary system is given in Fig.2(A). The mass fraction composition of the corresponding liquid phase is $w(Na^+) = 1.29\%, w(K^+) =$ 12.03[%]. $w(Br^-)=27.19\%$. ^{2−})=1.81%. System NaBr·2H₂O+KBr+Na₂B₄O₇·10H₂O is saturated at invariant point F, and the X-ray diffraction pattern of the quaternary system at invariant point F is given in Fig.2(B). The mass fraction composition of the corresponding liquid phase is $w(Na^+)$ = 9.93%, *w*(K⁺)=2.52%, *w*(Br[−])=39.11%, *w*(B₄O₇^{2−})=0.55%.

Fig.3 is the water content diagram of quaternary system Na⁺, K⁺//Br⁻, B₄O₇²⁻-H₂O at 298 K, and the abscissa is the Jänecke index of $J(2K⁺)$. Fig.3 shows that the water content decreases at the uninvariant curves BE, and almost remains the same at the uninvariant curves DE, AF, CF and EF with the increase of the Jänecke index value of $J(2K⁺)$. It reaches the biggest value at point B.

Fig.3 Water contents of saturated solutions in the quaternary system Na⁺, K⁺//Br[−], B₄O₇^{2−}-H₂O at 298 K

Based on the data collected in Table 1, the density diagram of the system is constructed in Fig.4. Fig.4 shows that

Fig.4 Density-composition relations of the solutions in the quaternary system Na⁺, K^{\dagger}/Br ⁻, $B_4O_7^{2}$ ⁻ $-H_2O$ at 298 K

the density value of the system changes regularly at each of uninvariant curves, reaching a minimum value at point $B(1.1942 \text{ g/cm}^3)$.

The underground gas field brines in Western Sichuan Basin, China, are very rare liquid mineral resources in the world, and have high concentrations of potassium, boron, bromine. It could be found from Fig.1 that there are four crystallization regions in the quaternary system Na^{+} , K^{+}/Br^{-} , $B_4O_7^2$ ⁻-H₂O at 298 K, *i.e.*, NaBr·2H₂O, KBr, K₂B₄O₇·4H₂O and $Na₂B₄O₇$ 10H₂O. The crystallization regions of bromide are smaller, and the crystallization regions of borate are bigger. It is found that bromide has the salting-out effect on borate in the quaternary system at 298 K. The crystallization area of borax($\text{Na}_2\text{B}_4\text{O}_7$ \cdot 10H₂O) is larger than those of other salts. It indicates that borax has lower solubility than other salts in the quaternary system. Therefore, borax can be easily crystallized and extracted from the solution in a wide concentration range at 298 K.

4 Conclusions

The solid-liquid equilibria in the quaternary system $Na⁺$, K⁺//Br⁻, B₄O₇²-H₂O at 298 K was studied by the isothermal solution saturation method. Solubilities, densities and corresponding equilibrium solids were determined. The results show that this quaternary system belongs to the simple co-saturation type. The quaternary system Na^+ , K^{\dagger}/Br^- , $B_4O_7^{2-}$ -H₂O at 298 K has two invariant points, five uninvariant curves and four crystallization regions, *i.e.*, NaBr·2H₂O, KBr, Na₂B₄O₇·10H₂O and $K_2B_4O_7$ 4H₂O.

References

- [1] Lin Y. T., Cao S. X., *Conserv. Util. Miner. Resour*., **1998**, (1), 41
- [2] Lin Y. T., *J. Salt Lake Res.*, **2001**, *9*(2), 56
- [3] Lin Y. T., *J. Salt Lake Res.*, **2006**, *14*(4), 1
- [4] Song P. S., Du X. H., Sun B., *Science Bulletin*, **1988**, *33*(32), 1971
- [5] Sang S. H., Zhang X., *J. Chem. Eng. Data*, **2010**, *55*(2), 808
- [6] Huang X. L., Ma F. Y., Sun H. M., *Chem. J. Chinese Universities*, **2008**, *29*(2), 360
- [7] Sang S. H., Yin H. A., Tang M. L., *J. Chem. Eng. Data*, **2005**, *50*(5), 1557
- [8] Deng T. L., *J. Chem. Eng. Data*, **2004**, *49*(5), 1295
- [9] Zheng Z. Y., Zeng Y., Chen J., Lin X. F., *Chem. J. Chinese Universities*, **2008**, *29*(2), 336
- [10] Zeng Y., Zheng Z. Y., *J. Chem. Eng. Data*, **2010**, *55*(4), 1623
- [11] Sang S. H., Yin H. A., Lei N. F., *Chem. Res. Chinese Universities*, **2007**, *23*(2), 208
- [12] Sang S. H., Zhang Z. L., Li M., *Chem. Res. Chinese Universities*, **2009**, *25*(5), 740
- [13] Zhang Z. L., Sang S. H., Li M., Hou C. H., *Chemical Engineering*, **2009**, *37*(5), 45
- [14] Hu H. M., Sang S. H., Zhang Y. G., Zhang J. J., *J. Salt Chem. Ind.*, **2012**, *41*(9), 12
- [15] Sang S. H., Zhang X., Zeng X. X., Zhang J. J., *Chin. J. Chem.*, **2011**, *29*, 1285
- [16] Sang S. H., Zhang X., Zhang J. J., *J. Chem. Eng. Data*, **2012**, *57*(3), 907
- [17] Ning H. Y., Sang S. H., Wang D., Zeng X. X., *Chem. Eng.*, **2012**, *40*(4), 27
- [18] Li T., Sang S. H., Cui R. Z., Zhang K. J., *Chem. Res. Chinese Universities*, **2013**, *29*(2), 311
- [19] Zhong S. Y., Sang S. H., Zhang J. J., *Chem. Res. Chinese Universities*, **2013**, *29*(6), 1189
- [20] Sang S. H., Yin H. A., Ni S. J., Zhang C. J., *J. Chengdu Univ. Tech.(Science & Technology Edition)*, **2006**, *33*(4), 414
- [21] Sang S. H., Yu H. Y., *J. Salt Chem. Ind.*, **2006**, *35*(2), 4
- [22] Niu Z. D., Cheng F. Q., *The Phase Diagrams of Salt-water Systems and Their Applications*, Tianjin University Press, Tianjin, **2002**