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Abstract
The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including learning and memory 
with widespread innervation in the cortex, subcortical structures, and the cerebellum. Cholinergic receptors, transporters, 
or enzymes associated with many neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease 
(PD), are potential imaging targets. In the present study, we have developed 2D-quantitative structure–activity relationship 
(2D-QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against presynaptic vesicular ace-
tylcholine transporter (VAChT). VAChT assists in the transport of ACh into the presynaptic storage vesicles, and it becomes 
one of the main targets for the diagnosis of various neurodegenerative diseases. In our work, we aimed to understand the 
important structural features of the PET imaging agents required for their binding with VAChT. This was done by feature 
selection using a Genetic Algorithm followed by the Best Subset Selection method and developing a Partial Least Squares- 
based 2D-QSAR model using the best feature combination. The developed QSAR model showed significant statistical 
performance and reliability. Using the features selected in the 2D-QSAR analysis, we have also performed similarity-based 
chemical read-across predictions and obtained encouraging external validation statistics. Further, we have also performed 
molecular docking analysis to understand the molecular interactions occurring between the PET imaging agents and the 
VAChT receptor. The molecular docking results were correlated with the QSAR features for a better understanding of the 
molecular interactions. This research serves to fulfill the experimental data gap, highlighting the applicability of computa-
tional methods in the PET imaging agents’ binding affinity prediction.
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Introduction

According to World Health Organisation (WHO), currently, 
more than 55 million people live with dementia worldwide, 
and there are more than 10 million cases new cases every 
year. Dementia is characterized by the loss or decline in 
memory or other cognitive impairment commonly observed 
in neurodegenerative disorders like Alzheimer’s disease 
(AD), Parkinson’s disease (PD), schizophrenia, and Down’s 
syndrome. The severity of dementia-associated cognitive 
dysfunction is connected with the loss of cholinergic synap-
tic elements in the cortex and subcortical regions of the brain 
(Bohnen and Albin 2011; Hampel et al. 2018). Cholinergic 
neurons are accountable for synaptic transmission as well 
as neuronal modulation in various regions of the central and 
peripheral nervous systems. Cholinergic neurotransmission 
controls cognitive functions including learning and memory. 
Acetylcholine (ACh) is one of the main neurotransmitters 
secreted by cholinergic neurons to perform a plethora of 
physiological functions (Prado et al. 2013). ACh is produced 
at the nerve terminals from acetyl coenzyme A (acetyl CoA) 
and choline by Choline acetyltransferase (ChAT) enzyme. 
The neurotransmitters are then transported and stored 
in synaptic vesicles by transporters called vesicular ACh 
transporters (VAChTs), before being released in the synap-
tic cleft (Amenta and Tayebati 2008). Neurodegenerative 
diseases have common events of cholinergic impairment. 

Thus, radiolabeling of these vesicular transporters would 
provide a presynaptic marker of cholinergic innervation. The 
depletion in ChAT and AChE levels, occurring in several 
neurodegenerative diseases, are potential measuring targets 
for these imaging agents (Bergmann et al. 1978; Mountjoy 
1986; Mountjoy et al. 1984) (Fig. 1). Imaging cholinergic 
neurotransmission in vivo with positron emission tomogra-
phy (PET) provides noteworthy information about disease 
progression.

