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Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in 
shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a “smart” biodegradable material 
and as “the green engineering material in the twenty-first century”, have become an outstanding bone implant material due 
to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the 
next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical proper-
ties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. 
Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and 
local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is 
thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloy-
ing treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics 
are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The 
fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing 
fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. 
Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to 
modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and 
continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies 
for improving Mg bone implants.

Keywords Biomaterials · Magnesium alloy · Degradability · Mechanical properties · Biocompatibility · Additive 
manufacturing

Introduction

Several criteria must be met by medical materials, and 
implants must be morphologically designed to mimic and 
support bone structure and bone tissue formation (osteo-
genesis). The fundamental parameters that must be con-
sidered are biocompatibility, mechanical properties, and 
biodegradability (Yuan et al. 2019). Bones have superior 
regenerative properties and self-healing abilities for the body 
to recover from physical injury. Patients are experiencing 
treatments that allow them to maintain their daily activities 

and quality of life. Orthopaedic implants have been one of 
the high-demand markets in the last 2 decades. The global 
biomaterials market was worth US$94.1 billion in 2012 and 
increased to US$134.3 billion in 2017 (Witte and Eliezer 
2012). This rapid increase in the biomaterials market has 
brought about the development of bone implants. Modern 
fabrication methods, advanced biomaterials designing, and 
architecture of medical devices have been greatly developed 
in the last 20 years. There are some requirements that mate-
rial must meet to be suitable for applying in the body. There 
should be a biocompatible chemical composition with no 
adverse tissue reaction. In other words, materials should be 
non-toxic, non-inflammatory, non-carcinogenic, and non-
allergic. Furthermore, materials must be bio-functional, with 
sufficient strength and good corrosion resistance to with-
stand the body’s environment. Depending on the application 

 * Meysam Nasr Azadani 
 p16236509@my365.dmu.ac.uk

1 School of Engineering and Sustainable Development, De 
Montfort University, Leicester LE1 9BH, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s40204-022-00182-x&domain=pdf


2 Progress in Biomaterials (2022) 11:1–26

1 3

for which it is used, it may have specific degradation rates 
and good mechanical properties. Up to date, several types 
of biomaterials, including ceramics, polymers, composites, 
and metals, have been investigated for the future application 
of implants (Table 1).

Bioceramics are inorganic non-metallic materials used in 
hard tissue engineering (Navarro et al. 2008). Bioceramics 
have properties that are ideal for biomedical applications, 
such as thermochemical stability, (1) abrasion resistance, 
and (2) ease of moulding. They are also non-immunogenic, 
biocompatible and non-toxic (Ali and Sen 2017). Com-
pared to magnesium-based alloys, bioceramics such as 
hydroxyapatite (HAP) are brittle and have lower tensile 
strength. Commercial ceramics are used in various fields 
such as implant coating, maxillofacial reconstruction, and 
drug delivery devices (Festas et al. 2019).

Polymeric materials are used in tissue engineering due to 
their plasticity, biocompatibility and biodegradability prop-
erties. Polymers are made up of small repeating monomers 
that impart unique properties to the polymer (Sta Agueda 
et al. 2021). The degree of crosslinking of the monomer 
determines the physicochemical properties of the polymer 
(Song et al. 2018). Generally, polymer materials are divided 

into synthetic polymers and natural polymers. For exam-
ple, the mechanical strengths of the PEEK-cHAp scaffold 
for biomedical application were investigated and found that 
this biocomposite depicts better cell proliferation attach-
ment (Oladapo et al. 2019). Metallic materials are becoming 
increasingly popular in orthopaedic surgery for the develop-
ment of orthopaedic devices such as permanent implants 
(total joint replacement, hip prosthesis, and so on) and tem-
porary implants (pins, bone plates, screws, etc.) (Radha and 
Sreekanth 2017). Some materials are the preferred options 
over polymers and ceramics due to their superb mechanical, 
degradation and biological features. For instance, the com-
posite with the highest proportion of rGO of 5% indicates 
more biocompatibility and mechanical strength (Oladapo 
et al. 2019). Practically, metallic biomaterials should benefit 
from desirable mechanical strength until the affected part of 
the human body heals. Several biodegradable metals includ-
ing strontium (Sr), silicon (Si), manganese (Mn), yttrium 
(Y) magnesium (Mg), calcium (Ca), zirconium (Zr), and 
zinc (Zn) can meet the requirements of good biocompat-
ibility, biodegradability and adequate mechanical proper-
ties when it comes to the healing process for the human 
body. The features of most currently used metallic materials 

Table 1  Biomaterials classification with their advantages, disadvantages and applications

Type Advantages Disadvantages Applications References

Metals and metal alloys High material strength Corrosive Orthopaedic implants, 
screws, pins, and plates

Zhao et al. (2011)
For example, gold, 

platinum, titanium, steel, 
chromium, cobalt

Easy to fabricate and 
sterilise

Aseptic loosening
Excessive elastic modulus

Ceramics and carbon 
compounds

High material strength Difficult to mould Bioactive orthopaedic 
implants

Zhao et al. (2011)

For example, calcium 
phosphate salts, glass, 
oxides of aluminium and 
titanium

Biocompatibility Excessive elastic modulus Dental implants
Corrosion resistance Artificial hearing aids

Polymers Biodegradable Leachable in body fluids Orthopaedic and dental 
implants

Tappa and Jammalamadaka 
(2018)

Biocompatible Hard to sterilise Prostheses
Easily mouldable and read-

ily available
Tissue engineering scaf-

folds
For example, poly methyl 

methacrylate (PMMA), 
polycaprolactone (PCL), 
PLA, PEEK, polycarbon-
ates, polyurethanes

Suitable mechanical 
strength

Drug delivery systems

Composites Excellent mechanical 
properties

Expensive Porous orthopaedic 
implants

Chandra and Pandey (2020)

For example, dental fill-
ing composites, carbon 
fibre-reinforced methyl 
methacrylate bone 
cement + ultra-high 
molecular weight poly-
ethylene

Corrosive resistant Laborious manufacturing 
methods

Dental fillings
Rubber catheters and 

gloves
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including 316L Stainless steel, Co–Cr alloys, Ti alloys, Fe-
based, Zn-based and Mg-based alloys are briefly introduced 
in Table 2. Mg is required for the physiological function 
of many tissues, particularly those of the brain, heart, and 
musculoskeletal systems, due to its important biological 
effects. Mg has been used as a biodegradable implant for 
over a century. Witte (2010) employed magnesium wires as 
ligatures for blood vessels in 1878, which was the first-time 
magnesium used as a biomaterial. Following this, differ-
ent clinicians experimented with pioneering applications of 
metallic elements in vessel, medical science and abdominal 
surgery, attracted by the actual fact that this metal corrodes 
within the body while not venomous effects (Puleo 1999). 
The historical overview of Mg is summarised in historical 
order in Table 3. 

Mg‑based bone implants

The development of biodegradable Mg-based materials 
is progressing to design orthopaedic implants. Mg and its 
alloys should be biocompatible if they are to be used as bio-
materials. The unknown toxicity of commercial Mg alloying 
elements poses a potential risk that could exacerbate the 
use of such alloys in the biomaterial field. In this situation, 
extreme care must be taken in the selection of biocompatible 
elements, optimised composition design for new biodegrad-
able Mg alloys with preferred bio-mechanical properties, 
and viable processing methods to guarantee defect-free prod-
ucts. As for material, Mg and its alloys have revolutionised 
biomedical implants owing to its superb characteristics 
such as proper Young’s modulus, good biocompatibility, 
natural degradability, and high specific strength (Sanchez 
et al. 2015). As an example, they show the similar Young’s 
modulus (almost 45 GPa) to that of bone (15–30 GPa) 
which can be an effective factor for reducing stress shield-
ing in implantation. As for density, the human bone stands 
for 1.75 g/cm3 while that of for Mg and its alloys is about 
1.79 g/cm3. It is important to note that traditional implant 
metals, including 316L steel (Lavery et al. 2017), titanium 
(Ti) alloys (Niinomi 2008), Cobalt–Chrome (Co–Cr) alloys 
(Wang et al. 2016) benefit from the higher Young’s modulus 
when it comes to that of human bone, despite their superb 
mechanical strength considering the control of biopolymers 
and bioceramics exhibited too low mechanical strength. Fur-
thermore, surface treatment, plasticity, and Mg alloys’ stiff-
ness can be easily controlled during the process and sterili-
sation (Chen et al. 2015; Wang et al. 2018b). Except for the 
desired mechanical properties, Mg and its alloys exhibit an 
attractive degradation characteristic and can be completely 
degraded in vivo (Zhang et al. 2010). Concerning degrada-
bility, non-degradable traditional biometals require a second 
surgery to remove them, resulting in additional pain and 
increasing the financial burden on patients.

Mg is the fourth most common mineral in the human 
body, and no one can deny the necessity of this element in 
bone reconstruction. The restored Mg for maintaining regu-
lar functions for a healthy adult is between 21 and 28 g, and 
the amount is recommended as a daily allowance of Mg for 
a healthy adult is between 250 and 350 mg (Khayat 2017). 
Another outstanding feature of the Mg is its unique osteo-
promotive property (Laires 2004). Natural bone possesses 
a sophisticated system in terms of the microenvironment. 
More research regarding the in vivo osteopromotive mecha-
nism on Mg can be referred to as the published literature 
(Wu and Veillette 2011; de Baaij et al. 2015). The main 
advantages and drawbacks of Mg are given in Tables 4 and 
5, respectively.

Applications of Mg in biomedical implants

Bone fixation device plays a pivotal role when it comes to 
bone repair. Bone screws, bone plates, bone pins, and so on 
are considered bone fixation devices. Technically speaking, 
316L steel or Ti alloy are known as a traditional biomaterial 
for bone fixation devices possessing much greater modu-
lus than bone, leading to low-level stress for a bone defect 
long-term. Therefore, osteoporosis and other symptoms 
can emerge owing to the lack of mechanical stimulation 
(Shuai et al. 2018d). Due to the desired mechanical strength 
of the Mg bone fixation device, sufficient mechanical sup-
port, especially at the preliminary phase, is clear, while this 
particular device undergoes cyclical degradation. In this 
scenario, load-bearing support decreases gradually. In con-
trast, the load bearing of bone tissue gradually increases at 
the fracture site. The introduction of Mg bone devices goes 
back to the early twentieth century. Several typical bone fixa-
tion screws and devices are shown in Figs. 1 and 2, respec-
tively. Payr et al. were the first researchers who reported Mg 
application for bone pins and plates to fix traumatic bones 
(Tammann and Schafmeister 1924). According to Lambott 
(1906), a 17-year-old patient’s fractured leg was mended 
with an Mg plate and steel nail (Sur divers 1911) but gal-
vanic corrosion of the Mg plate and steel nail was noticed 
the day following surgery. The Mg plate’s degradation was 
hastened due to the rapid collection of hydrogen. Another 
important investigation was implemented by McBride 
(1938). They concentrated on the application of Mg–Al–Mn 
alloy for screws, bolts, and plates and experienced 20 frac-
ture treatments. In this scenario, implants were completely 
absorbed, and no adverse effect was observed. Witte (2010) 
experienced 34 pseudoarthrosis cases with the Mg–Cd alloy 
fixation devices. They observed the full degradation of Mg 
implants, which were replaced by bone tissue regeneration. 
Despite these accomplishments, in this field, the high degra-
dation rate of magnesium was the main interest of attention, 
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which resulted in a protracted gap in clinical research in the 
late twentieth century.

During the last decade, tremendous progress has been 
observed in modifying the Mg degradation rate, thanks 
to the rapid advancement of research and technology. Lee 
et al. (2016) used Mg–Ca–Zn screws to repair 53 cases of 
radius fractures. This type of screw was completely replaced 

by bone regenerating during the first year of implantation. 
Zhao et al. (2016) published a study that used Mg screws to 
secure a vascularised bone graft in a patient's femoral head. 
In comparison with the conventional methods, this approach 
exhibited better treatment efficacy. Chen et al. (2018) applied 
the high pure Mg screws in a 17-year-old patient to treat a 
vascular necrosis of the femoral head resulted in a 2-year 

Table 3  Historical overview of reports on magnesium and its biomedical application in historical order (Witte 2015)

Year Author Magnesium (alloy) Supplier Application Human/animal model

1878 Huse Pure magnesium Not reported Wires as ligature Humans
1892–1905 Payr High-purity Mg I and CW Rohrbeck, 

Vienna, Austria, Al and 
Mg Fabric Hemelingen, 
Germany

Tubes (intestine, vessel, 
nerve connector), plates, 
arrows, wire, sheets, rods

Humans, guinea pigs, rab-
bits, pigs, dogs

1903 Höpfner Pure magnesium No report Magnesium cylinders as 
vessel connectors

Dogs

1900–1905 Chlumsky´ High-purity Mg Friedrich Wosch Company, 
Germany

Tubes, sheets and cylinder 
intestine connector, 
arthroplasty

Humans, rabbits, dogs

1906–1932 Lambotte Pure Mg (99.7%) No report Rods, plates, screws Humans, rabbits, dogs
1910 Lespinasse Metallic magnesium No report Ring-plates for anastomosis Dogs
1913 Groves No report Intramedullar pegs in bone Rabbits
1917 Andrews Pure Mg, mix. of eq. part: 

Mg/Al, Mg/Cd, Mg/Zn
No report Wires, clips as ligature, 

anastomosis
Dogs

1924 Seelig Pure Mg (99.99%), distilled 
in vacuum

American Mg Cooperation, 
Niagara Falls, NY

Wires, strips, bands Rabbits

1925 Glass Pure Mg (99.8–99.9%) Al and Mg Fabric, 
Hemelingen, Germany

Magnesium arrows Humans, rats, cats

1928 Heinzhoff Pure magnesium No report Magnesium arrows Rabbits
1933–1937 Verbrugge Dow metal: Mg–Al6–Zn3–

Mn 0.2%-wt. Electron 
Mg–Al 8% (wt)

Dow Chemical Corp., USA 
Griesheim-Electron, 
Germany

Plate, band, screws, pegs Humans, dogs, rats, rabbits

1938 McBride Mg–Mn 3%-wt, Mg–Al 4–
Mn 0.3% (wt)

Not reported Sheet, plate, band, screw, 
peg, wire

Humans, dogs

1939 Nogara Electron (alloy not speci-
fied)

Griesheim-Electron, 
Germany

Rods Rabbits

1948 Tpobwrbq Mg–Cd Not reported Plate, screws, rod-plate Humans
1940 Maier Magnesium I.G. Farben Industry AG, 

Bitterfeld, Germany
Band, suture from woven 

Mg wires, fusiform pins
Humans, rabbits

1951 Stone Mg–Al 2% (wt) pure mag-
nesium

Aluminium Company of 
America, OH, USA

Wires for clotting aneu-
rysms

Dogs

1975 Fontenier Ind.-grade purity: Domal 
Mg (99.9%), TLH Mg 
not reported Lab-
grade purity: ‘‘zone 
fondue’’ Mg, R69 Mg 
Mg Mn 1.5% (wt), Mg 
Al: GAZ8%, GAZ6%, 
GAZ3%

Not reported Anodes for implantable bat-
teries to feed pacemaker

Dogs

1980 Wexler Mg–Al 2% (wt) McMaster Univ. Med, 
Canada

Wires intravascular Rats

1981 Hussl Pure Mg (99.8%) Goodfellow Metals Ltd, 
GB

Wires for hemangioma 
treatment

Rats, rabbits

1981 Wilflingseder Pure Mg (99.8%) Goodfellow Metals Ltd, 
GB

Wires for hemangioma 
treatment

Humans
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Table 4  The key advantages of Mg (Radha and Sreekanth 2017)

Benefits Details

Low density Mg density (1.738 g/cm3) is nearly equivalent to cortical bone density (1.75–2.1 g/cm3)
High specific strength The strength-to-weight ratio of approximately 130 kN m/kg
High damping capacity Mg has the highest energy absorption capacity of any metal and can be used in load-bearing applications
High machinability and 

dimensional accuracy
Mg is the simplest structural metal to machine and it is easy to accomplish steady final dimensions. As a result, 

advanced models are easily producible, which are critical for the complex shapes often required for medical 
applications

Less stress shielding Since Mg density is very close to that of bone, stress-shielding issues for many orthopaedic implants can be greatly 
reduced

Good biocompatibility Mg is a biocompatible mineral that has been found to speed up bone growth
Good safe degradation Mg corrosion in the body would eventually lead to complete breakdown, thus it would be good for patients to be 

exposed to an implant in the body for a short period

Table 5  The key disadvantages of Mg (Radha and Sreekanth 2017)

Drawbacks Details

Low elastic modulus Lower Mg elastic modulus may be useful in terms of stress shielding, but any implant must be engineered to with-
stand its load without distortion

Rapid degradation Mg implants are designed to disintegrate fully, but at a slower rate than bone remodelling. Normal body components 
(e.g. Zn, Ca and Mn) can, however, be poisonous if the release rate is too great and the amounts are not dealt with 
effectively (e.g. excess Mg through the kidneys, hydrogen gas through the soft tissues). To prevent the use of harm-
ful alloying elements and provide an adequate release rate for other elements, including those that are naturally 
occurring, a fully biocompatible Mg alloy is necessary

High hydrogen evolution The emitted  H2 gas accumulates at a rapid pace in the surrounding soft tissues.  H2 bubbles may cause necrosis of 
surrounding tissue by delaying healing at the surgical site. Hydrogen evolution rates of 0.01 mL/cm2/day have been 
documented for several Mg alloys containing Zn, Al and Mn

Fig. 1  Representative of several 
magnesium screws (Farag and 
Yun 2014). Copy right from 
RSNA (Taljanovic et al. 2003)
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effective follow-up. Another outstanding investigation was 
implemented by Acar (2018). In 16 cases, Mg screw fixation 
was inserted in the hallux valgus, and all participants had a 
full union of the osteotomy after at least a year.