Radio imaging of presynaptic VAChT was first done 
using 18F-fluoroethoxybenzovesamicol (18F-FEOBV), a PET 
ligand, which was later successfully rendered into clinical 
application. Vesamicol (2-(4-phenylpiperidino)cyclohex-
anol) was reported to bind to VAChT and is considered to 
be a useful lead for developing new PET imaging agents 
for mapping cholinergic signaling in vivo (Giboureau et al. 
2012). Kitamura et al. (2016) found that o-methyl-trans-
decalinvesamicol (OMDV) demonstrated a high binding 
affinity and selectivity for VAChT and can be used in the 
early diagnosis of Alzheimer’s disease (AD).  [11C]OMDV 
was synthesized and investigated as a new PET ligand for 
VAChT imaging through in vivo evaluation. Kilbourn et al. 
(2009) used (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in 
micro PET imaging to determine the regional brain phar-
macokinetics of rat and rhesus monkey brains. Horsager 
et al. (2022) evaluated human in vivo VAChT distribu-
tion in 13 peripheral organs using a 70 min dynamic  [18F]
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fluoroethoxybenzovesamicol  ([18F]FEOBV) PET/CT proto-
col. Tu et al. (2009) synthesised nine fluorine-containing 
VAChT inhibitors and screened them as potential PET trac-
ers for imaging the VAChT. Earlier, imaging of AD was 
possible through the amyloid beta detection; however, these 
methods were not useful to evaluate the therapeutic efficacy 
of the AD treatment. The dysfunction of presynaptic cho-
linergic neurons is associated with loss of choline acetyl 
transferase (ChAT) (enzyme synthesizing ACh) and the 
vesicular acetylcholine transporter (VAChT) (Reinikainen 
et al. 1990). Thus, these internal molecules function as novel 
cranial molecular targets for developing new imaging agents 
for their detection.

Driven by the continuous search for new entities with 
improved properties and considerably lower toxicities, theo-
retical approaches are of high priority within the chemical 
and pharmaceutical industries. This provides a logical design 
of chemicals or pharmaceuticals with reduced time and cost. 
Quantitative structure–activity relationship (QSAR) has gained 
immense importance in the pharmaceutical industries as an 
effective tool for the predictions when experimental data is 
limited (Gramatica 2020). QSAR has enormous applications in 
medicinal chemistry, drug designing, and toxicity prediction. 
Another chemometric approach, similarity-based quantitative 
read-across (Chatterjee et al. 2022), can also be used for data 
gap filling. This method uses a weighted average approach to 

quantitatively predict similar query compounds. Read-across 
approach, due to its transparency, has a strong potential for 
providing confident predictions.

In the present research, we have strived to develop a two-
dimensional QSAR model with 19 PET imaging agents act-
ing against vesicular acetyl choline transporter. The selection 
of a small dataset was due to the non-availability of a larger 
number of experimental data. Here, QSAR modeling plays a 
pivotal role for providing promising predictions when data is 
scarce. To revalidate our predictions, we have performed leave-
one-out and leave-many-out cross-validation tests. We have 
also performed read-across based predictions to analyze the 
predictive ability of the features obtained from QSAR analy-
sis. Besides these, we also have performed molecular docking 
analysis to corroborate its results with QSAR analysis. Further, 
we have used two external datasets of PET imaging agents 
for their VAChT binding predictions (vide infra) using our 
developed 2D-QSAR model.

Materials and methods

In the present study, 2D-quantitative structure–activ-
ity relationship (2D-QSAR) models were developed for 
19 positron emission tomography (PET) imaging agents 
targeted against presynaptic vesicular acetylcholine 

Fig. 1  PET imaging of vesicular acetylcholine transporter to study 
its role in presynaptic cholinergic innervations. VAChT helps in the 
transport of Acetylcholine (ACh), the essential neurotransmitter regu-
lating AD and PD, through the synaptic vesicles. PET imaging tech-
nology helps in the diagnosis of the increase or decrease in the num-
ber of VAChT receptors. Mechanism of VAChT: In the cytoplasm of 

nerve endings, ACh is synthesized by the enzyme ChAT, and then it 
is loaded into synaptic vesicles by VAChT. Upon any nerve impulse, 
vesicles fuse to the plasma membrane and release the neurotransmit-
ter ACh. (AD: Alzheimer’s disease; PD: Parkinson’s disease; CoA: 
Coenzyme A; ChAT: Choline acetyltransferase)
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transporter (VAChT). VAChT assists in the transport of 
ACh into the presynaptic storage vesicles, and it is one of 
the main targets for the diagnosis of various neurodegen-
erative diseases.