Mg and its alloys also play a pivotal role in bone tis-
sue engineering when it comes to scaffold materials. The 
transplantation of autologous osteoblasts, bone marrow stro-
mal cells, or chondrocytes onto an artificial scaffold with 
high biocompatibility and gradual biodegradability in the 
human body is known as bone tissue engineering (BTE) 
(Stevens 2008; Gupta et al. 2016). Therefore, scaffold/cell 

hybrid is implanted into the defect site to provide space for 
cell growth. In this scenario, since the scaffold is gradually 
degraded in vivo, cell proliferation occurs, and then new 
tissue grows directionally into the scaffolds. Considering 
this implantation, there should be a similarity between the 
pore size of the scaffold and natural bone, normally about 
tens of hundreds of microns (Hao et al. 2017). Assuming suf-
ficient mechanical strength, potentially significant porosity, 
and a pore structure that is well connected are the scaffold 
requirements for nutrient transfer and metabolites discharge 
(Yang et al. 2018b). Several prominent cases regarding the 

Fig. 2  Typical bone fixation 
devices: a cerclage wires used 
in hip, b interfragmentary 
screw, c Herbert screw, d wrist 
fixation, e various types of 
plates used in internal fixation, 
f a variety of nails used in inter-
nal fixation, under the terms of 
the Creative Commons CC-BY 
license, and RSNA (Taljanovic 
et al. 2003)

Fig. 3  Several Mg bone fixation 
devices in a variety of scenarios

Fig. 4  Mg-based alloy bioab-
sorbable screws in orthopaedic 
surgery (a), low magnification 
SEM images of a representa-
tive porous bone scaffold (b) 
(Ezechieli et al. 2014)
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application of Mg bone fixation devices are reported in 
Figs. 3 and 4.

Mechanical properties of Mg‑based bone 
implants

Considering the fractured bone, the implant requires favour-
able mechanical properties for internal fixation as a fixture 
device. The primary role function of any biomedical implant 
is to fix and hold the fractured bone. From the mechani-
cal properties’ perspective, the elastic moduli of material 
used as an implant and bone should be as close as possible. 
For instance, Mg-based alloys have elastic moduli of about 
40 GPa which is not dramatically higher than that of bone 
material which is around 18 GPa (Liu et al. 2018a). This 
feature results in uniform stress distribution and can reduce 
the possible stress concentration effects bone and implant 
joint interface. Regarding the yield strength, the material 
of implant should benefit from the higher tensile and com-
pressive strengths to refrain from crack development and 
implant fracture. Notably, yield strength can also be altered 
depending on the manufacturing process. To increase the 
functional stability and transfer stress properly from implant 
to bone, the interfacial shear strength should be increased 
results in reducing the stress in the implants (Filippi et al. 
2020). To avoid brittle fractures caused by cyclic loading cir-
cumstances, the implant material should have a high fatigue 
strength (Saini 2015). Toughness refers to the capacity to 
retain maximal energy until the implant breaks, whereas ulti-
mate stress refers to the highest stress experienced before 
the implant fails. Regarding ductility, it indicates the high-
est strain that an implant without the assembly can toler-
ate during deformation under the existing loads. Tables 6 
and 7 provide the mechanical properties of human bone and 

several biomaterials for bone implant, and the mechanical 
properties of some Mg-based alloys, respectively.

Improving the mechanical properties of Mg‑based 
alloys

Biocompatibility and degradation qualities should be also 
addressed for improving the mechanical properties of bio-
degradable Mg alloys. The creation of alloys, heat treat-
ment, and plastic deformation are all required to achieve 
these qualities. When it comes to alloy development, Ca, 
as an example, is one of the most abundant metal elements 
in human bone, and it can help in bone repair (Jung et al. 
2012; Renkema et al. 2008; Yin et al. 2013). With dispersion 
along grain boundaries, Mg–Ca plays a critical role in the 
mechanical characteristics of the Mg–Ca alloy (Seong and 
Kim 2015). Because of the grain refinement, adding Ca to 
Mg can boost both strength and elongation rate (Yin et al. 
2013). Excessive Ca in magnesium, on the other hand, will 
reduce corrosion resistance. Ca content in Mg alloys should 
thus be less than 1 (Cui et al. 2017). Considering Zn, it is 
one of the important trace elements in human body and a 
co-factor for optional enzymes in bone and cartilage. Zn has 
a relatively high solubility in magnesium (6.2% by wt) and 
can play dual roles in both solid solution and precipitation 
strengthening. When the content of Zn is over 5%, many 
MgZn phases would precipitate from Mg matrix along grain 
boundaries, which could enhance the strength of Mg–Zn 
alloy due to the dispersion strengthening. Sr is another nutri-
tional element found in biodegradable magnesium alloys that 
helps osteoblasts development (Atkins et al. 2008). Stron-
tium ranelate (SR) is used in the treatment of osteoporosis 
to increase bone strength and mineral density. Sr has a grain 
refining effect, and the refined eutectics result in substan-
tial dispersion strengthening. Only a few publications on 

Table 6  Mechanical 
characteristics of natural bone, 
Mg alloys and other common 
bioactive materials (Wu et al. 
2014; Li et al. 2016)

NA not available

Materials Density (g/cm3) Modulus (GPa) Compressive yield 
strength (MPa)

Fracture 
toughness 
(MPa  m1/2)

Cortical bone 1.8–2.1 7–20 130–180 3–6
Cancellous bone 1–1.4 0.01–3 2–12 NA
Mg alloys 1.79–2.0 35–45 100–200 15–35
Ti alloys 4.2–4.5 110–120 750–1110 55–115
Co alloys 8.3–9.2 230 450–1000 NA
316 L steel 8.0 193 190 50–200
Tantalum 16.7 186–191 NA NA
HAp 3.1 80–110 0.03–0.3 0.6–1.0
TCP NA 24–39 2–3.5 0.3–1.0
PEEK 1.29 3–4 95 NA
PLGA 1.2e1.3 1.4–2.8 41.4–55.2 NA
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Si-containing magnesium alloys exist due to their poor cor-
rosion resistance and mechanical qualities. Ben-Hamu et al. 
(2008) discovered that Zn is a particularly efficient alloy-
ing element for improving the mechanical characteristics 
of Mg–Si alloys. When 1.6% Zn is added to Mg–0.6Si, the 
morphology of the  Mg2Si phase changes dramatically from 
a course eutectic structure to a tiny dot or short bar form. 
Tensile strength, elongation, and bio-corrosion resistance 
all increased dramatically as a consequence, with elonga-
tion improving by 115.7% in particular. The ultimate tensile 
strength and elongation, respectively, were 182 MPa and 
14%. Finally, alloying is an effective method for improving 
the mechanical characteristics of Mg alloys. For biodegrada-
ble Mg alloys, the alloying elements are intended to enhance 
not only the initial mechanical qualities, but also to main-
tain mechanical integrity for a longer period of time in vivo 
by boosting the alloys’ corrosion resistance. Although 
Ca, Sr, and Si elements have acceptable biocompatibility, 
their mechanical qualities are undesirable because to their 
reduced solubility in magnesium alloys when compared to 
Zn. Their second phases are often thick and dispersed along 
the grain boundary, which are detrimental to improving the 
mechanical characteristics of magnesium alloys.

Heat treatment

Heat treatment is used to enhance the mechanical character-
istics of Mg alloys when the solubility of specific alloying 
elements varies with temperature. When compared to other 
processing procedures, heat treatment typically does not 
modify the form or chemical content of the materials, but 
rather modifies their microstructure. The two major methods 
for increasing the mechanical characteristics of Mg alloys 

are fine-grain strengthening and second phase strengthening. 
Solid solution treatment (T4), age treatment (T5), and solid 
solution + ageing treatment (T6) are the most regularly uti-
lised thermal treatments for Mg alloys (Yu et al. 2017). For 
example, because of the high solubility of Zn in magnesium, 
heat treatment is commonly used to enhance the mechanical 
characteristics of Mg–Zn alloys (Li et al. 2020). Overall, 
heat treatment is an efficient way for improving the mechani-
cal and biodegradable characteristics of magnesium alloys. 
After heat treatment, the microstructure and distribution of 
the second phases will change, which are strongly connected 
to the mechanical characteristics of magnesium alloys.

Plastic deformation

The dislocation density of Mg alloys rises during plastic 
deformation, and the grain refining effect is visible (Ala-
neme and Okotete 2017). As a result of the resistance to dis-
location movement, the strength of Mg alloys is increased. 
Typically, plastic deformation such as extrusion, rolling, 
drawing, and forging may considerably increase the mechan-
ical characteristics of magnesium and its alloys. Several 
instances involving magnesium and its alloys have been 
undertaken in clinic to date. All the findings supported the 
use of magnesium screws in clinics to treat illnesses. How-
ever, in clinic, magnesium and its alloys are mostly utilised 
as unload-bearing implants, and because of the complicated 
stress state, plate and screw systems have only been tested 
in animals (Chaya et al. 2015), the use of a magnesium plate 
and screw combination has not been implemented. Since 
the solubility of alloying elements in magnesium is limited, 
and biocompatibility and biodegradability must be addressed 
when designing novel biodegradable materials, the ability 

Table 7  Mechanical properties of some Mg biodegradable alloys, the letters T and C stand for tension and compression, respectively (Chen et al. 
2018)

Elements (alloys) Yield stress (MPa) Ultimate stress (MPa) Elongation (%)

Mg–Zn–Sr 187.324 ± 4.015(T) 278.002 ± 5.352(T) 19.8 ± 3.6(T)
Mg–Zn–Zr 227.509 ± 5.009(T) 306.052 ± 4.588(T) 20 ± 2(T)
Mg–Zn–Zr–Sr 322.363 ± 4.547(T) 376.400 ± 7.526(T) 16 ± 1(T)
Mg–5.5Zn 115.6 ± 3.9(C) 303.2 ± 5.6(C) –
Mg–5.5Zn/5HA 154.7 ± 4.2 (C) 351.6 ± 5.2(C) –
Mg–5.5Zn/10HA 165.3 ± 3.7(C) 379.7 ± 4.1(C) –
Mg–Zn–Mn–Ca 198(T) 220(T) 4.5(T)
Mg–1.2Zn–0.5Ca (as-cast) 64.5 ± 10.5(C), 60.3 ± 3.1(T) 255.2 ± 7.6 (C), 121.3 ± 5.2(T) 17.4 ± 0.43(C), 3.2 ± 0.13(T)
Mg–1.2Zn–0.5Ca (heat treated) 124.4 ± 6.9 (C), 84.3 ± 7.1(T) 309 ± 17.3(C), 150.7 ± 8.5(T) 18.9 ± 0.3(C), 4.9 ± 0.24(T)
Mg–5Zn 120(T) 212(T) 10(T)
Mg–5Zn–0.2Sr 117(T) 233(T) 15(T)
Mg–5Zn–0.6Sr 115(T) 215(T) 13(T)
Mg–5Zn–1.0Sr 107(T) 194(T) 9(T)
Zn–1 Mg–0.1Sr (hot rolled) 196.84 ± 13.20(T) 300.08 ± 6.09(T) 22.49 ± 2.52(T)
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to increase mechanical qualities is severely constrained. 
More attention to the combination of new alloy design, heat 
treatment, and plastic deformation techniques is expected to 
result in higher mechanical properties of magnesium alloys, 
and moreover, an approach was recently announced that inte-
grates the strengthening benefits of nanocrystallinity with 
those of plasticisation to produce a dual-phase material that 
demonstrates near-ideal strength of 3.3 GPa at room tem-
perature and without sample size effects (Wu and Zhu 2017). 
Furthermore, with the advancement of magnesium alloys in 
the medical field, numerous various potential products are 
being investigated. For several implantable devices, not only 
the strength, but also the deformability, fatigue resistance, 
stress corrosion cracking, and so on, should be highlighted, 
which will widen the research on mechanical properties of 
magnesium alloys.

Biocompatibility of Mg

The first and most important criteria for every implant 
material are biocompatibility and nontoxicity. When a for-
eign substance is implanted in the human body, a series 
of interactions between the implant material and the host 
tissues occur, which determine the implant’s acceptance 
by the body (Shu-Rong et al. 1999). Biocompatibility of 
permanent implants is determined by how well freshly 
produced tissue interacts with the implant surface. Tem-
porary implants, on the other hand, are designed to pro-
vide support for shattered bone until it heals, after which 
it is meant to decay at a regulated pace within the body 
(Yang et al. 2020a). If the degradation product begins to 
interact negatively with any physiological factor, this is a 
major problem. As a result, temporary implant materials 
should be non-toxic and should not produce inflammatory 
or allergic reactions in the body. Mg is an essential com-
ponent of bone construction and the fourth most abundant 
cation in the human body. It has a high biocompatibility, 
making it one of the best options for temporary implants. 
Around 20% of the total accessible magnesium is stored in 
bones, whereas the remaining 35–40% is located in tissues 
and ligaments. It is critical to understand the effect of Mg-
ion concentration on stem cells when evaluating Mg-based 
alloys for bone implant applications. Stem cells proliferate 
and differentiate into osteoblasts, which serve as structural 
components in the formation of new bones. Mg-ions in 
extracellular matrix can help stimulate the gene expres-
sion of melastatin-type transient receptor potential chan-
nels in human bone cells, according to a research by Abed 
and Moreau (2009). They looked at how magnesium ions 
affected gap junction intercellular communication (GJIC) 
in human osteoblasts. A 3 mM Mg-ion concentration can 
significantly boost cell viability. It can also boost alkaline 

phosphate activity and osteocalcin levels. With the use of 
computer tomography and fluorescence imaging, the osse-
ous development of Mg implants has been demonstrated 
in several experimental experiments on various animals. 
An intramedullary implantation of a pure Mg pin into the 
distal femur of rats resulted in the development of new 
bones at the peripheral locations of cortical bones, accord-
ing to Zhang et al. (2016). They came to the conclusion 
that Mg-ions can improve the GJIC between bone cells 
substantially. Several additional investigations have pub-
lished more extensive overview of the impact of Mg-ions 
on cell survival (Yang et al. 2010). The effects of various 
added elements on mechanical and biological properties 
of Mg are shown in Table 8.

Degradability of Mg‑based bone implants

In most cases, repair of bone defects is divided into three 
phases: inflammation, repair, and reconstruction (Liu et al. 
2018b). Within the initial two stages, the fracture location 
is nearly intolerable. The bone implant is needed to pro-
duce comfortable support to safeguard the fracture site from 
secondary injury. Therefore, bone implants require a slow 
corrosion rate to take care of sufficient mechanical strength. 
Within the third stage, the injured bone tissue has to be 
moderately aroused by a rising load to revive its original 
supporting operate. Therefore, at the time of reconstruc-
tion, the bone implant is expected to degrade completely. 
The inflammation period is only about a weeklong, whereas 
the repair period typically lasts 3 to 6 months (Yang et al. 
2018a, b, c; Shuai et al. 2019a, b, c). Under the progress 
of the bone repair, the degradation rate of bone implants 
should be reasonable, ranging between 0.2 and 0.5 mm/
year (Hiromoto et al. 2015). Sadly, previous in vivo studies 
have reported that Mg alloy indicates a very quick degrada-
tion rate to satisfy the necessity of bone repair, although 
typically, most observations have represented that in vivo 
degradation is slower than measured in vitro (Bowen et al. 
2014; Ren et al. 2019). This rapid degradation characteristic 
is closely associated with its electrochemical features. Mg is 
an extremely active metal, which shows a low standard elec-
trode potential of minus 2.37 V (Patil et al. 2019). Taking 
electrochemical kinetic into account, it benefits from robust 
electronegatively and is vulnerable to corrosion within the 
physiological atmosphere made in aggressive chloride ions. 
This very rapid degradation of Mg bone implants not solely 
results in the premature loss of mechanical integrity but also 
leads to aggregation of hydrogen in vivo, causing subcutane-
ous swelling development and alkaline elevation at the site 
of implantation (Wu et al. 2019; Song et al. 1999).
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Over the last few decades, the corrosion method of Mg 
in vivo has been thoroughly investigated. Notably, electro-
chemical corrosion is used to degrade Mg and its alloys, 
including anodic dissolution and cathodic decrease of Mg 
metal. It is obvious from the schematic process of Mg corro-
sion in Fig. 5 that after contact with a liquid body substance, 
Mg easily oxidises to cations through anodic reactions 
(Eq. 1), leading to electrons used in a cathodic reduction 
reaction (Eq. 2) that absorbs water and produces hydrogen 
(Shuai et al. 2017). Because of the variation between the Mg 
matrix and the second part of organic molecules adsorbed 
on the surface, these reactions occur at random on the Mg 
matrix surface (Yang et al. 2020a, b). Furthermore, a large 
number of oxygens, protein, and solution ions, such as chlo-
ride and hydroxide ions, dissolve within the liquid body sub-
stance. Mg with a high electrochemical potential appears to 
corrode, resulting in the flow of ions from the surface of the 
metal to the surrounding liquid body substance. After corro-
sion, accumulated Mg(OH)2 layer generally deposits on the 
Mg matrix (Eq. 3). The produced corrosion layer on the Mg 
matrix has a layer with an inner thickness of MgO, together 
with the heavy outer layer of (Saini 2015). In this scenario, 
the inner MgO layer fails to provide efficient corrosion pro-
tection due to a lack of sufficient dense features. Because of 
the magnitude relationship between the molar volume of the 
elementary unit of MgO and that of Mg metal, specifically, 
the Pilling–Bedworth magnitude relation is 0.8 < 1, whereas 
the external Mg(OH)2 layer may be dissolved by the chloride 

(1)Anodic reaction ∶ Mg → Mg2+ + 2e

(2)Cathodic reaction ∶ 2H2O + 2e → H2 + 2OH−

(3)Product formation ∶ Mg2+ + 2OH−
→ Mg(OH)2.

ions in physiological circumstances (Song et al. 2017). That 
is why Mg and its alloys usually degrade speedily in physi-
ological environments.