The dataset

According to the OECD principle, dataset selection with a 
defined endpoint is the first essential step while developing 
a QSAR model. For our present work, the binding affin-
ity (Ki) values of 19 PET imaging agents acting against 
vesicular acetylcholine transporter were procured from dif-
ferent previously published literature (Kovac et al. 2010; 
Tu et al. 2015, 2009). The VAChT binding affinity of the 
dataset compounds was assayed by the same experimental 
protocol of the competitive displacement of 5 nM  [3H]
vesamicol on homogenates of PC12 cells (Zea-Ponce et al. 
2005). The binding affinity data which was expressed as 
Ki were converted to its negative logarithmic form (pKi). 
The structures obtained from different sources were then 
represented in MarvinSketch version 15.12.7.0 software 
with proper explicit hydrogen addition and aromatization. 
The 19 PET imaging agents used for the present study is 
given in Table 1. The dataset compounds obtained from 
three sources had some common compounds. The com-
pound IDs in Table 1 are given in such a way so that the 
common compounds are not repeated.

Molecular descriptors

The molecular descriptor is a fundamental component of 
QSAR and other in-silico models since it formally repre-
sents a molecule's structure numerically. Descriptors pro-
vide a mathematically meaningful relationship between 
the molecular structure and biological activities, physico-
chemical and toxicological properties of chemicals (Mauri 
et al. 2017). Descriptors can be classified into different cat-
egories depending on the process of calculation or scheme 
of experimental determination or concept of the origin. 
For ease of interpretation, the present work involved the 
use of eight main types of two-dimensional (2D) descrip-
tors, viz., E-state indices, extended topochemical atom 
(ETA), connectivity, constitutional, functional, 2D atom 
pairs, ring, atom-centered fragments and molecular prop-
erty descriptors. The descriptors were calculated using 
alvaDesc descriptor calculator (Alvascience, alvaDesc 
version 2.0.6, 2021, https:// www. alvas cience. com). With 
the intention to minimize the redundant and incompetent 
data, inter-correlated descriptors (correlation greater than 
0.95) were removed from the original descriptor pool. This 

resulted in a final pool of 188 descriptors which was used 
as input variables for QSAR modeling.

Feature selection and model development

In general, a QSAR model development involves a training 
set and a test for model development and validation purposes 
respectively. However, owing to the small number of com-
pounds in our dataset, we did not apply the general method 
of data division (Király et al. 2022; Kovács et al. 2021; Rácz 
et al. 2021). It is natural that all the descriptors calculated 
through AlvaDesc will not be able describe the binding 
properties of the PET imaging agents. Therefore, to further 
reduce the data pool, we have applied the Genetic Algorithm 
(Sukumar et al. 2014) feature selection method to choose 
essential features required for binding. Further, we have 
executed the Best Subset Selection (available from http:// 
dtclab. webs. com/ softw are- tools) on the reduced pool of 12 
descriptors obtained from the GA. Finally, the acquired pool 
of descriptors was applied to develop the final model using 
the partial least squares (PLS) regression (Wold et al. 2001). 
PLS converts the original descriptors into the new latent 
variable space thus lowering the dimensionality and obvi-
ating the inter-correlation among the original descriptors.

Machine learning‑based read across predictions

In the current work, we have employed a machine learning-
based Read-across prediction tool which relies on similar-
ity approaches. The predictions were made using the tool 
Quantitative Read Across v4.0 developed by Chatterjee 
et al. (2022) available from https:// sites. google. com/ jadav 
purun ivers ity. in/ dtc- lab- softw are/ home. The main similar-
ity approaches involved in this tool are Euclidean distance-
based similarity, Gaussian kernel function, and Laplacian 
kernel function-based similarity estimation. Please note 
that read-across does not develop any statistical model like 
QSAR and make predictions only based on the similarity 
values. Thus, this approach may be good when a limited 
number of source compounds is available (Banerjee and Roy 
2022). For read-across predictions, we have divided the data-
set into training and test sets. The prediction scheme starts 
with the initial optimization of hyperparameters (sigma and 
gamma values; distance and similarity thresholds) which 
requires division of the training into sub-training and sub-
test sets into different combinations. This step is followed by 
the selection of the best setting of hyperparameters which is 
then applied to the original training and test sets.