Mg alloys’ degradation is considerably suffering from the 
corrosion type, surface corrosion together with pitting cor-
rosion. Impurity, the cathodic second phase, and corrosive 
media all play a role in pitting corrosion (such as chloride 
ions). Pitting corrosion is a type of serious local corrosion 
caused by the breakdown of the passive film on the Mg 
matrix (Song and Atrens 1999). The resulting corrosion pit 
is quite tiny, but it will penetrate deeply into the Mg matrix. 
Once pitting corrosion occurs, impurities in the Mg matrix 
and chloride ions in the liquid body substance can stimulate 
pitting expansion and cause the Mg matrix to break down 
in a very short time, resulting in reducing the bearing capa-
bility. Even so, pitting corrosion generally results in native 
stress and cracks, which should weaken mechanical behav-
iour. Surface corrosion, unlike pitting corrosion, is known 
as consistent chemistry corrosion on the Mg matrix, which 
can prove the uniform shrinkage of the Mg matrix (Zeng 
et al. 2006). Surface corrosion is required for two reasons: 
(1) the Mg matrix’s composition and microstructure are 
uniforms; (2) corrosion resolution will meet any location 
on the Mg matrix’s surface equally. It is straightforward to 
comprehend that surface abrasion results in a standardised 
loss of bearing capability, which causes far less damage to 
bone implants than pitting corrosion. To help enhance the 
biomedical application of magnesium alloys in bone regen-
eration, numerous authors have concentrated tirelessly to 
manipulate their biodegradation in physiological environ-
ments, and they have made significant progress (Xin et al., 
2011; Lee et al. 2016; Liu et al. 2016a, b). Four common 
procedures, including purifying, alloying, surface coating, 
and Mg-based composite materials (MMC), have been fully 
examined and are discussed in this section.

Fig. 5  Schematic of Mg corrosion process
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Alloying treatment

One approach to strengthen Mg alloy corrosion resistance 
by altering the microstructure is alloying treatment (Wang 
et al. 2018a, b, c; Yang et al. 2016a, b). A collection of 
Mg alloys for biomedical applications has been conducted 
by researchers. As shown in Table 2, they concentrate on 
degradation and physio-chemical characteristics by in vivo 
testing. One possible methodology is to use alloying com-
ponents to mitigate the second phase in the magnesium alloy 
matrix in terms of volume and size, or to create a desirable 
second phase, which results in lessening chemical reaction 
caused by the second phase. As an example, Jia et al. (2015) 
improved AZ91 alloy with Y. It was established that the 
volume proportion of the Mg17Al12 phase attenuates, and 
as a result of that, the corrosion rate is reduced. Choi and 
Kim (2014) found that adding 0.02% (by wt) Ti considerably 
reduced the volume fraction and size of Mg17Al12 phase, 
lead to better corrosion resistance. Shuai et al. (2018a, b, 
c, d) proposed that the CaO-induced (Mg, Al)2Ca phase in 
AZ61 alloy covered the grains and behaved as an obstacle, 
potentially blocking corrosion growth in the Mg Matrix 
phase. Another strategy for improving the degradation rate 
of Mg alloy is defined as a surface coating. The main appli-
cation of this method is to apply a protective layer on the 
Mg matrix to decelerate the degradation. From the medi-
cal perspective, the coating material ought to have sensible 
biocompatibility associated with desirable biodegradability. 
In other words, the degradation rate of the coating surface 
ought to be slower than that of the underpinning Mg matrix. 
As a result, scholars typically focus on perishable bioceram-
ics and biodegradable polymers with sensible biocompat-
ibility and appropriate degradation rates as coating materials 
(Manoj Kumar et al. 2016; Wang et al. 2018a, b, c).

Bioceramics not only increases the resistance to corrosion 
of Mg bone implants but also improve the processing of sur-
face bioactivity. The reason is that bioceramics are composed 
of calcium and phosphorus in chemical compositions similar 
to natural bone. Moreover, bioceramics play an important 
role in the interface by stimulating bone tissue growth. Using 
a calcium stearate protective layer on a magnesium matrix 
was reported by Zhang et al. (2017) applying the plasma 
electrolytic oxidation approach. This micro-nano-structured 
coating indicates superhydrophobicity that avoided Mg cor-
rosion in a simulated bodily fluid. Sankar et al. (2017) used 
electrophoretic deposition and laser deposition to create 
HAp protective layer on WE43. The evaluation of degrada-
tion behaviour was implemented by soaking the treated sam-
ples in Hank’s resolution. According to the results, curves 
indicate corrosion rates of 0.194 mm/year and electrochemi-
cal corrosion polarisation of 0.073 mm/year, which is much 
less than that of untreated WE43 (0.97 mm/year). Another 
research done by Chang et al. (2013) was related to  the 

formation of the dicalcium phosphate dehydrate coating on 
the surface of AZ31. They used a combination of micro-arc 
oxidation and low-temperature hydrothermal treatment. In 
this case, after 2 h of soaking in Sodium hydroxide solution, 
uniform HAp was obtained, resulting in better pitting cor-
rosion resistance. One more investigation implemented by 
Razavi et al. (2014) discovered that electrophoretic applica-
tion of nanostructured diopside coating resulted in higher 
corrosion resistance and physiological activity of Mg alloy 
(Razavi et al. 2014).

Natural polymers, as well as synthetic polymers, have 
been employed as Mg matrix surface coating. The controlla-
bility of synthetic polymer coating is straightforward, while 
natural polymer coating provides better cell adhesion and 
reconstruction. Chen et al. (2011) reported a range of 15–20 
µm for coating on pure Mg using polycaprolactone (PCL) 
and polylactic acid (PLA) led to decreased corrosion rate 
of the Mg matrix. According to Butt et al. (2017), AZ31 
was immersed directly into PLA melt for coating prepara-
tion on the surface. It was reported that degradation rapidly 
began after 8-week immersion. In terms of the effective-
ness of coating thickness on Mg corrosion, PCL coating 
with a thickness of between 2.8 and 13 µm was implemented 
(Park et al. 2013). The rate of released hydrogen was con-
sidered in the Hank solution for 2 weeks. An inverse cor-
relation between degradation rate and coating thickness was 
observed. In other words, the more the coating thickness 
increased, the less degradation rate appeared. It should be 
mentioned that the physical characteristics of polymer or 
ceramic coating are extremely various from that of underly-
ing Mg metal, which results in a loose interface between 
the surface coating and Mg matrix. Up to date, much less 
attention has been paid to the adhesion tests for evaluating 
the feasibility and stability of the coating. From the electro-
chemical kinetic point of view, the more impurities and the 
second phase in the Mg matrix are reduced, the less likely 
galvanic corrosion will occur (Atrens et al. 2018). That is 
why researchers proposed the purification methodology to 
reinforce Mg alloys’ corrosion resistance (Yu et al. 2018). 
The impurities mostly consist of Fe, Ni, and Cu, since their 
tolerance thresholds are restricted (Fe, Ni < 0.005% by wt, 
Cu < 0.05% by wt) in the Mg matrix (Han et al. 2015). Once 
those impurities’ contents are less than the tolerance thresh-
olds, the corrosion rate will be slow. However, once the 
impurity content exceeds the tolerance limit, the corrosion 
rate will be sharply increased. It was discovered that reduc-
ing the iron content to 0.5 mm/year minimised the corrosion 
rate of the Mg matrix from 14.9 to 0.5 mm/year (Qiao et al. 
2012). Prasad et al. (2012) combined a suitable ratio of Zr to 
Mg–X binary alloy (X can be Y, Si, Sn, Ca, Sr, Ce, Gd, Nd, 
La, Mn, and Zn). It was revealed that when Zr reacted with 
impurity Fe to shape the  Fe2Zr precipitation phase, the rate 
of corrosion was lessened. Applying sputtering deposition, 
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single-phase Mg–Gd, and Mg–Y alloy was profitably pre-
pared, exhibited a close corrosion rate in a 3.5% NaCl solu-
tion compared with that of pure Mg (Schlüter et al. 2014). 
Despite this, the solid solubility of most alloy components in 
a-Mg is exceptionally low due to the hexagonal-close-packed 
atomic arrangement of a-Mg (Tang and El-Awady 2014). As 
a result, the mechanical strength of purified single-phase 
a-Mg is insufficient, putting it too far away from desirable 
clinical bone implants. It has been found that the tensile 
strength is a less than 50 MPa when it comes to the pure Mg 
produced by cast approach, associated with 80–90 MPa for 
pure Mg using the extrusion process, while considerably 
less than that of compact human bone (100–200 MPa) (Li 
et al. 2014). Another effective approach to improve the cor-
rosion resistance of Mg alloys by altering the microstructure 
is alloying treatment (Wang et al. 2018b; Yang et al. 2016b). 
Scholars have developed a series of Mg alloys for biomedi-
cal applications. They focus on degradation and biological 
characteristics via in vivo assays, as obvious in Table 2. 
One possible approach is to apply alloying components to 
decrease the second phase in the Mg matrix in terms of vol-
ume and size, or to create a desirable second phase, which 
results in reducing the galvanic corrosion stem from the sec-
ond phase. As an example, Jia et al. (2015) improved AZ91 
alloy with Y. It was established that the volume fraction of 
the Mg17Al12 phase attenuates, and as a result of that, the 
corrosion rate reduced. Choi and Kim (2014) discovered that 
adding 0.02 wt% Ti lowered the volume fraction and size 
of the Mg17Al12 phase, resulting in improved resistance 
to corrosion. According to Shuai et al. (2018a, b, c, d), the 
CaO-induced (Mg, Al)2 Ca phase in AZ61 alloy encircled 
the grains and served as a barrier to Mg matrix corrosion 
progression.

The other practicable way is to use alloying element 
which results in enhancing the structural integrity of oxide 
or hydroxide on the surface of Mg, forming a defensive 
surface film that restrains the enhancing of corrosion. For 
instance, alloying with Ca and Y, revealed that a more sta-
ble layer of hydroxide with less chemical reactivity was 
placed on the Mg matrix surface, provided a more stable 
alloy within the simulated bodily fluid (Velikokhatnyi and 
Kumta 2010). A combination of rare-earth elements (La, Nd, 
and Ce) to Magnesium matrix was stated by Willbold et al. 
(2015). According to this research, passive-surface film’s 
ability was increased thanks to the formation of an oxide 
layer of rare-earth metal on the surface. Furthermore, Al 
also boosted the formation of a dense-protecting film on 
the surface of Mg–Al alloy (Atrens et al. 2013). Not only 
alloying treatment enhanced the resistance, also, improves 
the mechanical properties, resulted in a large number of sys-
tematic and extensive studies during the past decades (Li 
et al. 2018a). Presently, the doors of clinical surgeries have 
been opened up towards many bone fix devices made of Mg 

alloys, like bone nails and plates, which can be an excel-
lent biomedical-related research approach. Unfortunately, 
developing an Mg bone tissue engineering scaffold is in the 
initial stage. There exists no investigation on the clinical 
analysis of Mg-related bone scaffold to our greatest data, 
apart from some for only in vivo tests. The reality is that a 
porous-structured Mg scaffold demands more necessities for 
degradation rate and mechanical strength. A good combina-
tion of corrosion resistance and mechanical properties has 
been applied to the commercial AZ31 and WE43 to gener-
ate porous vascular scaffolds (Heiden and Walker 2015), 
which have succeeded in achieving CE certification (Zhang 
et al. 2018). Yet, a slightly faster degradation rate in vivo 
is obtained as compared to the expectation. Besides, recent 
studies have established that applying Al element causes 
cytotoxicity to the particular cells naming neuronal (Wang 
et al. 2017). From this standpoint, Mg–Al alloy cannot be 
an appropriate alloy for bone repair application. However, 
Mg alloy for the bone scaffold is still a requirement to design 
applicable types. From the biocompatibility point of view, 
the foremost promising alloying elements are mostly con-
centrated on several nutrient elements of humans, including 
Ca, Sn, Si, Sr, and Zn, whereas other alloying elements must 
meet more biocompatibility requirements for any clinical 
application.

Reinforcement particles

Alternative approach to adjust the degradation level is pre-
paring reinforcement particles to achieve Mg-based MMC 
(Kumar et al. 2018; Cui et al. 2019; Kowalski et al. 2018; 
Dezfuli et al. 2017). In this method, the controllability of the 
corrosion rate of Mg-oriented MMC can be implemented by 
applying the category and content reinforcement. At present, 
some bioactive bioceramics, including HAp, TCP (Shao 
et al. 2016; Deng et al. 2017; Yin et al. 2019) and bioglass 
(Wan et al. 2016; Huan et al. 2011) are employed as the 
reinforcement particles in Mg-based MMC. In fact, these 
bioactive reinforcing particles can function as apatite nuclei, 
however, lead to a spontaneous formation of apatite on its 
own. In this scenario, Mg(OH)2 and other Mg-substituted 
apatites as the obtained corrosion product layer will be able 
to fill corrosion pits, form a thicker protective layer, and 
therefore, slow down the deterioration. In Mg-based MMC, 
graphene oxide (GO), a low-dimensional nanomaterial, 
was discovered as an alternative reinforcing phase. In pre-
vious research, scholars found that GO improved Mg alloy’s 
mechanical strength while increased degradation due to the 
acceleration of galvanic corrosion (Selvam et al. 2016; Turan 
et al. 2017). According to recent research, GO can also 
boost the corrosion rate of Mg alloy (Shuai et al. 2019b). 
Surprisingly, GO may be uniformly distributed across 
grain boundaries, resulting in a honeycomb nanostructure 
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comprising enclosed Mg grains. This nanostructured was 
considered a key barrier to prevent corrosion growth because 
of the superior anti-permeability of GO. GO was also able 
to reinforce the layer of corrosion by restraining the detach-
ment of corroded Mg grains. In Mg-based MMC, (Yang 
et al. 2020c) offered mesoporous silica (MS) as a reinforcing 
particle (Yang et al. 2018a). MS has potential in bone tissue 
engineering due to its unique pore structure, high specific 
surface area, and pore volume (Wang et al. 2015). It is worth 
noting that in Mg matrix, reinforcements are more likely to 
stick together, especially for nano-size particles with high 
surface energy (Xiong et al. 2016; Huang et al. 2015; Yan 
et al. 2017). This aggregation can be evaluated by the physi-
cal differences between Mg matrix and reinforcement. The 
majority of the reinforcement particles will be driven by the 
growth front of �-Mg grains throughout the solidification. In 
addition, more attention to the interfacial problem between 
�-Mg matrix and reinforcement particles is a requirement. 
Generally, the coefficients of expansion for Mg metals and 
reinforcement particles are changeable. Relevant scholars 
have suggested applying in situ synthesised MgO nanopar-
ticles to improve the interfacial adhesion between the mag-
nesium matrix and the GO (Yuan et al. 2018).

Approaches for producing Mg bone implants

It is crystal clear that the fabrication method directly affects 
the inherent characteristics of products including degrada-
tion rate, biological performance and mechanical proper-
ties. So far, several types of fabrication techniques includ-
ing traditional methods such as casting, wrought, powder 
metallurgy, and modern technique including laser additive 
manufacturing have been introduced.

Traditional method

Casting is known as a common approach for the fabrication 
of Mg bone implants. Low spending, convenient control of 
the composition of alloy as well as user-friendly operation 
are the main advantages of casting. The casting process is 
summarised in heating the metal components more than the 
melting point, pouring the liquid phase into the designed 
mould, and natural solidification. Since Mg is sensitive to 
oxygen and easily oxides, a protective atmosphere such as Ar 
and should be used during the casting. Currently, biomedical 
Mg alloys are mostly fabricated by casting as it is convenient 
to regulate the alloy elements. For example, Ag and Cu can 
be added into Mg matrix to improve its antibacterial features 
(Liu et al. 2016a, b; Tie et al. 2013), or Sr can be added to 
enhance the osteogenic characteristics (Gu et al. 2012). Bone 
fixation devices mostly demand nail shaped and flat shaped 
while bone scaffold requires porous structure. Considering 

this, casting fails to direct fabrication of net shape, how-
ever, it is a proper way to produce original material for the 
processes of forming in which parts can be fabricated with 
favourable structure and shape (Ali et al. 2016).

Wrought techniques

Another technique for achieving the desired shape parts is 
wrought techniques which focus on applying a mechanical 
force to convert the bulk metal into a favourable shape. This 
method is based on two approaches: cold working and hot 
working depends on the recrystallisation temperature. When 
it comes to the manufacturing of Mg bone implants, rolling, 
extrusion and forging are the commonly used wrought meth-
ods. Forging and hot rolling are normally utilised to achieve 
a profile in a flat shape. Cao et al. (2015) investigated the hot 
rolling of binary Mg alloy. According to this research, hot 
rolling homogenises the microstructure with refined grains 
and reduced the second phase. The Mg–Zn–Zr–Gd alloy 
was also fabricated by Yao et al. (2018). It was achieved 
that sample could meet the anticorrosive and mechanical 
requirements as a bone implant.

Powder metallurgy approach

As for the powder metallurgy technique, it is based on the 
pressure of the original powder into the desired shape. While 
sintering, the particles of powder tolerate a series of chemi-
cal and physical processes such as fusion welding, disloca-
tion and combination, diffusion and recrystallisation leading 
to sintering densification (Yang et al. 2020a, b). Mg-based 
composite can be straight ready by applying the powder 
metallurgy method. The porous scaffold can also be fabri-
cated utilising a pore-forming agent via powder metallurgy 
strategy. Obtaining the interconnected porous structure is 
a challenge in this technique. To achieve a near-net shape 
and complex implants, metal injection moulding is a typical 
method. The nearly dense part was obtained by Wolff et al. 
(2016). They fabricated Mg–Ca alloy by metal injection 
moulding. Another advanced powder metallurgy approach 
to produce degradable Mg-based composites is spark plasma 
sintering (Dutta et al. 2018; Narita et al. 2019; Karasoglu 
et al. 2018). Self-heating is the nature of this method which 
affects inside the powder for sintering. The quick rate of 
heating and consequently short time for sintering results in 
decreasing the grain growth.