Molecular docking

In this study, molecular docking was performed using the 
most and least active compounds from the initial dataset to 

https://www.alvascience.com
http://dtclab.webs.com/software-tools
http://dtclab.webs.com/software-tools
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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identify the interaction pattern with the target. Owing to the 
non-availability of any protein structure for VAChT in the 
protein data bank, we have retrieved the predicted protein 
structure from the AlphaFold Protein Structure Database 
(available from https:// alpha fold. ebi. ac. uk/ entry/ Q16572) 
with the UniProt: Q16572, Source organism: Homo sapi-
ens (Human), and AlphaFold id: AF-Q16572-F1-model_v2. 
AlphaFold is an artificial intelligence (AI) system estab-
lished by DeepMind that predicts a protein’s three-dimen-
sional (3D) structure from its amino acid sequence (Jumper 
et al. 2021; Varadi et al. 2022). We have then validated the 
reliability of the predicted structure using the Ramachandran 

plot server embedded in Biovia Discovery Studio 4.1 which 
represents the good quality of the model (see Fig. 2). In 
this study, multiple active sites at the surface of the protein 
were predicted using the Biovia discovery studio 4.1 client 
platform from the “define and edit binding site” using the 
module “generate active site from receptor cavities”, and 
the ligand was docked into each site to identify the favorable 
binding site (identified most favorable active site coordi-
nate x: 16.478, y: 6.38307, Z: -15.9527, the radius of the 
sphere: 26). Initially, a total of sixteen binding sites were 
identified where the standard compound “vesamicol” was 
docked. It was found that vesamicol binds at core of site 1 

Table 1  PET radiotracers target vesicular acetylcholine transporters (VAChT)

Structures with compound IDs pKi Structures with compound IDs pKi

1 

2.239

2 

3.060 

3 

2.921 

5 

2.770 

6 

2.569 

7 

2.337 

9 

2.261 

10 

1.252 

Structures with compound IDs pKi Structures with compound IDs pKi

1 

2.239

2 

3.060 

3 

2.921 

5 

2.770 

6 

2.569 

7 

2.337 

9 

2.261 

10 

1.252 

https://alphafold.ebi.ac.uk/entry/Q16572
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Table 1  (continued)

11 

1.032 

12 

2.185 

15 

1.801 

16 

1.476 

20 

3.658 

21 

3.602 

22 

3.347 

23 

3.319 

25 

2.770 

27 

2.367 

29 

0.967 

11 

1.032 

12 

2.185 

15 

1.801 

16 

1.476 

20 

3.658 

21 

3.602 

22 

3.347 

23 

3.319 

25 

2.770 

27 

2.367 

29 

0.967 
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of the protein with a good binding energy (27.572 kcal/mol) 
and interactions (shown later in the “Results and discussion” 
section). Out of other 15 sites, molecular docking failed in 
five docking sites and in case of the rest ten sites vesamicol 
did not bind at the docking site (outside the grid). Thus, site 
1 was chosen for further docking analysis. Ligand prepa-
ration was performed using selected high and low active 
compounds by running them through the Discovery Studio 
platform’s ‘small-molecule module’, where several ligand 
conformers were formed. Each of these generated conform-
ers was subsequently employed in the CDOCKER module 
for molecular docking using a CHARMm-based molecular 
dynamic scheme (Wu et al. 2003). The CDOCKER inter-
action energy parameter (kcal/mol) was examined for all 
receptor-ligand complexes, and the highest-scoring (more 
negative; hence favorable to binding) poses with only non-
covalent interactions (ionic bonds, hydrophobic interactions, 
hydrogen bonds, etc.) were kept for future investigation.

Results and discussions

The present work demonstrates the contribution of different 
structural attributes of PET imaging agents required for bind-
ing to and quantifying the presence of vesicular acetylcholine 
transporter. The main work is focused on the development of a 

simple 2D-QSAR model to obtain the major structural features 
responsible for binding. These features were further validated 
using the structural similarity-based read-across approach as 
well as molecular docking techniques.