Additive manufacturing

Integrating computer-aided design (CAD), computer 
numerical control processing, and laser processing lead to 
the emergence of laser additive manufacturing (LAM). As 
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it is obvious from Fig. 6, a typical LAM consists of a gal-
vanometer for scanning, a laser, a forming cylinder and a 
computer as a control system. LAM process is divided into 
few sections as follows: (a) designed a 3D model in the CAD 
software; (b) obtaining the STL file from the 3D model to 
gain the slice data of model; (c) placing the layer on the 
forming cylinder; (d) scanning the powder layer by control-
ling the laser beam for heating and melting and solidifica-
tion to achieve a single layer. Laser additive manufacturing 
(LAM) brings us a quite number of advantages including 
rapid fabrication, net-shape fabrication, fabrication of com-
plex porous structures, superior process flexibility, freedom 
of design, using a broad range of materials including ceram-
ics, composites, polymers, and metals and their alloys. In 
the last 2 years, a few investigations have been done regard-
ing the LAM of Mg scaffolds. Figure 7 indicates several 
samples fabricated using laser additive manufacturing. For 
instance, a diamond unit-cell porous Mg scaffold fabricated 
by Li et al. indicated proper mechanical strength particu-
larly Young’s modulus and favourable degradation rates of 
20% in 4 weeks (Li et al. 2018b). Another research in the 
field of laser additive manufacturing of Mg alloy has been 
done by Kopp et al. (2019). They concentrated on the WE43 
alloy scaffold with various pore sizes. In this case, a small 
pore size scaffold exhibited a low rate of oxygen and small 

decreasing of mechanical properties over time. Interestingly, 
LAM has accurate control of porous structure as compared 
with other methods. Integrating CAD and computed tomog-
raphy systems, patient-specific bone implants for various 
defective sites can be easily fabricated.

LAM also experiences a quick melting and solidification 
results in refining the microstructure. The rapid cooling rate 
can be a hinder to the way of grain growth. According to 
the research done by Florian Bär et al. (2019), it was found 
that heat impacts at various places of the molten pool play 
a vital role. In addition, laser additive manufacturing fabri-
cates a smaller grain size compared to the casting. It is worth 
mentioning that fine-grain size which is considered as fine-
grain strengthening is beneficial to improve the mechanical 
properties of Mg products. There has been various research 
on the relationship between grain size and corrosion. Some 
scholars proposed that grain boundary can act as a corrosion 
hinder while others concluded that grain boundary can act 
as crystallographic flaws and resultantly rises Mg corrosion 
(Zhang et al. 2011b). Considering the investigation on the 
LAM of Mg bone implants, it can be stated that it is far 
from mature in comparison with other biometals such as 
Fe alloy and Ti alloy. The reason goes back to the physical 
and chemical properties of Mg including a melting point of 
650 °C near to the boiling point (1091 °C) which is a huge 

Fig. 6  Schematic LAM process 
for manufacturing of bone 
implant

Fig. 7  a As-printed WE43 scaf-
fold and b surface morphology 
of as-polished strut (Li et al. 
2018a)
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challenge on the way of processing laser forming. Due to 
some features of Mg including low boiling point, low surface 
tension, high vapour pressure, and low density, Mg metal 
can easily burn out within the laser processing (Wen et al. 
2018). More importantly, Mg is more likely to oxides due 
to its inherent chemical properties leading to low forming 
quality. Hence, there must be a low-content oxygen protec-
tive layer during the laser processing of Mg and its alloys. 
The fact is LAM of Mg bone implants is still in its infancy 
while that of Ti and Fe, indicates good formability when it 
comes to clinical application.

AM of reactive materials, notably magnesium, has 
piqued researchers’ interest in recent years, and technology 
is being developed to reduce the challenges involved with 
3D printing. Due to its strong reactivity, magnesium is a 
challenging metal to 3D print. Magnesium, in its pure state, 
oxidises uncontrolled and must be kept in a way that pre-
cludes oxygen exposure. Powder, liquid resin, and wire types 
of raw materials are accessible for AM (Qin et al. 2019). 
The surface energy of the metal increases in this condition, 
increasing the chance of it interacting with ambient oxygen 
to permit burning. As a result of these dangers, there has 
been insufficient investigation into production procedures for 
magnesium as a possible biodegradable alloy. It will need 
specialised equipment capable of printing magnesium in an 
inert atmosphere while also assuring safe material handling. 
AM of Mg alloys is gaining popularity in the community 
because to its ability to enable design capabilities not pos-
sible with traditional production and its promise for the crea-
tion of biodegradable implants. Powder bed fusion (Chung 
Ng et al. 2011), wire arc AM paste extrusion deposition, 
friction stir AM, and jetting methods have all been used 
to show additive manufacturing of magnesium (Guo et al. 
2019).

These procedures differ in terms of process mechanics 
and raw material types. Each technique produces AM com-
ponents with varying structural characteristics. AM may be 
utilised to create exceedingly complicated geometries that 
would be difficult or impossible to create using traditional 
machining procedures by producing components in this man-
ner. AM allows for more personalised implants that are more 
precisely aligned with anatomical geometries. Furthermore, 
AM decreases the production time and cost of implants by 
eliminating many steps of traditional machining and allow-
ing batch processing (Farag and Yun 2014). The capacity to 
create complicated internal and exterior geometries utilis-
ing AM allows for the creation of geometrical elements that 
encourage cell growth, proliferation, and bone regeneration. 
Scaffolds of WE43, a magnesium alloy containing yttrium 
and rare-earth metals, printed with holes as tiny as 600 µm 
showed less than 25% toxicity in vitro and retained structural 
stiffness for 4 weeks. Furthermore, porous depositions may 
be produced through AM, which may operate as favourable 

locations for tissue adhesion, hence speeding up the heal-
ing process. Porosity may be adjusted across a 3D build 
by adjusting print process parameters, which have a direct 
impact on corrosion rates and cell behaviour (Farag and Yun 
2014; Palanivel et al. 2015).

Due to the high surface energy of the powder and high 
electronegativity of the alloy, which drives the quick cor-
rosion rate within the human body, magnesium is a tough 
material to print biodegradable implants. Multiple tech-
niques in AM, on the other hand, are progressively overcom-
ing these problems. The process parameters of attempts to 
print Mg utilising PBF, WAAM, paste extrusion deposition, 
FSAM, and jetting methods have been detailed. Due to the 
low heat flux and intricate internal and exterior geometries 
afforded by this technique, powder bed fusion is the most 
commonly explored approach for printing magnesium alloys. 
Parts with a density of 96.13% have been attained depending 
on the type of magnesium alloy utilised. In magnesium AM, 
creating near-fully dense structures with a density of more 
than 99% remains a major difficulty. The following table 
summarises the different elements that impact the AM pro-
cesses mentioned in this review (Salehi et al. 2019). Table 9 
categorises the effects of parameters on the AM process.

Prospect and future trends

Improving functional Mg bone implants

Bacterial infection during orthopaedic treatment results in 
failed bone repair and intaking of any antibiotics for a long-
term period can lead to bacterial resistance in the body of 
patients (Shuai et al. 2019c). That is why improving the anti-
biological Mg implant for bone repair is really important. As 
Ag and Cu are well known for their strong bactericidal activ-
ities (Rtimi et al. 2019). Some scholars applied alloying ele-
ments such as Ag and Cu to suppress bacterial infection of 
Mg alloy. According to the results, Ag and Cu were able to 
release metal ions that kill bacteria. In contrast, an ongoing 
investigation has indicated that small amounts of these ele-
ments into the Mg matrix cause increased degradation. The 
reason is that precipitates accelerate the effect of galvanic 
corrosion (Shuai et al. 2018c). However, more research still 
needs to be implemented to obtain a balanced level of bio-
degradability and antimicrobials. Yuan et al. (2019) achieved 
the rolling and annealing temperature to address the adverse 
effect of precipitates in Mg–Ag alloy. As stated before, the 
homogenous distribution of Ag was beneficial for the degra-
dation behaviour. Recent researches indicated the improve-
ment of anti-cancer Mg bone implants (Shuai et al. 2018b). 
According to this research, Mg–La alloy did not affect typi-
cal osteoblasts and controlled the growth of tumour cells. No 
one can deny the impact of toxicity problems, which resulted 
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Table 9  Effects of parameters on the AM process

AM process Parameters References

Powder bed fusion Laser power and scanning speed A wide range of laser power and scan-
ning speeds can be deemed as optimal; 
however, a low laser energy density 
between 50 and 200 J/mm3 is critical. 
High energy density leads to element 
vaporisation while low energy density 
leads to insufficient melting of Mg 
powder. Energy density is dependent of 
alloy composition

Chung Ng et al. (2011)

Layer thickness Layer thickness above 250 μm for pure 
Mg prevented complete fusion and 
resulted in higher porosity

Powder size Magnesium powder of 50 μm for pure 
Mg was seen to yield better depositions 
compared to smaller or larger pow-
ders. Particles that are too small result 
in higher rates of vaporisation and 
particles that are too big do not achieve 
a full melt

Chung Ng et al. (2011)