QSAR modeling of binding affinity of PET imaging 
agents towards VAChT

The dataset procured for this study consisted of 19 compounds. 
A three-descriptor partial least squares (PLS) regression model 
with two latent variables (LVs) was developed which could 
explain 71.77% of the variance. The leave-one-out cross-vali-
dated determination coefficient (i.e., Q2

LOO
= 0.523 ) is above 

the critical threshold value fulfilling the statistical reliability 
of the model. We have also calculated the leave-many-out 
squared correlation coefficient ( Q2

LMO(25%)
 ), and the result 

obtained was above the threshold value (Roy et al. 2015). The 
observed versus predicted pKi (Supplementary S1) scatter plot 
is shown in Fig. 3. In cases, where residuals are high (Fig. 3), 
clearly some contributing features important for the response 
have remained unidentified and not included in the model. This 
is usual for models developed from a small data set, as due to 
limited variability of a particular (important) feature in the data 
set, the feature is not captured by the modeling algorithm. As 
more and more data become available, the model can be 
refined subsequently. However, with the available data, the 
presently developed model may be a good start as a tool for 
future predictions.

Fig. 2  Ramachandran plot for Vesicular acetylcholine transporter 
model (UniProt: Q16572, Source organism: Homo sapiens (Human), 
and AlphaFold id: AF-Q16572-F1-model_v2). Ramachandran plot 
shows 435 residues (97.098%) reside in the most favored region, 10 
(2.232%) residues reside in the preferable region and only 3 (0.670%) 
reside in the unfavorable region

Fig. 3  Observed versus predicted scatter plot of the PLS model
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The descriptors appearing in the final PLS model are all 
2D atom pair descriptors suggesting the importance of the 
presence of a particular atom pair in the PET tracer mol-
ecule. The 2D atom pair descriptors are mainly depend-
ent on the topological distance between two atoms pairs. 
Thus, the value of the descriptors can be similar for many 
compounds resulting in same predicted pKi values for 
many dataset compounds (Fig. 3). The residual might be 
high in such cases, but all the compounds are inside the 
applicability domain of the model (vide infra). The vari-
able importance plot (Akarachantachote et al. 2014) given 
in Fig. 4 shows the significance level of each descriptor 
toward VAChT binding affinity. The descriptor F09[N-
F] was the most significant descriptor with VIP Score > 1 
(VIP = 1.289) followed by F08[C-N] (VIP = 1.043) and 
B06[N–O] (VIP = 0.502). F09[N-F] which contributes 
negatively to the binding affinity, is the frequency of the 

pKi =2.018 − 0.831 × B06[N − O] + 0.757 × F08[C − N]
− 0.812 × F09[N − F]

N = 19, R2 = 0.718, Q2

(LOO)
= 0.523,

Q2

LMO(25%)
= 0.598, r2

m(LOO)
= 0.439,

Δr2
m(LOO)

= 0.027,MAE = 0.335, SD = 0.273

N-F fragment at a topological distance 9. Compounds like 
10 and 11 (Fig. 4) have nitrogen and fluorine at the topo-
logical distance 9, thereby decreasing the binding affinity 
towards VAChT, whereas in compounds like 21 and 23, 
the N-F fragment at 9 distance is absent, and the pKi val-
ues are high.

The next important 2D atom pair descriptor is F08[C-N] 
which denotes the frequency of C-N fragment at the topo-
logical distance 8. The positive regression coefficient indi-
cates that with an increase in the frequency of C-N at the 
8 distance, the binding affinity will increase as observed in 
compounds like 20 (Fig. 4), 23, and 25. These compounds 
have three such fragments and have high pKi values of 
3.658, 3.319, and 2.700 respectively.

The least important among all the descriptors is 
B06[N–O] which implies the presence or absence of an N–O 
fragment at a topological distance 6. The negative contri-
bution indicates that the presence of such a fragment will 
decrease the VAChT binding of the PET imaging agents 
as seen in compounds like 10 and 11 (Fig. 4). These com-
pounds have a very low binding affinity towards (1.251 and 
1.032 respectively) VAChT receptor.

The significance and validity of the developed model 
were further analyzed using some important PLS plots, 
namely, the loading plot, randomization plot, and applica-
bility domain (AD) which are described below.

Fig. 4  Variable importance plot and significance of the descriptors appearing in the PLS model
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A loading plot (Fig. 5) explains the relationship between 
the independent variables or descriptors (X-variables) with 
the dependent variable or pKi values (Y-variable). The influ-
ence of the descriptors on the developed model can be rec-
ognized from the loading plot. Descriptors that are far from 
the plot origin (like F08[C-N] and F09[N-F]) contribute 
significantly more toward the binding affinity. Descriptors 
with different meanings appear distantly from each other in 
the loading plot.

Model randomization confirms that the model is not the 
outcome of any chance correlation (Topliss and Edwards 
1979). The randomization plot determines the statistical 
significance and robustness of the model. Multiple models 
are generated during a randomization plot development 
by shuffling different combinations of either X-variables 
(X-randomization) or Y-response (Y-randomization). The 
Y-randomization was performed in the present study with 
100 permutations for each model for random model genera-
tion. For a non-random model R2

y
 intercept should not exceed 

0.3 and Q2
y
 intercept should not exceed 0.05. The randomi-

zation plot given in Fig. S1 (Supplementary File S2) shows 
that the developed model is non-random and robust and is 
suitable for prediction.

According to OECD guideline 3, a developed QSAR 
model should possess a defined chemical domain of appli-
cability. AD can be interpreted as a chemical space defined 
by the structural information or molecular properties of the 
chemicals used in the model development (Gadaleta et al. 
2016). Compounds present within this chemical space can 
only be properly predicted. In this study, the DModX (dis-
tance to model in X-space) method of AD determination 
(Kar et al. 2018; Vargas et al. 2018) at a 99% confidence 
interval (D-crit = 0.009999) was applied using SIMCA 

16.0.2 software (Wu et al. 2010). DModX represents the 
unexplained variation (residuals), and it can be explained as 
the distance to the model X space corresponding to the X 
residuals standard deviation (Vargas et  al. 2018). The 
DModX value of an observation i can be calculated using 

the formula Si =
√

Σe2
ik

(K−A)
∕

√

Σe2
k

(N−A−A0)((K−A)
 , where eik is the 

X-residual of the observation i and variable k, Σe2
k
 is the 

squared sum of the residuals, N is the number of observa-
tions, K is the number of x-variables, and A is the number 
of latent variables, A0 is 1 if the model is centered and 0 
otherwise. The DModX is asserted to be F-distributed, and 
thus, can be used to analyse if the observation is significantly 
far away from the PLS model presuming the data is normally 
distributed. The AD plot (Fig. 6) shows none of the com-
pounds was an outlier. The PET compounds selected for the 
VAChT binding and imaging contained a basic core struc-
ture of 2-(piperidin-1-yl)cyclohexan-1-ol which is also the 
main core moiety of standard compound vesamicol. The 
QSAR model developed in the present research contains 
2D-atom pair features which can predict compounds with or 
without the core structures as evident from the external set 
predictions (vide infra).

Although we developed our QSAR model from the whole 
set due to the limited availability of the experimental data, 
to further check its validity for external predictions, we have 
additionally split the dataset into training and test sets, and 
redeveloped three models with the same combination of 
descriptors (given in the Supplementary Section S1). The 
models were found to be robust and predictive.

Fig. 5  Loading plot of the PLS 
model



 In Silico Pharmacology            (2023) 11:9 

1 3

    9  Page 10 of 14

Read‑across based predictions

To explore the predictivity of the selected features used 
for QSAR modeling, a similarity-based read- across 
prediction was performed by using a group of five com-
pounds (compound ID: 3, 11, 12, 21, and 27) as the test 
set (Chatterjee et al. 2022). Read-across was also previ-
ously performed on small datasets (< 20 compounds) suc-
cessfully (Gajewicz et al. 2014, 2017; Gajewicz 2017a, 
b). In the current work, three types of similarity were 
measured: the Euclidean Distance-based, the Gauss-
ian Kernel Similarity-based, and the Laplacean Kernel 
Similarity based predictions using Read-Across-v4.1 
(https:// sites. google. com/ jadav purun ivers ity. in/ dtc- lab- 
softw are/ home) tool and after hyperparameter optimi-
zation using Auto_RA_Optimizer-v1.0 tool (https:// 
sites. google. com/ jadav purun ivers ity. in/ dtc- lab- softw 
are/ home), it was found that the external validation 
results obtained from quantitative Read-Across algo-
rithm using Gaussian Kernel Similarity-based functions 

( Q2

F1
= 0.763,Q2

F2
= 0.763,RMSE = 0.414,MAE = 0.331 ) 

was better compared to the results obtained with the other 
two read-across approaches (Table 2).