Build envelop The vaporisation temperature of mag-
nesium increases with higher chamber 
pressures

Conditions This facilitates higher operation tempera-
tures for printing Mg. However, safety 
risks increase by this approach. In addi-
tion, preheating of the work table before 
printing leads to smoother depositions

Wire arc additive manufacturing Deposition speed and feed Higher speeds and feeds of deposition 
resulted in more refined, smaller grains

uo et al. (2019)

Arc frequency Small refined grains were observed 
at arcing frequency of 5–10 Hz for 
TIG WAAM. Grain size was found 
to increase above and below this fre-
quency range

Paste extrusion deposition Extrusion temperature Flowability of paste was found to 
increase at higher temperature during 
extrusion

Farag and Yun (2014)

Paste composition Higher quantities of gelatin in MgP–
gelatin mixture resulted in stronger 
manufactured samples. However, the 
strength was still much lesser than other 
sintering or fusion-based AM processes

Friction stir additive manufacturing Tool rotational speed Higher tool force and speeds resulted in 
higher cladding temperatures, which led 
to higher porosity in the components

Palanivel et al. (2015)

Tool force Higher tool force increases temperature 
due to friction, and thus, residual 
stresses in components increases

Jetting technologies for additive manu-
facturing

Binder jetting 100% recyclability of powder
Binding agent must be chosen care-

fully by considering its reactivity with 
powder

Salehi et al. (2019)

Binder-less jetting Prevents contamination due to absence of 
binding agent
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from alloying treatment. Hence, more detailed in vivo tests 
should be done concerning the biocompatibility of func-
tional bone implants. One of the future perspectives of Mg 
bone implants is a drug-released system. Generally, directly 
incorporated drugs such as osteoinductive factors into the 
Magnesium-based implants is a challenge. It can be located 
into the surface coating, PLLA coating, for instance.

Improving the mechanical properties of Mg alloys

The durability of an implant plays a pivotal role in the injured 
tissue after implantation to provide structural support. From 
a mechanical perspective, the mechanical strength of Mg 
bone implants still requires to be more improvement in vari-
ous applications. Porous scaffolds can be exemplified for 
load-bearing applications. Furthermore, this gradual deg-
radation of Mg bone implant in vivo is conducive to rapid 
mechanical strength loss. Technically speaking, chemical 
composition, process technology, and grain size are deter-
minant parameters for mechanical strength, including yield 
strength and ultimate tensile strength (Sezer et al. 2018). 
Alloying is considered the main approach to improve the 
mechanical properties of Mg alloy. Alloying with a hex-
agonal system such as Zn, Sr, and Al can lead to solid 
solution strengthening of Mg (Ibrahim et al. 2017). Grain 
refinement is an alternative approach to boost the strength 
and toughness of Mg alloy, as a boundary with high grain 
exhibits a remarkable blocking impact on dislocation slip 
(Jayalakshmi et al. 2018). A deformation process based on 
external force and rapid solidification technology has been 
offered for grain refinement of Mg alloys (Drozdenko et al. 
2016, 2019; Shalbafi et al. 2017; Lu et al. 2015) while rapid 
solidification technology is more active than the deformation 
process. The finer and more homogenous microstructure can 
be produced by a fast cooling rate regarding cooling rate. 
As a result, fewer impurities and residues can lead to a less 
micro-galvanic effect. Recently, melt spinning technology 
was used for EW62 to obtain its fast solidification, which 
possessed high resistance to stress corrosion cracking. After 
that, the consolidated EW62 ribbons were achieved, apply-
ing an extrusion process to obtain bars. It is worth mention-
ing that tubes and plates for repairing biological bone can be 
produced applying the same extrusion method.

Focus on the dynamic degradation of Mg bone 
implants

Most of the current researches regarding the Mg-based bone 
implants are focussed on material design and manufactur-
ing method while much less attention has been paid to the 
dynamic effect of degradation on mechanical and morpho-
logical properties of the bone implant. Apparently, during 
the degradation of Mg bone implants, any large physical 

changes may result in different structural features, such 
as elastic modulus and mechanical strength associated 
with biological features, such as osteopromotive perfor-
mance. Due to the difficulty of realistic measurement of Mg 
implants local features in vivo, simulation of thermochemi-
cal mechanical coupling behaviours has drawn scholar’s 
attention. Grogan et al. (2014) introduced a physio-corrosion 
model to seize surface changing of a corroding Mg scaffold 
structure with the aim of predicting device geometry and 
mechanical efficiency within corrosion. Therefore, dynam-
ics and evolution of the environment, including corrosion 
products and pH variation, were neglected. A mathematical 
model for suitable geometry of implants was designed by 
Bajger et al. (2016). Considering this model, the corrosion 
products precipitation on the Mg surface and effect on the 
degradation rate was successfully proposed. Sanz-Herrera 
et al. (2018) have recently improved a phenomenological 
approach to simulate Mg corrosion behaviour and explained 
dynamically physio-chemical interactions. According to 
the results, the model was able to describe the main vari-
ables affecting Mg corrosion. Moreover, a computational 
method using a dynamic immersion test was revealed by Md 
Saad et al. (2019) to evaluate the efficacy of morphological 
changes on the structural features of biodegradable porous 
Mg. More research should be done in the future; modelling 
Mg corrosion in more detail to indicate the various physio-
chemical characteristics and comprehensive experimental 
analysis to discover more about Mg corrosion should be 
investigated. This can result in a better understanding of the 
design and processes of Mg bone implants.

Modern fabrication of Mg bone implants

Additive manufacturing (AM)g of Mg bone implants should 
be improved base on the high demand for patient-specific 
bone implants. Fine and homogenous micro-structured 
Mg parts can be generated by laser additive manufacturing 
(LAM), and better mechanical properties and biodegradabil-
ity is expected. Laser additive manufactured Mg parts pos-
sess less formability than other metals, including Fe alloy, 
Ti alloy and Co alloy. LAM of Mg parts is suffering from 
several defects, including surface balling, internal pores, and 
element burning (Liu et al. 2017; Yang et al. 2016a, b). One 
required approach is a deep understanding of processing fac-
tors affecting the mechanism of formability to address this 
issue. For example, the interaction between the laser beam 
and magnesium, the processing stability, and the controlla-
bility of residual stress will undoubtedly positively impact. 
Hence, the system for Mg-based material in the LAM pro-
cess should be developed. The shape of the original Mg alloy 
powder applied in LAM should be spherical together with 
a uniform distribution of particle size to ensure its good 
fluidity (Zhang et al. 2011a). At present, WE43, AZ61 and 
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ZK60 have been employed in LAM. As biological reactions 
of the current commercial Mg alloys in vivo have not been 
confirmed, they may not be considered as the best biological 
bone implants option.

With the advent of hybrid materials, the benefits of some 
materials can be integrated, which brings great potential for 
bone implants (Gao et al. 2019a, b). According to a few pre-
vious research types, the technology of laser additive manu-
facturing can process MMC materials (Gao et al. 2019c). 
The incorporation of high-melting-point ceramics should 
reduce the formability. However, the high performance of 
laser additive manufacturing of Mg-based MMC is also 
considered an inevitable challenge. Focussing on the LAM 
of bone implant, the structure-oriented design of scaffold 
should be considered. Appropriate design of porous struc-
ture for mimicking human bone is of the essence. Schol-
ars have done a large number of researches on designing 
a porous structure for non-degradable bone implants. The 
role of stress distribution, permeability, and biological prop-
erties under various pore structures was comprehensively 
reported (Ali and Sen 2017, 2018; Montazerian et al. 2017) 
while no researchers have paid attention to the structural 
design of degradable Mg. Due to the dynamic degradation, 
mechanical and biological properties of bone implants are 
various. Hence, the efficacy of different pore structures of 
Mg scaffold on mechanical properties, biological proper-
ties, and degradation rate is a necessity. Various methods, 
including reverse modelling, mathematical modelling, and 
CAD design, have been used for designing porous structures 
(Yousefi et al. 2014). A combination of these methods may 
meet the requirements of scaffold design for bone healing.

Conclusion

The inherent characteristics of Mg and its alloys for bio-
medical implants alloys including desirable mechanical 
properties, biodegradability, biocompatibility and osteo-
promotive characteristics have been reviewed. Currently, 
bone tissue engineering scaffold and bone-related fixation 
devices are the main focus of Mg applications even consider-
ing the high corrosion rate rather than our expectation. The 
existing approaches for reducing the degradation rate of Mg 
bone implants have been considered as alloying treatment, 
purification, Mg-based MMC and surface coating. Practi-
cally, various approaches can be combined to optimise the 
corrosion rate of Mg alloy. Various fabrication techniques 
for Mg bone implants have also been reviewed. Laser addi-
tive manufacturing can provide rapid production of complex 
and shape-customised porous structures in comparison with 
traditional methods. More importantly, homogenised micro-
structure which is a favourable feature for improving degra-
dation behaviour and mechanical properties can be achieved 

due to the fast solidification characteristic of Mg alloys. To 
achieve the clinical Mg bone implants, more interdiscipli-
nary investigation including designing materials and manu-
facturing processes are urgently needed in the near future.
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