Molecular docking

Molecular docking must include a reasonably accurate 
model of energy and should be able to deal with the com-
binatorial complexity experienced by the molecular flex-
ibility of the docking partners. In the present research, 
molecular docking studies were performed to understand 
the individual molecular interactions and orientation of the 
imaging agents occurring at the binding zone of the VAChT 
receptor (Fig. 7). In the present work, the protein structure 
for VAChT was not available in PDB, hence, we have pro-
cured the predicted protein structure from AlphaFold Pro-
tein Structure Database. The selected protein structure was 
further validated using the famous Ramachandran plot to 
improve the accuracy of prediction. From the Ramachandran 

Fig. 6  DModX AD plot of the 
PLS model

Table 2  Comparison between 
three types of read-across 
predictions

Bold values indicate the best predictions

Method Ntrain R2 Q2

(LOO)
MAE Ntest Q2

F1
Q2

F2
MAE

QSAR 19 0.718 0.523 0.335 – – – –
Read-Across
 Euclidean distance 14 – – – 5 0.189 0.189 0.596
 Gaussian Kernel – – – 0.763 0.763 0.331
 Laplacian Kernel – – – 0.719 0.719 0.380

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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plot, we found that 435 residues (97.098%) reside in the most 
favored region, 10 (2.232%) residues reside in the preferable 
region and only 3 (0.670%) reside in the unfavorable region. 
During docking, the physiological pH of brain was consid-
ered at which the piperidine N is protonated. The tautomers 
were also considered. Further, validation using the stand-
ard compound, i.e., vesamicol was performed by docking 
at the binding site to understand its nature of interactions. 
Again, both high and low-active compounds were also used 
for the docking study. In the case of vesamicol (compound 
9), which has a moderate binding affinity (pKi = 2.261), 
the interaction forces include hydrogen bond interactions 
(both conventional and carbon-hydrogen bond interactions) 
and π-anion interactions. The amino acid residues engaged 
in vesamicol binding are Asp A:202, Asp A:483, and Ser 
A:480. Comparing vesamicol-VAChT binding interac-
tions with highly active compounds like compound ID 20 
(pKi = 3.658), 21 (pKi = 3.602), and 22 (pKi = 3.347), it was 
observed that similar interactions were also involved in their 
binding (Fig. 7). However, it was found that these highly 
active compounds were docked with higher number of inter-
actions at their binding site with far better binding (Table 3). 
For compound 20, halogen (fluorine) interactions, attractive 
charge, π-cation, and π-alkyl interactions were active along 
with hydrogen bond interactions. In the case of compound 

21, additional interactions include attractive charge, π-anion, 
and π-cation interactions. Similarly, in the case of compound 
22, attractive charges, alkyl, and π-alkyl interactions were 
active along with conventional hydrogen bond and carbon-
hydrogen bond interactions. The attractive charge interaction 
of Asp A:483 amino acid with the nitrogen of piperidine 
moiety of all three high active compounds was a noteworthy 
finding inferring the importance of the fragment in VAChT 
binding.

In the case of lower active compounds like compound 10 
(pKi = 1.032) and compound 29 (pKi = 0.967) (Fig. 7), the 
number of molecular interactions was much less than the 
higher active ones (Table 3). Conventional hydrogen bond 
and carbon-hydrogen bond interactions were prevalent, with 
additional halogen and π-alkyl in the case of compound 29.

Relationship with QSAR features

From QSAR modeling, it was found that F08[C-N] is the 
only positively contributing descriptor. Therefore, the pres-
ence of nitrogen in the PET imaging agent is very essen-
tial for good VAChT binding. In the case of highly active 
compounds (compounds 20, 21, and 22) used for molecular 
docking, it was found that attractive charge interaction was 
prevalent in all three compounds which occurred between 

Fig. 7  Molecular docking interactions of highly active, least active and standard compounds against VAChT binding
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Asp A:483 amino acid with the nitrogen of piperidine moi-
ety of the PET tracer. These two observations correlate with 
each other and thus it can be inferred that nitrogen (as piperi-
dine moiety) is essential for good VAChT binding.

True external set predictions

For the analysis of the predictivity of the developed model, 
we have considered two PET datasets previously used 
by our group (De et al. 2019; De and Roy 2020) for their 
VAChT binding predictions (Table S1). Dataset D1 was 
initially used for amyloid beta imaging and dataset D2 was 
used for Dopamine (D2) imaging. The prediction quality 
was further verified using by the application of “Prediction 
Reliability Indicator” tool (Roy et al. 2018) available from 
https:// dtclab. webs. com/ softw are- tools. The prediction tool 
reported “Good” quality prediction for all the compounds 
and they were all inside the AD of the model (Supplemen-
tary Files S1 and S2). Thus, these compounds can also be 
considered as potential PET imaging agents for VAChT sub-
ject to experimental validation.

Conclusions

The neurotransmitter acetylcholine (ACh) plays a ubiqui-
tous role in cognitive functions including learning and 
memory with widespread innervation in the cortex, sub-
cortical structures and the cerebellum. Cholinergic recep-
tors, transporters, or enzymes associated with many neu-
rodegenerative diseases, including Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), are potential imaging 
targets. In the present study, we have developed a 

2D-QSAR model for 19 positron emission tomography 
(PET) imaging agents targeted against presynaptic vesicu-
lar acetylcholine transporter (VAChT). In our work, we 
aimed to understand the important structural features of 
the PET imaging agents required for their binding with 
VAChT. This was done by the feature selection using a 
Genetic Algorithm followed by the Best Subset Selection 
method and developing a Partial Least Squares- based 2D 
QSAR model using the best feature combination. The 
developed QSAR model showed significant statistical per-
f o r m a n c e  a n d  r e l i a b i l i t y 
( R2 = 0.718,Q2

(LOO)
= 0.523,Q2

LMO(25%)
= 0.598 ). Using the 

features selected in the 2D-QSAR analysis, we have also 
performed similarity-based chemical read-across predic-
tions and obtained encouraging external validation statis-
tics. From the developed QSAR model, it was found that 
the presence of nitrogen in the PET tracer molecule poten-
tiates the binding affinity towards the VAChT receptor. 
This was further confirmed by molecular docking studies 
where nitrogen in the piperidine moiety produced attrac-
tive charge interaction with Asp A:483 amino acid of 
VAChT. In the future, this study will help in the prediction 
of newly developed compounds within the applicability 
domain of the model targeted toward VAChT.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40203- 023- 00146-4.
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Table 3  The interacting residues and different types of binding interaction occurring between the PET imaging agents and VAChT

Compound Category pKi Binding amino acids Types of interactions

9 (Vesamicol) Standard 2.261 Asp A:202, Asp A:483, Ser A:480 Conventional hydrogen bond interactions, carbon-
hydrogen interactions, and π-anion interaction

20 Highly active 3.658 Ser A:415, Asp A:410, Tyr A:417, Arg A:477, Arg 
A:479, Asp A:483, Arg A:482

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, halogen 
(fluorine) interaction, π-cation, and π-alkyl 
interaction

21 3.602 Arg A:477, Asp A:483, Ser A:480, Arg A:482, Asp 
A:202

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, π-cation, 
and π-anion interactions

22 3.347 Pro A:205, Tyr A:494, Arg A:482, Asp A:483, Ser 
A:480, Pro A:490

Conventional hydrogen bond interactions, carbon-
hydrogen interactions, attractive charge, alkyl, 
and π-alkyl interactions

10 Least active 1.032 Asp A:202, Arg A:482, Pro A:490 Conventional hydrogen bond interactions and 
carbon-hydrogen interactions

29 0.967 Arg A:479, Arg A:477, Tyr A:417 Conventional hydrogen bond interactions, carbon-
hydrogen interactions, halogen (fluorine), and 
π-alkyl interactions

https://dtclab.webs.com/software-tools
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